
Proceedings of the 2013 Winter Simulation Conference
R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.

IMPACTS OF APPLICATION LOOKAHEAD ON DISTRIBUTED NETWORK EMULATION

Yuhao Zheng
Dong Jin

David M. Nicol

University of Illinois at Urbana-Champaign
Information Trust Institute

1308 West Main Street
Urbana, IL , 61801, USA

ABSTRACT

Large-scale and high-fidelity testbeds play critical roles in analyzing large-scale networks such as data
centers, cellular networks, and smart grid control networks. Our prior work combines parallel simulation
and virtual-time-integrated emulation, such that it offers both functional and temporal fidelity to the critical
software execution in large scale network settings. To achieve better scalability, we have developed a
distributed emulation system. However, as the number of computing servers grows, so does too the
synchronization overhead. Application lookahead, the ability to predict future behaviors of software, may
help reducing overhead for performance gain. In this paper, we study the impacts of application lookahead
on our distributed emulation testbed. We find that application lookahead can greatly reduce synchronization
overhead and improve speed by up to 3 times in our system, but incorrect lookahead may affect application
fidelity to different degrees, depending on application sensitivity to timing.

1 INTRODUCTION

It is essential to evaluate applications and protocols for large-scale systems across development phases (e.g.,
design, implementation, testing, and verification) using testing systems, especially those with the capability
to conduct large-scale network experiments. Simulation testbeds are widely used because of scalability and
flexibility. However, the fidelity of simulation models is always in question because of model simplification
and abstraction. Integration of emulation complements a simulation testbed by offering high fidelity, since
real programs are executed on real operating systems instead of executing models to advance experiments.
Therefore, we developed such a network testbed in our prior work by marrying a parallel simulator with a
virtualization-based emulator (Jin, Zheng, Zhu, Nicol, and Winterrowd 2012). The testbed runs on a single
shared-memory server, and is capable of emulating hundreds of virtual environments (VEs) concurrently
in a single multi-core processor because of the lightweight kernel-level virtualization technologies.

To enable experiments with larger number of emulated nodes, we have extended our testbed to
support distributed emulation. Good scalability implies not only the ability to emulate more nodes, but
also emulate them efficiently. Since emulated nodes now reside on different physical machines, the
synchronization overhead can dramatically increase comparing with the shared-memory system. Hence,
we investigate techniques to extract application lookahead from traces of application-level behaviors to
reduce the synchronization overhead, and thus achieve better scalability. The techniques we develop are
based on trace history, and are not guaranteed to always yield a true lower bound on future times of process
interactions. Lookahead is critical to the performance of conservative parallel discrete-event simulation,
and our results indicate that it is also important to emulation, e.g. emulation with application lookahead
is up to 3 times faster in some of our experiment setups.

2996978-1-4799-2076-1/13/$31.00 ©2013 IEEE

Zheng, Jin, and Nicol

The application lookahead we investigate in this work is defined as a lower bound of the time that an
emulated nodes will next affect any simulated or emulated entities. The application lookahead is calculated
by a neural-network-based model based on observed historical data. It is difficult for our predication model
to produce lookahead predictions that are always lower bounds. In particular, the lookahead may be too
large, which may negatively impact on fidelity, as it may allow an entity to advance too far in virtual
time too quickly, and receive a message in its virtual past. The computational overhead of computing the
lookahead is not negligible. Therefore, we have performed extensive studies on the impact of application
lookahead, i.e. speed and fidelity, with various network scenarios. We find that application lookahead can
greatly reduce synchronization frequency and overhead in some setups, but it may affect application fidelity
to different degree depending on application categories. The results serve as guidelines for users of our
testbed: in which conditions one ought to consider application lookahead to speed up their experiments,
and in which conditions one should not.

Our contributions of this work are summarized as follows:

• We extend our network testbed with the capability to conduct distributed emulation experiments.
• We develop a neural-network-based model for predicting (approximate) application lookahead.
• We investigate the impact on speed and fidelity caused by the application lookahead, and provide

a guideline of whether application lookahead may be enabled.

The remainder of the paper is organized as follows. Section 2 overviews the design of the distributed
emulation version of our testbed with application lookahead support; Section 3 presents the implementation
of the application lookahead model. Section 4 analyzes the impact of application lookahead; Section 5
reviews related work; and Section 6 concludes the paper and provides some future directions.

