
Proceedings of the 2013 Winter Simulation Conference 

R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds 

 

 

  

RECONFIGURABLE C3 SIMULATION FRAMEWORK: INTEROPERATION BETWEEN C2 

AND COMMUNICATION SIMULATORS 

 

 

Bong Gu Kang 

Tag Gon Kim 

 

Dept. Electrical Engineering 

KAIST 

Daejeon, 305-701, REPUBLIC OF KOREA 

 

 

ABSTRACT 

This paper presents a reconfigurable military simulation framework that reflects behaviors of a C3 system, 

consisting of command & control (C2) and communication (C). To achieve this goal, this paper identifies 

models in the C3 system and defines the interfaces between the models. In detail, we dispart a C2 

simulation framework as three components: the C2, the military unit, and the communication agent model. 

We also suggest a new metamodel that can represent the dynamic property of the communication 

simulator. With the enhanced modularity of the C2 system and the new metamodel, users can assess 

various structures of the C2 system and rapidly calculate the diverse effects of communication. From case 

studies, we can test the new structure for the C2 system and gain improved performance with regard to 

speed by using the metamodel. Finally, we expect that this work will help decision makers evaluate 

various scenarios in a short time. 

 

1 INTRODUCTION 

Network-centric warfare (NCW) is a military doctrine or theory of war pioneered by the United States 

Department of Defense in the 1990s. The aim of NCW is translating an information advantage, enabled in 

part by information technology, into a competitive advantage. NCW integrates  command & control (C2), 

communications, computers, intelligence, surveillance, and reconnaissance (C4ISR Architecture Working 

Group 1997). Figure 1 shows the battlefield of  NCW based on this C4ISR structure.  When the enemy 

emerges in the battle field, a sensor, such as an unmanned aerial vehicle (UAV), detects it and transmits 

the information to C2 through communication equipment. Then, C2 recognizes the situation from the de-

tected information and assigns weapons and sends a fire request to a shooter, such as a fighter plane, us-

ing communication equipment. Last, the shooter attacks the enemy after receiving the fire order. We call 

this process the Sensor – C2 – Shooter cycle. In this field, the result of war can be changed depending on 

how fast this cycle rotates (Walsh et al. 2005), and the importance of C2 and communication in the rota-

tion is increasing. For those reasons, to describe the field of NCW realistically, we need to model and 

simulate C3, which is made up communication and  C2.  

 In the C3 system, the communication equipment takes charge of delivering information between a 

pair of C2s. Under this circumstance, the success, failure, and delay of transmissions can be changed de-

pending upon the communication equipment and parameters; therefore, we should consider such effects 

of communication when constructing models and simulations. In the C2 system, the existing order struc-

ture has a latency problem due to many stages from uppermost to lowest C2 and vice versa. To solve 

those issues, the Korean government has suggested that new structures for C2 be developed (Ahn 2012). 
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Such structure can be tested without economical cost if using modeling and simulation. For such reasons, 

a method able to simulate C3 is needed that comprises communication and C2. 

 

 

Figure 1: General engagement cycle : Sensor  command & control  shooter.  

This paper therefore proposes a C3 simulation framework that responds to the above requirements, as 

diagrammed in Figure 2. Through this framework, users can test various C2 structures and analyze the 

various effects of communication upon the C2 system. Users can acquire precise results of simulation 

with the communication simulator, and they can also quickly obtain output with the metamodel instead of 

the communication simulator. Or, users can choose one of them according to the objective of the simula-

tion. 

 

 

Figure 2: Overview of the proposed C3 simulation framework. 

 In the next section, we present related works about C3 simulation. Then, we will specifically argue 

the proposed C3 simulation framework in section 3 and show how the C3 simulation framework can be 

applied to various case studies in section 4. Finally, we summarize the points of this paper and ponder the 

application of this framework in various realm.  

2 RELATED WORK 

Some studies related to simulation of C3 already exist. Figure 3(a) is a schematic of Die Neue Framework 

Simulation (DNS) developed in Germany (Eberhard 2001). This framework uses HORUS, or training 

analysis in ground combat; FIT, or the C3 model; and  ORIS, or ISR, models. But communication is ex-

pressed in FIT as a concise model, which limits the ability of DNS to express details regarding the effec-

tiveness of the communication. To overcome this limitation, new methods have been suggested, as in 

Figure 3(b). This method was developed to take into account the interoperation between communication 

effects servers (CES) or communication simulators based on OPNET in the United Kingdom (Paz 2008), 

and One Semi-Automated Forces (OneSAF), which is a mission-level wargame simulator developed in 

the United States. This study uses a communication simulator as the communication model, and through 

this approach, precise communication effects can be calculated. However, only the C2 structures that are 

supported by OneSAF can be tested experimentally. To address these problems, a modifiable, C2 system 
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wargame simulator has been invented, as shown in Figure 3(c) (Kim et al. 2011). This approach takes into 

account the interoperation between the communication simulator and the modifiable wargame simulator. 

In case of communication, detailed communication effects can be represented by the simulator, and also, 

by separating from the war simulator, the communication simulator can be reused. 

 

 

Figure 3: Comparison of related works for C3. 

 However, from the C2 structure perspective, the C2 model is incorporated into each command center 

model, as shown in Figure 4(a). Therefore, when we change the C2 structure, we should modify the struc-

ture of each command center, which is not efficient. Also, from the communication viewpoint, whereas 

the accuracy of communication can be increased, a long execution time is necessary for complex compu-

tations. As a result, these drawbacks constrain the types of cases that can be tested experimentally. To re-

solve these problems, a framework must be developed that satisfies two requirements: the framework 

must be applicable to various C2 structures, and it must enable quick computation. In this paper, we pro-

pose a C3 simulation framework that meets these requirements.  

 

 

Figure 4: Difference between existing and proposed work. 

 In C2 structures, we separated C2 from the command center model as in Figure 4(b); in turn, we en-

sured modularity by constructing C2 models with components that can be changed as needed. Within this 

framework, users can experiment just by changing the inner structure. Meanwhile, a drawback in the 

communication simulator is that it requires a long execution time. To save time, we constructed a meta-

model as shown in Figure 4(b). In the process of making a metamodel, we found that existing metamodel 

methods were limited in their ability to express the property of the simulator, because those methods as-

sumed a static system (Kleijnen et al. 2000), even though the simulator is a dynamic system. For this sys-

tem, we proposed a new metamodeling method called discrete event metamodeling. This paper will deal 

with the metamodel in section 3. Through these solutions, this study meets the two requirements outlined 

above. 

2821



Kang and Kim 

 

 

3 C3 SIMULATION FRAMEWORK 

The objective of the C3 simulation framework is to make it easy for users to analyze the C2 structure and 

communication effects that they want to test. To ensure the ease of testing various scenarios, we enhanced 

the modularity of the framework, thus making it reconfigurable. As a result, users can simulate a C3 sys-

tem without adjusting the C2 or communication models. To be specific, users can analyze the structure of 

a C2 system through a C2 model and determine the effects of communication on wargame simulations 

with a communication model. Such a C3 simulation framework consists of C2, the C framework, and an 

interface, as shown in Figure 5. In the C simulation framework, there is a communication model with a 

communication simulator or discrete event metamodel as the inner model. If the user needs high accuracy, 

the simulator is suitable. If the user needs fast simulation execution time (e.g., to understand a tendency), 

the metamodel is appropriate. These results of communication are transferred through the interface. In 

this section, each framework and the interface between them will be described. 

 

 

Figure 5: Proposed C3 simulation framework. 

3.1 C2 Simulation Framework 

3.1.1 Model Description 

The C2 simulation framework consists of C2, a military unit, and a communication agent model. To de-

scribe the behavior of precise communication, we separate this communication model from other models. 

Then, to achieve reconfigurability, we separate the C2 model from the military unit. By separating each 

component, we can enhance modularity.  