2 DISTRIBUTED DESIGN

2.1 SYSTEM ARCHITECTURE

Our testbed consists of three major components, an OpenVZ-based network emulator embedded in virtual
time, a network simulator, and a parallel simulation engine responsible for coordinating operations of
other two components. We have run 300+ emulated hosts on a single physical machine because of the
lightweight OS-level virtualization; more emulated hosts are possible on a single machine simply by adding
memory. To further increase the scale of the experiments the testbed can conduct by increasing the number
of processors used, we have developed the distributed emulation capability in our testbed.

Figure 1 depicts the system architecture to support distributed emulation. A master server machine is
connected to multiple slave machines via TCP/IP over gigabit Ethernet links. Each slave manages a group
of local containers running on the same physical machine, and independently advances program states
during its emulation window. The master has the knowledge on global network states. It is responsible to
coordinate all slave machines through a global synchronization algorithm, to manage cross-slave events,
and to perform the simulation experiments. Three types of information are communicated between the
slaves and the master: control commands, network data packets, and application lookahead.

2.2 GLOBAL SYNCHRONIZATION ALGORITHM

Our systems consists of two sub-systems: emulation and simulation, and we designed a global synchronization
algorithm to integrate the two systems based on virtual time (Jin, Zheng, Zhu, Nicol, and Winterrowd
2012). In this work, we revisited the synchronization algorithm to incorporate the application lookahead.
Figure 2 describes how a network experiment advances in our testbed with application lookahead disabled
and enabled. Emulation and simulation always execute their cycles alternatively. Without application
lookahead, emulation always runs ahead of simulation, while with application lookahead, emulation and
simulation appears like a racing game, one may run ahead of the other at any cycle. Application lookahead

2997

Zheng, Jin, and Nicol

Master Machine

S3F - Simulation Engine

VE Global Controller
Global

Scheduler
Parallel Simulation

Kernel

S3FNet – Network Simulator

End Host Protocols Traffic Links
Forwarding

Devices

Slave Machine OpenVZ VMM

VE1

VE0

VEn

…

VE Local Controller

Slave Machine OpenVZ VMM

VE1

VE0

VEn

…

VE Local Controller

Slave Machine OpenVZ VMM

VE1

VE0

VEn

…

VE Local Controller

Figure 1: Network Testbed Architecture with Distributed Emulation Support.

is explored to improve scalability, especially for the distributed version. Three factors determine a high
quality application lookahead:

• large average length of application lookahead, which implies small synchronization overhead,
• small overhead for computing the lookahead, and
• high accuracy of the predicted lookahead.

The three factors are often in tension with each another. We investigate the performance gain and the
fidelity loss with various network scenarios, and results are presented in Section 4. The results serve as
guidelines on the types of application that are beneficial for users to turn on the application lookahead
functionality in our testbed.

The high-level global synchronization algorithm for the distributed testbed is described in Algorithm
1. Let us define temu be the current emulation time (OpenVZ virtual time), tsim be the current simulation
time, ESW be the emulation synchronization window (the length of the next emulation advancement), and
SSW be the simulation synchronization window (the length of the next simulation advancement). tsim target
is the time where the simulator hands the control over to the network emulator.

3 LOOKAHEAD IMPLEMENTATION

We next present implementation details about how application lookahead is predicted, as well as analysis
of lookahead error. In this paper we mainly focus on the impacts of application lookahead, and we leave
how to predict lookahead using various approaches as future work.

3.1 LOOKAHEAD USING TIME SERIES FORECASTING

As discussed in Section 2, application lookahead is the ability to predict future behavior of applications.
When it comes to network emulation, we are particularly interested in knowing the time of next packet
sent from an application. Since application behaviors are fully determined by their executables and runtime

2998

Zheng, Jin, and Nicol

Application Lookahead

Virtual Time

Step 1
Step 3

Step 2

Simulation

Emulation

Step 4

Application Lookahead

Tsim_target Tsim_target

Virtual Time

Step 1 Step 3

Step 2

Simulation

Emulation

Step 4

(a)

(b)

Figure 2: Experiments advancement (a) without application lookahead, (b) with application lookahead.