 The C2 model is set of function of C2 in each command center in the existing research. We represent 

each C2 model as a coupled model based on Discrete EVent System Specification (DEVS) because this 

formalism can easily express hierarchical structure (Zeigler et al. 2000). In this coupled model, there is a 

C2 atomic model, which is formalized to an atomic model of DEVS. This atomic model describes the 

general C2 processthat is, target identification, confirmation of target information and battle plans, and 

allocation of weapons against targets, as in Figure 6(b). These functions are expressed in one C2 atomic 

model, such as corps C2 and division C2. As depicted in Figure 6(b), C2 models can be different, depend-

ing on how C2s are connected. As a result, if users want to change the structure of the C2 framework, 

then they only need to change the inner C2 model, depending on the C2 structure scenario. 

 The military unit is a model that accepts the C2 model in the command center. This model is also 

based on DEVS formalism because it is suitable to the modularity. Just as in a real battlefield, each battle 

troop is composed of detection troops and engagement weapons, such as air defense weapons and artillery 

and so on. Also, they consist of functions such as maneuvering, detection, and combat, as diagrammed in 

Figure 6(b). By expressing troops as a coupled model and functions as an atomic model, the modularity of 

the model can be well portrayed and each troop can be reused. In the C3 simulation framework, the detec-

tion of troops plays a role in the reporting of detection information to the C2 model, and engagement 

weapons conduct attacks against targets based on fire orders from C2.  
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Figure 6: Architecture of models in the C2 simulation framework.  

 In a real battlefield, C3 comprises C2 and communication between the pair of C2s. By functionally 

dividing each other, they are separated as the C2 model and the communication agent model, which acts 

for communication as illustrated in Figure 7. If users utilize a disjoined architecture, as in the framework 

proposed by this paper, the modularity of the C2 model can be sustained. Furthermore, when changing the 

logic of the communication model, users can just modify the agent model. This agent model has two 

functions: to reflect communication effects on C2 and to retransmit if there is no response. The former 

means to apply that effect to an atomic model of the C2 model. For instance, in the case of transmission 

of messages from battalion to infantry, the communication agent receives the message and transmits it to 

the communication model, and then when the message from the communication model arrives, it applies 

that message to communication effects and delivery to the infantry C2. The latter function means to con-

duct retransmissions after C2 sends a message to the communication model if there is no acknowledge-

ment from the communication model.  

 

 

Figure 7: Separation of communication agent model. 

 To be more concrete, in a real battleground, if there is no response after a C2 sends a message to an-

other C2, the C2 will repeat the transmission. To simulate these real-world events, the communication 

agent model checks the response time based on an inner clock. If a message returns to the agent from the 

communication model before the time set by the inner clock, it regards the transmission as successful and 

the agent sends a message with the calculated communication effects to another C2. If, however, the re-

sponse time is over the time set by the inner clock, the transmission is considered a failure and a retrans-

mission occurs based on a military policy. Because the real world has the property of resending, this 

framework also considers this function.  

3.1.2 Interface Description 

In the C2 simulation framework, the C2 model is connected with a communication agent and a military 

unit model. The four kinds of messages used among them are as follows in Table 1. A detection message 

includes information about a detected enemy, while a fire command message includes weapons allocated 

from C2 and the position of the target. A move order message is used to indicate maneuvering of machin-

ery, and an update order message is used to report the present position to C2 when a military unit arrives 

at its destination. The messages passed between C2 and the communication agent model are detection and 

fire command messages. The former is used to report detection information to upper C2, while the latter 
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is needed for requesting fire support from upper C2 to another C2, which includes available weapons to 

attack. In case of messages between C2 and the communication model, move order and update messages 

are needed besides the above two types of messages. A move order is needed to move machinery from C2, 

and an update message is required to give a weapons arrival report to C2. These above messages are 

transmitted via the interface, as shown in Figure 8.  

 

Table 1: Identification messages in C2. 