Algorithm 1 Global Scheduler
while true do

if tsim = tsim target then
compute ESW
run OpenVZ emulation for ESW
inject packets to simulation
tsim target ← temu +minV Ee{lookaheade}

else
compute SSW
run simulation for SSW
t ′ ← the timestamp of the first executed deliver-to-VE event in this SSW
tsim target ←min{tsim target ,max{t ′, temu}}

end if
end while

environments, one possible way to predict application lookahead is based on binary code. However,
this approach is challenging not only due to the complexity of executable code, but also because runtime
environment brings uncertainty, e.g. multi-thread scheduling controlled by operating system. While network
emulation running native application code improves functional fidelity, it also makes lookahead impossible
to predict exactly. Any implementable approach to computing lookahead will be affected by inescapable
uncertainties.

Rather than estimate lookahead by analysis of the application code itself, we present an approach based
on applications’ packet inputs and outputs. Packets sent and received by an application can be viewed as
a time series, and therefore the lookahead problem can be converted to a time series forecasting problem.
To form a time series, all the packets sent or received by an application are sorted by timestamps, so that
each packet naturally becomes an observation vector y:

y = (ts,a1,a2, . . . ,ax),

2999

Zheng, Jin, and Nicol

where ts is the timestamp relative to the previous packet, and ai is the i-th attribute of this packet. Packet
attributes may contain packet size or other application specific fields. Packet attributes are to help indicate
packet content and are crucial to forecasting accuracy. We found that attributes containing packet size
(positive value for sent packets and negative value for received packets), TCP SYN flag, and TCP FIN flag
perform well for the applications we have tested in this paper. For more complex applications, using more
attributes may improve accuracy but at the cost of slower lookahead computation speed.

We use artificial neural networks (ANNs) to solve the time series forecasting problem (Zhang, Patuwo,
and Hu 1998). Time series forecasting typically assumes there is an underlying relationship between future
values and past observations. Formally, a future value is a function (either known or unknown) of past
observations:

yt+1 = f (yt ,yt−1, . . . ,yt−w+1),

where yt is the t-th observation and w is the forecasting window size. As ANNs are universal function
approximators (Lippmann 1987) (Hertz, Krogh, and Palmer 1991), it can be trained to perform the f
function mapping using historical data. Since we are only interested in the duration within which an
application will not send a packet, the ANN is only trained to predict the timestamp field ts of observation
vector yt+1, ignoring all other attribute fields ai. In case that the next observation in historical data yt+1
is a received packet, using timestamp ts of this packet as training target does not violate the semantic of
application lookahead — a period within which an application will not send a packet. In fact, ts is the
maximum lookahead amount given this training data, as the yt+1 packet receipt may suppress other packet
sends.

ANN models for forecasting are application dependent, as different applications behave differently. To
train an ANN for a given application, we run the application under its typical setup and collect the sent
and received packet trace. For better accuracy and generalization, the trace had better be comprehensive to
cover most the functionalities of the application. Consequently, when collecting trace for training, we run
the application under different setup, e.g. with different parameters, and under different network conditions.

3.2 LOOKAHEAD ERROR HANDLING AND ANALYSIS

As defined in Section 3.1, application lookahead is defined as a prediction of a time in future before which
an application will not send a packet. Ideally, application lookahead should be the exact time of the next
sent packet given that the application does not receive a packet before that. Unfortunately, due to application
complexity and runtime uncertainty, lookahead may not be exact. On one hand, an actual packet send may
occur later than lookahead lower bound. According to our scheduling algorithm presented in Section 2,
this underestimated lookahead may result in an unnecessary synchronization, i.e. a synchronization that
does nothing. However, this only has impact on speed but not fidelity, as packets will be delivered to
destination at the same time as that without lookahead.

On the other hand, an application may send a packet before the predicted lookahead. In this case, it
may result in some emulation host advancing too far ahead without noticing the presence of a potential
received packet. Since our virtual time system used in emulation system is not exact and may introduce
error (Zheng and Nicol 2011), it naturally allows packet arrival with a timestamp in the past and will try
delivering late packets to the destination containers at the earliest possible time. However, an event with a
timestamp in the past is strictly prohibited in conservative parallel discrete-event simulation. To fix this,
when a packet sending event is presented to the simulation system, if this event has a timestamp smaller
than the current simulation time, its timestamp is set to the current simulation time.