Message Type Contents 

Detection info Enemy Information 

Fire command Weapon ID, Target Position 

Move order Destination Position 

Update position Weapon Position 

 

 

 Because models in the C2 simulation framework are constructed as DEVS models, the user only 

makes couplings among them if he or she wants to connect them. In the case of the relationship between 

C2 and the agent model, the output of C2 is connected to the input of the agent model, and for this route, 

messages wanted to be reflected effect are sent to the agent model. Conversely, the output of the agent 

model is connected with the input of the C2 model, and through this interface, messages reflecting com-

munication effects are delivered from the agent to the C2 model. Meanwhile, in the case of C2 and the 

military unit model, the output of C2 is linked to the input of the military model, and by this means, order 

can be delivered to the unit from C2. Conversely, the output of the military unit is attached to the input of 

the C2 model, and with them, target information from engagement or detection troops can be sent. To 

sum up, through this interface, if users just satisfy the interface among models, they can simulate diverse 

situations easily. 

3.2 C Simulation Framework 

3.2.1 Model Description 

The C simulation framework consists of the communication model, which plays a role in reflecting com-

munication effects (e.g., delay, success or failure of transmission, etc.) on the C2 model. Such effects can 

vary with the parameters of the communication equipment. In this paper, the communication model can 

be a communication simulator or discrete event metamodel. The user chooses one of two alternatives ac-

cording to the objective of the simulation. For example, in a circumstance requiring accurate results of 

simulation, the communication simulator is suitable, but it requires a long execution time. To save this 

time, the metamodel of the communication simulator can be utilized. For this case, the existing metamod-

els cannot describe this simulator because they can only be applied to static systems. However, this simu-

lator is a dynamic system because output is only not determined by current input. To tackle this problem, 

a new metamodel called the discrete event metamodel is proposed.  

3.2.2 Discrete Event Metamodel 

The discrete event metamodel we propose addresses the problem of the lengthy computation time re-

quired by extant metamodels. As shown in Figure 9, the communication simulator determines the internal 

property, such as the delay or success of a transmission, by using the parameter of the simulator as an in-

put. Upon receiving a message from the wargame simulator, the communication simulator resends an up-

dated message to that simulator after reflecting effects based on delay time and success rate. Therefore, in 

Figure 8: Interfaces between models in C2. 
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order to construct the metamodel of that simulator, three functions should be satisfied. The first is to de-

termine communication effectiveness based on communication parameters. Second is to describe behav-

ior, such as the success of transmission. Last is to reflect delay time. Of the three functions, the second 

can be represented by static metamodeling, but the final cannot be expressed by existing methodology 

since this simulator is a dynamic systemthat is, sequences of input messages can be different from the 

order of output. 

 

 

Figure 9: Input and output of communication simulator. 

 To make the metamodel satisfy the property of the above system, we suggest a new metamodel based 

on a discrete event system. To fulfill the characteristic of delay, we make a queue that manages the re-

maining time inside the metamodel, and when input or output events occur, the status of the queue is up-

dated. This discrete event metamodel is expressed with DEVS formalism, as shown in Figure  10. The in-

teresting thing is that inner status changes according to success rate, like     
 . Also, the queue varies 

whenever an input or output event occurs. For better understanding, we give a detailed account using a 

diagram of DEVS in Figure 10, which includes  a description about functions used in the diagram. First, 

Update() is used to renew the success rate using input parameters, and CheckTransmissionSuccess() is 

used to determine either success or failure of transmission against the input message. InsertMessage-

InQueue()/PopMessage() is used to insert or pop the message from the queue, CheckQueueLength() is 

used to return the length of the queue, and UpdateReviseTA() is used to calculate the time when the next 

message is going out and update the queue accordingly.  