A lookahead error may increase the one-way delay of a packet sending from one emulation host to
another. Our previous work shows that temporal error up to a timeslice (100 µs) does not introduce
additional error to certain classes of application behaviors (Zheng, Jin, and Nicol 2012). However, incorrect
lookahead may introduce additional temporal error beyond that, and this may impact fidelity. Section 4.2
present experimental results demonstrating the impact of incorrectly lookahead to application fidelity, but
we analyze such impacts to different application categories as follows.

3000

Zheng, Jin, and Nicol

Different applications have different sensitivity to the increased one-way packet delays caused by
incorrect lookahead. We classify applications into the following three categories according to how much
impact incorrect lookahead may introduce.

• Local impact: some applications are relatively insensitive to lookahead error. An increased one-way
delay of a single packet brings minimal impact to the application functionality. Such error does not
cumulate and thus will not affect later functionality. Typical instances of this category are those
applications with long-term one-way traffic, e.g. transferring large files using FTP protocol. As long
as the lookahead error is not large enough to trigger a functionality change (e.g. TCP retransmission
due to timeout), when an increased delay occurs on a single packet, later functionality is performed
as if the lookahead error never occurs. In this case, lookahead error creates a jitter in application
behavior.

• Global impact: some other applications are sensitive to lookahead error. An increased delay on a
single packet may cumulate and postpone all later functionality. Many communicating protocols
behave in this way: when an application receives a packet, it performs some action and send a reply
packet, and the application on the other end will not advance until it receives this reply. In fact,
FTP protocol may belong to this category if the file size is very small and most time is spent in
control messages. However, as long as the increased delay is not long enough to trigger a timeout,
application still perform the same subsequent actions, only at a later time. In this case, lookahead
error creates a skew in application behavior.

• Drastic impact: finally, some applications are extremely sensitive to network delays. Any small
error in delays may lead to either different application behavior or incorrect application output.
Typical examples are those applications mainly based on network delay, e.g. ICMP ping message
that measures round trip time. In Section 4.2, we provide an example by implementing an end-to-end
available bandwidth measurement approach proposed by (Jain and Dovrolis 2002). This approach
mainly relies on measuring one-way delay at different sending rate, and therefore could be extremely
sensitive to any lookahead error.

We provide the above framework to estimate applications’ sensitivity to incorrect lookahead. Note that
this classification is vague, i.e. some applications may locate around the boundary between two categories
and have the characteristics of both. Detailed experiment results are presented in Section 4.2.

4 EVALUATION

We evaluate the impacts of application lookahead in a distributed setup. The overall architecture is shown
in Figure 1. The master machine is a server with 32 logical processors and 64GB memory. The master
machine is connected with 4 slave machines via a gigabit switch. Each slave machine is a commodity laptop
with 2 processors and 2GB memory. This setup demonstrates our distributed design can use relatively
low-profile machines to achieve scalable distributed emulation.

Next we present some preliminary results showing the impacts of application lookahead to speed and
fidelity respectively. For experiment with application lookahead, as stated in Section 3.1, ANNs models are
application dependent. In our experiments, we pre-trained ANNs for different applications, and the training
time is not counted into the run time. Training an ANN is usually time-consuming, but a well-trained
ANN is reusable until there is a functionality change in the application. In addition, we let the forecasting
window size w defined in Section 3.1 be 10.

4.1 LOOKAHEAD IMPACTS ON SPEED

We create a network scenario to which application lookahead could be potentially beneficial. The network
has high bandwidth (10 Mbps) and low latency (10 µs), which makes simulation-emulation synchronization
windows small when lookahead is not presented. On the other hand, the applications are sending traffic

3001

Zheng, Jin, and Nicol

very infrequently — we use iperf (Iperf 2012) sending UDP traffic at 100 Kbps — which means there are
lots of unnecessary synchronizations and this can be reduce by application lookahead. We vary the number
of slave machines as well as the number of virtual environments (VEs) per slave. In each setup, the VEs
are paired: each VE is connected and only connected to another VE via a 10Mbps / 10 µs link. Different
link pairs are independent and are just to increase simulation/emulation load. As all the packets have to
pass through the simulator within the master machine, it does not matter whether two VEs of a link pair
are on the same slave or not. Baseline results without lookahead are shown in Table 1(a), and the ones
with lookahead is given in Table 1(b).

We observed small synchronization windows (100 µs) when lookahead is not presented, resulting in
a high synchronization overhead (more than 50% when VE density is low, e.g. 20 VEs/slave). As VE
density increases, the synchronization overhead decreases due to improved synchronization efficiency per
slave machines. But the overhead still increases when the number of slaves grows, and this is negative to
scalability. On the other hand, when application lookahead is given, simulation-emulation synchronization
windows are greatly enlarged, resulting in lower overhead and higher execution speed (2-3 times faster).
As we can see, application lookahead brings performance gain.

We also notice the synchronization window decreases when the total number of VEs increases. This
is due to the synchronization mechanism we use (Section 2). Every time emulation is about to run, the
global scheduler computes an ESW for all VEs to advance. This approach is a barrier-based synchronous
approach, whose performance is sensitive is to minimal latency and minimal lookahead (Nicol and Liu
2002). As seen from Table 1(b), the average lookahead is independent to the number of VEs, since all the
applications are performing the same functionality. However, the average minimum lookahead decreases
very quickly as the size grows, because different link pairs are independent and are running out of sync.
We conclude that the reduced window size is the nature of barrier-based synchronization. Changing to
asynchronous approach may improve performance for this scenario as the node degree is small, but this
remains future effort.

4.2 LOOKAHEAD IMPACTS ON FIDELITY

To investigate the impact of application lookahead to fidelity, we use one slave machine with 2 VEs,
maximizing the impact of incorrect lookahead. As explained in Section 4.1, increased number of VEs will
result in smaller synchronization window, which reduces the likelihood of a VEs advancing too far ahead
due to incorrect lookahead and causing an increased one-way packet delay. Detailed analysis is provided
in Section 3.2. The experiment setup we use is this subsection is 2 VEs connected by a link with 10
Mbps bandwidth and 10 µs latency. Next we present the impacts of lookahead to applications fidelity, by
discussing the three categories in Section 3.2 respectively.

To model the application category which only suffers local impact from incorrect lookahead, we use a
traffic generator sending controllable one-way UDP traffic. The traffic source is sending 10-Kbyte constant
size packets, and the inter-packet arrival time is exponential distribution with mean of 10 ms. We use the
same seed for random number generator to ensure repeatability, but we use different seeds when training
the ANNs to ensure generalization. The results are shown in Figure 3. We only plot the first 100 packets
for conciseness.

Because the application is sending one-way traffic and the sink application does not have any feedback to
the source, the source application is performing exactly the same behavior regardless of incorrect lookahead,
as shown in Figure 3(a). On the other hand, when an incorrect lookahead occurs, i.e. the source application
sends a packet before its predicted lookahead, and because the network delay is small, the sink application
may advance too far ahead without noticing the packet. In this case, the packet arrival time will be late
due to the error lookahead, as shown in Figure 3(b), near packet #10 and #65. However, such error is
not propagating due to the one-way characteristic, and the subsequent packets may arrive at the right
time. Application level statistics show lookahead does not affect overall throughput (0.976 Mbps without
lookahead, and 0.975 Mbps with lookahead), but it does increase jitter (102 µs vs. 466 µs).

3002

Zheng, Jin, and Nicol

Table 1: Impacts of Lookahead to Simulation/Emulation Running Speed.

Abbreviations:
Diff — speed difference between without/with lookahead
Sync Win — size of emulation synchronization windows (ESW)
Overhead — percentage time spent in synchronization
Avg LA — average lookahead amount over all VEs
Avg Min LA — average minimal lookahead amount
vtime — simulation time / virtual time

(a) No Lookahead.

Setup
Speed Diff Sync Win Overhead Avg LA Avg Min LA

(vtime/sec) (%) (vtime µs) (%) (vtime µs) (vtime µs)
20 VEs/slave, 1 slave 0.445 n/a 100 51% n/a n/a
20 VEs/slave, 2 slaves 0.398 n/a 100 53% n/a n/a
20 VEs/slave, 4 slaves 0.350 n/a 100 56% n/a n/a
50 VEs/slave, 1 slave 0.234 n/a 100 30% n/a n/a
50 VEs/slave, 2 slaves 0.207 n/a 100 31% n/a n/a
50 VEs/slave, 4 slaves 0.193 n/a 100 32% n/a n/a
100 VEs/slave, 1 slave 0.138 n/a 100 17% n/a n/a
100 VEs/slave, 2 slaves 0.111 n/a 100 19% n/a n/a
100 VEs/slave, 4 slaves 0.102 n/a 100 20% n/a n/a

(b) With Lookahead.