 

 

Figure 10: Discrete event metamodel representation: DEVS formalism and diagram. 
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 As shown in Figure 10, this model starts with WAIT status and then, after receiving a parameter, cal-

culates the success rate of transmission. In WAIT status, when entering a message, the status transfers to 

SUCCESS. In this status, it calls the CheckTransmissionSuccess() function; after that, if the transmission 

is successful, the status changes to SEND, and if unsuccessful, to WAIT. On the way to SEND, an input 

message is inserted into the queue with the InsertMessageInQueue() function. Calling the UpdateRevise-

TA() function updates the remaining time of messages in the queue. And then, remaining time value of 

message which is going out at first in the queue applies to min_ta. In SEND status, if there is no input 

event after min_ta time, the model sends output with the PopMessage() function and checks the length of 

the queue using CheckQueueLength(). If the queue is empty, the status changes to WAIT; if it is not emp-

ty, it changes to SEND. While in SEND status, if an external event occurs, the status changes to 

SUCCESS, and then the same process is recursive as before during simulation. Through this process, the 

discrete event metamodel can similarly express the behavior of the communication simulator.  

3.3 Interface Description 

The communication model is connected with the communication agent model in the C2 simulation 

framework through an interface. Messages between the agent and the C2 model are represented as in Ta-

ble 2. There are three types of messages: detection info_C2, fire command_C2, and status_C2. Detection 

info is used to send and receive tracing information between the pair of C2s. Fire command includes in-

formation about firing weapons and a status message is used to transmit the situation of C2. In this table, 

the important thing is that the messages’ sending or receiving time and Sender C2_ID and Receiver 

C2_ID, and these contents are used for reflecting the effects of communication. For instance, we assume a 

situation in which C2 (A, id=1) sends messages to another C2 (B, id=2) when the current time is 0 sec. 

First, C2(A) sends the message with Sender C2_ID=1, Receiver C2_ID=2, and Sending time=0 to the 

agent model, and then the agent model sends the message to the communication model. In the communi-

cation model, delay time will be calculated and a response message is sent to the agent model. At this 

moment, the agent model has a message with C2_ID=1, Receiver C2_ID=2, and Receiving time=0+delay 

time that is from the communication model. Then, this agent model will send the message to its destina-

tion on the basis of Receiver C2_ID=2. In this case, C2 will receive the message because the ID of that is 

2. In this way, communication effects are reflected.  

Table 2:  Messages between agent and communication model. 

(a) Message from Agent to Communication Model  (b) Message from Agent to Communication Model 

Message Type Contents  Message Type Contents 

Detection info_C2 
Enemy Info., Sender C2_ID, 

Receiver_C2_ID, Sending Time 

 
Detection info_C2 

Enemy Info., Sender C2_ID, 

Receiver C2_ID, Receiving Time 

Fire command_C2 

Weapon ID, Target Position 

Sender C2_ID, Receiver C2_ID 

Sending Time 

 

Fire command_C2 

Weapon ID, Target Position 

Sender C2_ID, Receiver C2_ID 

Receiving Time 

Status_C2 C2_ID, C2_Position,C2_Status  Status_C2 C2_ID, C2_Position, C2_Status 

4 CASE STUDY 

In this section, with the proposed C3 simulation framework, we will conduct three experiments about 

analysis on communication effects and C2 structure. Through the first and second experiments, we will 

evaluate  the accuracy and performance of the discrete event metamodel. In the last experiment, we will 

apply the new C2 structure to the C3 simulation framework. For the experiment, we plot the defense in-

teroperation (J. S. Dahaman et al. 1988; IEEE Computer Society 2000) simulation of an infantry corps 

level abstracted by using a self-developed wargame simulator and the NetSPIN communication simulator 

developed by the Agency for Defense Development (ADD) in South Korea based on OPNET as the 

communication model. This NetSPIN describes a spider net (ADD. 1998), which is a real-world military 
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communication environment. The entire scenario of the simulation is as follows. When an enemy emerges, 

a detection troop detects it and sends its information to the corps command center, or the top level in the 

structure. Then, the C2 allocates weapons to use for attacking and transmits a fire request to another C2 

including available weapons, and this low-level C2 attacks the target with the requested machinery. Dur-

ing the transmission between the pair of C2s, communication effects are calculated and reflected. As a 

simulation environment, in the case of the wargame simulator, CPU: I7-3770 3.4GHz, RAM: 12Gb, 

DEVSim++ v.3.1, and KHLAAdaptor1516 are used. The DEVSim++ is a toolset for modeling and simu-

lation in a discrete event system and KHLAAdaptor is also a tool set for interoperation (T. G. Kim et al. 