Setup
Speed Diff Sync Win Overhead Avg LA Avg Min LA

(vtime/sec) (%) (vtime µs) (%) (vtime µs) (vtime µs)
20 VEs/slave, 1 slave 1.302 +193% 3577 5% 58500 5282
20 VEs/slave, 2 slaves 1.226 +208% 2075 7% 58500 3424
20 VEs/slave, 4 slaves 1.088 +211% 1192 14% 58500 2388
50 VEs/slave, 1 slave 0.534 +128% 1711 4% 58500 3068
50 VEs/slave, 2 slaves 0.483 +133% 982 7% 58500 1920
50 VEs/slave, 4 slaves 0.403 +109% 525 12% 58500 1289
100 VEs/slave, 1 slave 0.272 +97% 983 4% 58500 1892
100 VEs/slave, 2 slaves 0.214 +93% 497 6% 58500 1252
100 VEs/slave, 4 slaves 0.169 +66% 297 11% 58500 744

3003

Zheng, Jin, and Nicol

(a) Source Sent Packet Trace. (b) Sink Received Packet Trace.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100

Ti
m

e
st

am
p

 (
se

c)

Packet #

No lookahead
With Lookahead

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100

Ti
m

e
st

am
p

 (
se

c)

Packet #

No lookahead
With Lookahead

Figure 3: Impacts of Lookahead to Fidelity — Local Impact.

(a) Source Sent Packet Trace. (b) Sink Received Packet Trace.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

Ti
m

e
st

am
p

 (
se

c)

Packet #

No lookahead
With Lookahead

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

Ti
m

e
st

am
p

 (
se

c)

Packet #

No lookahead
With Lookahead

Figure 4: Impacts of Lookahead to Fidelity — Global Impact.

To model the application category which may suffer global impact from incorrect lookahead, we change
the traffic generator from open-loop to closed-loop, i.e. the source application must wait for a reply to
proceed for each sent packet. We also change the packet size to exponential distribution with mean of 1
Kbyte, and set the packet arrival time to exponential distribution with 1-ms mean. The result are shown
in Figure 4.

In Figure 4, we observe a clear skew in the packet trace. This is due to the above-mentioned closed-loop
characteristic, in which the error is cumulative and any late packet arrival will defer all subsequent actions.
We also observe a higher prediction error, as the source application is sending smaller packets which are
usually not fragmented. The ANN is unable to exactly predict the random distribution inter-packet arrival
time. The application level statistics show lookahead shows lookahead results in a lower throughput (0.792
Mbps vs. 0.720 Mbps) as well as a larger jitter (87 µs vs. 185 µs).

Finally, to model the application category which is extremely sensitive to lookahead errors, we implement
the end-to-end available bandwidth measure approach proposed in (Jain and Dovrolis 2002), and we slightly
tune the algorithm to make it more sensitive one-way delay variations. For the setup with or without
lookahead, we run the application for 10 times, and the results are shown in Table 2. When lookahead is
not presented, the application correctly measures the available bandwidth (10 Mbps), and the results are
quite stable given the small standard deviation. However, when lookahead is introduced, the application
produces wrong answer and with a very large variation. That is because lookahead affects one-way delay,
and the application performs different functionality as its behavior highly depends on such delay.

3004

Zheng, Jin, and Nicol

Table 2: Results of End-to-End Available Bandwidth Measurement.

Average Output (Mbps) Std Dev (Mbps)
No Lookahead 9.93 0.14

With Lookahead 3.84 1.48

In summary, we find the degree to which application lookahead may affect fidelity depends on
applications’ sensitivity of network delay. For those applications that can tolerate slight changed delay,
lookahead may bring performance gain while not affecting fidelity too much. For those applications that
are extremely sensitive to network delay, lookahead is not suitable regardless the potential faster execution
speed.

5 RELATED WORK

Lookahead has been extensively studied in conservative parallel discrete-event simulation, because good
lookahead significantly improves the simulation performance by increasing the length of time by which
logical processes can independently advance. Lookahead is defined as the ability to predict what will occur
and what will not occur in simulated future (Fujimoto 1990). A lookahead is loosely defined as the minimum
time that a logical process will not affect event lists of other logical processes. Dimensions of lookahead
based on the knowledges extracted from model characteristics and simulated applications are classified
in (Nicol 1996). A good lookahead reduces synchronization overhead and hence results in performance
gain. Extensive researches have been performed to show the importance of simulation lookahead (Reed,
Malony, and McCredie 1988) (Fujimoto 1988) (Fujimoto 1987). Sample applications of exploiting good
simulation lookahead include simulations of stochastic queuing networks (Nicol 1988), continuous-time
Markov chains (Nicol and Heidelberger 1995), and wireless ad-hoc networks (Liu and Nicol 2002). The
difference with our history-based emulation lookahead is that the emulation lookahead is not absolutely
correct (an event may occur before the lookahead). The quality of the emulation lookahead is dependent
on how accurate our lookahead model can predict application-level behaviors.

Inspired by biological systems, artificial neural networks (ANNs) are mathematical models that emulate
biological neural networks (Lippmann 1987) (Hertz, Krogh, and Palmer 1991). An ANN consists of a
group of nodes (called neurons, or perceptrons), and these nodes are interconnected and perform functions
in parallel. As the number of nodes increases, the capability of the network increases dramatically. For
example, multi-layer perceptrons (MLPs) are universal function approximators, and it can approximate any
continuous function at any desired accuracy (Hornik, Stinchcombe, and White 1989). ANNs are data-drive,
and they can learn and generalize from past experience, in the way that they can correctly infer some
unseen part from the training data. Due to these natures, ANNs have been widely used in many domains
(Widrow, Rumelhart, and Lehr 1994), including forecasting (Zhang, Patuwo, and Hu 1998). Forecasting
models usually assume there is an underlying relationship between the future and the past, and such
relationship is usually unknown and complicated. ANNs are powerful tools for learning such underlying
relationship, making them very capable of forecasting. Our work also uses ANNs for forecasting, but
we have demanding accuracy requirements as network delays are in the order of milliseconds or even
microseconds. The ANN-based forecasting only takes previously packet trace as input, and is occasionally
inadequate to capture those uncertainties created by application internal states.

6 CONCLUSION

We extend our network simulation/emulation testbed to support distributed emulation. We find synchro-
nization overhead increases as the system size grows, and application lookahead may help reduce such
overhead and achieve better scalability. We proposed an approach of application lookahead based on time
series forecasting using artificial neural network. Through experiments, we find application lookahead can
enlarge simulation-emulation synchronization windows and improve speed up to 3 times. However, the

3005

Zheng, Jin, and Nicol

downside is that it may affect fidelity as lookahead could be wrong, and the degree to which lookahead
affect fidelity highly depends on application behaviors. We conclude that lookahead is suitable for those
applications that can tolerate small changes in network delay, in which case lookahead can improve speed
without affecting fidelity too much.

In this paper we mainly focus on studying the impacts of application lookahead, while investigation
about how to provide better lookahead using other approaches (e.g. application code analysis) is left
as future work. Another possible future effort is to implement asynchronous synchronization between
simulation and emulation, as it may overcome the reduced synchronization window size caused by scale
increases.

ACKNOWLEDGMENTS

This material is based upon work supported by the Department of Energy under Award Number DE-
OE0000097, and work supported by the Boeing Corporation. (Disclaimer: This report was prepared
as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof.)

REFERENCES

Fujimoto, R. M. 1987. “Performance Measurements of Distributed Simulation Strategies.”. Technical report,
DTIC Document.

Fujimoto, R. M. 1988. “Lookahead in parallel discrete event simulation”. Technical report, DTIC Document.
Fujimoto, R. M. 1990. “Parallel discrete event simulation”. Communications of the ACM 33 (10): 30–53.
Hertz, J. A., A. S. Krogh, and R. G. Palmer. 1991. Introduction to the theory of neural computation,

Volume 1. Westview press.
Hornik, K., M. Stinchcombe, and H. White. 1989. “Multilayer feedforward networks are universal approx-

imators”. Neural networks 2 (5): 359–366.
Iperf 2012. http://iperf.sourceforge.net/.
Jain, M., and C. Dovrolis. 2002. “End-to-end available bandwidth: Measurement methodology, dynamics,

and relation with TCP throughput”. In ACM SIGCOMM Computer Communication Review, Volume 32,
295–308. ACM.