2011). The environment of the communication simulator is CPU: I7-920 2.67GHz, RAM: 12Gb, and 

NetSPIN v.0.1 based on OPNET (OPNET Technologies, Inc. 1986) v.17.1. These are interoperated by 

MAK RTI v.4.1.1.  

4.1 Experiment 1: Identification Communication Parameter 

The objective of this experiment was to discriminate parameters affecting the result of the wargame 

simulator among diverse parameters, and the parameters were used to construct the metamodel. In order 

to do that, we measured the survivability of an enemy by changing the parameters. Communication 

equipment and parameters for input were as below in Table 3. A description of each parameter and 

equipment is in the table. We chose  64 experiment points based on a 2-level full factorial against 6 pa-

rameters and ran repeat simulations 30 times per one experiment point. An effective index was set up as 

survivability at simulation time = 1300 sec, because this time is when the survivability was saturated. 

Table 3: Communication parameters and descriptions. 

 Equipment Name / Description Value 

TDU 

(IP Router Model) 

Data forwarding rate / Forwarding speed of IP routers 5,000 bit/s, 500,000 packets/s 

Router memory size / Memory size to process packets 8 MB, 256 MB 

TMR 

(Wireless 

Transmission Model) 

Data speed / Speed of data in wireless 256 Kbps, 8192 Kbps 

Processing delay time / Delay time to processing packets 0 Sec,  3 Sec 

Tx power / Power to transmit tx channel 0.32 W, 15.8 W 

Valid rx power / Threshold to receive in rx channel 78 dBm, 90 dBm 

  

 

Figure 11: Simulation results for changing communication parameters. 
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 Figure 11 shows that, of the six parameters, only data forwarding rate and processing delay time af-

fected the effective index. Figure 11(a) shows data for three cases. One was 5,000 bits/s, another was 

500,000 packets, and the last did not consider communication effectsthat is, there was no delay and al-

ways success. In this case, the enemy recorded low survivability because the condition of communication 

in the friendly forces was perfect. When comparing 5,000 bit/s with 500,000 packets/s, the latter had a 

lower record because communication traffic was more in that case, and, as a result, the enemy had more 

damage than in the previous case. In the processing delay time case, when applying 3 sec processing de-

lay time, higher survivability was achieved due to the extended delay time. By contrast, in the other cases, 

router memory size had no impact because the used memory size was very small. Data speed also had no 

effects since delay time varied within several milliseconds. In the case of tx power and valid rx power, the 

results did not change because the communication model used in this experiment is a fixed network. In 

summary, data forwarding rate and processing delay time were the influential parameters. 

4.2 Experiment 2: Discrete Event Metamodel 

Generally, the procedure for making a metamodel consists of four stages: design of the experiment, data 

collection, metamodel construction, and model validation. In order to make two metamodels with each 

success rate and delay time as an output due to having an impact on combat results, we conducted an ex-

periment according to these procedures. In the first stage, we extracted 31 experiment points with a Face-

centered Central Composite and 9 points with a Latin Hypercube against influential parameter acquired in 

experiment 1, or data forwarding rate and processing delay time. Then we substituted these points to the 

communication simulator and conducted the simulation 30 times per one experiment point. On the basis 

of the collected data, we constructed a second-order response surface metamodel (RSM) against success 

rate as shown in Table 4, and the adjusted r-square error was measured as 0.779. On the other hand, in the 

case of the metamodel against process delay time, the parameter was interpreted as no impact on the re-

sult, so we made a probability model with normal distribution where the mean = 0.081sec and standard 

deviation = 0.0037sec to substitute RSM. By using the RSM against the success rate and the probability 

model against delay time, we made the discrete event metamodel. To validate this metamodel, we again 

extracted 10 experiment points aside from the existing 40 points and used these new points as input for 

the communication simulator and discrete event metamodel, as shown in Figure 5. We assessed the accu-

racy and performance of the simulator and metamodel, and the results are shown in Figure 12. For the 

analysis of accuracy, we calculated the root mean square error (RMSE) of enemy survivability, which 

was measured as 0.0031. This means that when we use this metamodel, we can predict the result within 

0.0031 approximate error. Also, for the performance, we measured execution time. In the case of the dis-

crete event metamodel, 150.1 sec was recorded, in comparison to 15197.4 sec for the simulator case. As 

can be seen in Figure 12, these two models have a big gap against the x-axis, or simulation execution time. 

In other words, the discrete event metamodel has 100 times performance, and through this, we can simu-

late diverse scenarios within a short time by tolerating small errors.  
 

Table 4: Metamodel against success rate 

 
Unstandardized 

Coefficients(B) 
p-value 

Constant 0.462 0.000 

Data Forwarding Rate 0.014 0.011 

Processing Delay Time -0.423 0.000 

Data Forwarding Rate2 -9.302E-5 0.060 

Processing Delay Time2 0.120 0.000 

Data Forwarding Rate  

× Processing Delay Time 
-0.002 0.003 

Figure 12: Simulation result of comparing  

simulator and discrete event metamodel. 
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4.3 Experiment 3 : C2 Structure 

The purpose of the final experiment was to make a comparison between the new and existing C2 structure 

in terms of the effectiveness of combat. In the previous structure, orders are delivered step by step from 

lowest to uppermost C2. So, this structure has a significant delay time due to many intermediate stages. In 

order to eliminate this flaw, a direct connection structure was proposed, and we simulated the new struc-

ture by comparing it to the existing one. The result of the experiment is shown below. The required time 

from detection to attack was shorter by about 15 sec in the new structure, which would allow the first at-

tack to occur quicker. The reason is that the smaller number of steps in the new structure causes a fast re-

sponse. This difference of response time leads to a 60sec gap based on time when enemy survival rate is 

saturated. Through this time gap, the chance to be damaged declines, and forces can consequently gain a 

competitive advantage on the battlefield. In short, with the proposed C3 simulation framework, we can 

simulate the new C2 structure without increasing economic or manpower costs. 

 

 

Figure 13:  Simulation result for changing C2 structure. 

5 CONCLUSION 

The result of combat in the NCW battlefield depends on how fast the SensorC2Shooter cycle rotates. 

Therefore, it is important to enhance C2 and communication, which control the velocity of the cycle. In 

short, in order to describe the NCW battleground, we need modeling and simulation about the effects of 

communication and C2 structure. In the case of communication, a description of diverse effects is needed. 

In the C2 structure, various structures of order transmissions should be reflected because the situation of 

war can vary. In spite of the need for C3 simulation, or the variety of C2 and communication models, ex-

isting research has not developed a model that allows them to be analyzed effectively. To solve this prob-

lem, this paper proposed a C3 simulation framework that comprises C2 and C models. In the case of the 

C2 framework, we enhanced modularity by separating C2 from the command center model in the existing 

structure; as a result, we can change the C2 structure without revising the other models. In the case of the 

communication model, the previous form used a communication simulator as the communication model. 

However, this requires a long execution time. To overcome this problem, we constructed a new meta-

model. The existing metamodels, which can only describe a static system, cannot represent the communi-

cation simulator, which is a dynamic system. So, we suggested a new metamodel called the discrete event 

metamodel. With this model, we can express the characteristics of the simulator, such as delay and suc-

cess rate of transmission of orders between two C2s. So as to show the implementation of the C3 simula-

tion framework, we conducted three case studies. The discrete event metamodel provided improved per-

formance in communication in respect to time within small approximate error, and, with regard to C2, the 

new structure can be simulated without modifying other models. In future work, we will construct the dis-

crete event metamodel against more diverse parameters and equipment of communication, since this pa-

per is limited to two kinds of equipment. Inversely, if constructing the metamodel against a wargame 

simulator, it can be used to analyze node traffic. Also, it would be valuable to apply this metamodel to 

other domains. 
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