Jin, D., Y. Zheng, H. Zhu, D. Nicol, and L. Winterrowd. 2012, July. “Virtual Time Integration of Emulation
and Parallel Simulation”. In Proceedings of the 2012 Workshop on Principles of Advanced and Distributed
Simulation (PADS), 120–130. Zhangjiajie, China.

Lippmann, R. 1987. “An introduction to computing with neural nets”. ASSP Magazine, IEEE 4 (2): 4–22.
Liu, J., and D. M. Nicol. 2002. “Lookahead revisited in wireless network simulations”. In Proceedings of

the sixteenth workshop on Parallel and distributed simulation, 79–88. IEEE Computer Society.
Nicol, D. M. 1988. Parallel discrete-event simulation of FCFS stochastic queueing networks, Volume 23.

ACM.
Nicol, D. M. 1996. “Principles of conservative parallel simulation”. In Proceedings of the 28th Winter

Simulation Conference, 128–135. IEEE Computer Society.

3006

Zheng, Jin, and Nicol

Nicol, D. M., and P. Heidelberger. 1995. “A comparative study of parallel algorithms for simulating continuous
time Markov chains”. ACM Transactions on Modeling and Computer Simulation (TOMACS) 5 (4):
326–354.

Nicol, D. M., and J. Liu. 2002. “Composite synchronization in parallel discrete-event simulation”. Parallel
and Distributed Systems, IEEE Transactions on 13 (5): 433–446.

Reed, D. A., A. D. Malony, and B. D. McCredie. 1988. “Parallel discrete event simulation using shared
memory”. IEEE Transactions on Software Engineering 14 (4): 541–553.

Widrow, B., D. E. Rumelhart, and M. A. Lehr. 1994. “Neural networks: Applications in industry, business
and science”. Communications of the ACM 37 (3): 93–105.

Zhang, G., B. E. Patuwo, and M. Y. Hu. 1998. “Forecasting with artificial neural networks: The state of
the art”. International journal of forecasting 14 (1): 35–62.

Zheng, Y., D. Jin, and D. M. Nicol. 2012. “Validation of application behavior on a virtual time integrated
network emulation testbed”. In Proceedings of the Winter Simulation Conference, 246. Winter Simulation
Conference.

Zheng, Y., and D. Nicol. 2011. “A Virtual Time System for OpenVZ-Based Network Emulations”. In
Proceedings of the 2011 Workshop on Principles of Advanced and Distributed Simulation (PADS).

AUTHOR BIOGRAPHIES

YUHAO ZHENG holds a Ph.D. degree in computer science from University of Illinois at Urbana-Champaign
(2013). He will be a software engineer in Google. He also holds a B.S. in computer science and technology
(ACM horned class) from Shanghai Jiao Tong University, China (2007). His research interests lie in the
areas of wireless network, computer security, large-scale computer and communication system modeling
and simulation. His email address is zheng7@illinois.edu.

DONG (KEVIN) JIN holds a Ph.D. degree in electrical and computer engineering from the University of
Illinois at Urbana-Champaign. He will be an assistant professor of Computer Science at Illinois Institute
of Technology. He also holds a B.Eng. with first class honors in computer engineering from Nanyang
Technological University, Singapore (2005), and a M.S. degree in electrical and computer engineering from
the University of Illinois at Urbana-Champaign (2010). His research interests lie in the areas of cyber-
security, networking, modeling and simulation of large-scale systems and networks. His email address is
dongjin2@illinois.edu.

DAVID M. NICOL is Professor of Electrical and Computer Engineering at the University of Illinois at
Urbana-Champaign, and is Director of the Information Trust Institute. He holds a B.A. in mathematics
from Carleton College (1979), and M.S. and Ph.D. degrees in computer science from the University of
Virginia (1983, 1985). Prior to joining UIUC, he taught at the College of William & Mary, and Dartmouth
College. He has served in many roles in the simulation community (e.g. Editor-in-Chief of ACM TOMACS,
General Chair of the Winter Simulation Conference Executive Board of the WSC), was elected Fellow of
the IEEE and Fellow of the ACM for his work in discrete-event simulation, and was the inaugural recipient
of the ACM SIGSIM Distinguished Contributions award. His current research interests include application
of simulation methodologies to the study of security in computer and communication systems. His email
address is dmnicol@illinois.edu.

3007

