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ABSTRACT 

Based on a simulated non volatile memory (NVM) fab, we show that forecasting the steady state cycle 

time of process segments is possible using certain segment characteristics. We also show that the cycle 

time predictability is highly dependent on the choice of the segmentation, with the more efficient segmen-

tation corresponding to the product layers. 

1 INTRODUCTION 

Cycle time (CT) is certainly one of the main performance measures in manufacturing and maybe the most 

important one for the ever changing memory market.  

 The rapid decrease in market value and the relative absence of brand fidelity set the rules of the game: 

the first manufacturer to hit the market with a device higher in capacity, smaller in size (thus cheaper) and 

with the ability to respond quickly to the sharp changes in demand will win the round.  

Numerous researchers have studied CT, focusing on its causes and methods for reducing it. To that end, 

they have proposed optimal or heuristic methods, tackled the CT reduction of the whole fab, or aimed at 

local toolset optimization. In an effort to simplify the models in use, Rose (1998) suggested that the most 

important characteristic of the semiconductor fabrication plant remains the reentrance flow of the wafers 

among the work stations. He studied fab behavior on an extremely simplified structure comprising a fully 

modeled bottleneck station and a time delay. In other research, Rose (1999), and later Johnson et al. 

(2005), showed that although CT prediction needed to be improved, this type of simplification is highly 

relevant to both the researcher and the practitioner. 

 Aggregating operations to simplify analysis of the extremely complex semiconductor manufacturing 

environment is common practice (Rose 1998). Nonetheless, to our knowledge, no formal study has been 

conducted on the best way to aggregate operations. In this paper, we not only show that the CT of a care-

fully chosen segment of sequential processing steps is predictable based on the segment’s characteristics, 

we also bring to the reader’s attention the fact that the best way of segmenting the process seems to be by 

following the re-entrant loops corresponding to the product layer. We address the question of the CT pre-

dictability by using the NVM SEMATECH fab simulation benchmark, which is described in the next sec-

tion. The data produced by the simulation is analyzed through data mining techniques in Section III. The 

simulation model and some parts of the experimentation framework have already been described in a 

former publication (Hassoun et al. 2010), but for the sake of clarity, we review both in their integrality in 

the next section.  
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1.1 Sematech Dataset 1 NVM Fab Characteristics 

The sematech dataset 1 is one of six standard models aimed at mimicking real fab behavior that have been 

broadly used as research benchmarks (Palmeri et al. 1997; Hunter et al. 2002; Iwata et al. 2003; Dai et al. 

2002). This model describes plant structure and operation in great detail, and numerous characteristics of 

the true fab level of complexity are expressed.  

 The NVM fab model is characterized by two high volume products (defined by a process route) pro-

duced on 68 toolsets (groups of identical tools). The total number of tools in the plant is 211. The number 

of processing steps needed to complete Product 1 and Product 2 are 210 and 245, respectively. The opera-

tions are characterized by processing batch definitions (wafer, lot, lot batch), post process cooling time, 

sequence dependent setups for two Implant tools, etc. Rework and in-line scrap are also modeled, at both 

the wafer and the lot levels (some lots are fully reworked/scrapped, others are partially re-

worked/scrapped). The lot population, together with the average lot size, is therefore slightly decreasing 

along the process. In addition, lots containing a very small number of wafers (most of the time a single 

wafer) appear and disappear following short pre-defined rework loops. The release rate of the 48-wafer 

lots is constant and stands at about one lot every three hours for Product 1 and one lot every six hours for 

Product 2, thus leading to a total of 4,000 wafers per week. Both the mean time between failures (MTBF) 

and the mean time to repair (MTTR) have exponential distributions, while processing, cooling, setup and 

moving times are constant. 

 Human operators are modeled, and their ability to run specific operations is differentiated. We count a 

total of 83 operators grouped in 28 operator types. Depending on the operation, the operator is needed for 

lot loading, unloading, all or part of the process, and the lot transport.  

Based on all these characteristics, we discovered that this model is unstable (overstressed) and that the CT 

and WIP continue to grow with time. We therefore adjusted it in two ways: We set the release rate at 90% 

of the SEMATECH definition (3,600 wafers per week) and increased the head count of operator number 

7 from 1 to 2. Under these new conditions the model showed converging steady state behavior while it 

was still close to being fully utilized (such that any increase in the release rate would destabilize it). 

1.2 Data Structure 

In our experiment, a single observation is obtained for each segment of operations (process steps) under a 

certain scenario. The structure of the observation data is described here. Each segment's characteristics 

were constructed from its operations' variables. Some of the operation variables describe the operation in 

itself; others are related to the toolset on which the operation is processed. The operation variables consist 

of parameters set prior to the simulation run and of the performance measures that result from the simula-

tion run. Most of the variables directly related to the operation describe its position in the line (distance 

from last bottleneck, next operation of the same product on the station, etc.). Most performance measures 

(availability, utilization, mean and standard deviation of the number of down times, etc.) are variables re-

lated to the station that runs the operation. One remarkable exception is the lot Inter-Arrival Time to the 

operation, which is related to the WIP flow and not directly to the station performance. We also defined 

any station having a load above 90% as a bottleneck.  

 In a second computation phase we processed the operation vectors to obtain the segment's characteris-

tic vector (Table 1). Some of the variables are obvious metrics and directly describe the segment (availa-

bility, number of bottlenecks, etc.). Others are based on more evolved parameters, like the utilization over 

availability ratio (U/A), a measure of performance commonly used in fabs. At the end of the process, each 

segment, the length of which depends on the segmentation chosen, is characterized by a vector of 31 fea-

tures. 
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Table1: Segment descriptors. 

Descriptor Variables Remarks 

Length   Number of 

steps in seg-

ment 

Availability Avg, minimum, average and 

max of Coef. of Variation 

over the segment 

  

Level of tool sharing Avg of number of opera-

tions on a tool, min and max 

of the number of steps on 

the same tool. 

  

Special regime opera-

tions 

Number of batch operations 

and maximum batch size in 

the segment. Number of op-

erations being the start, 

middle or end of a rework 

loop 

  

Location Distance from the beginning 

of the process, from the end 

of the process 

Measured in 

number of 

steps, at the 

first stop of the 

segment 

Load and BN opera-

tions 

Average and maximum 

loads in the segment, Num-

ber of BN's, minimum 

number of tools in a BN sta-

tion 

BN defined as 

tools loaded 

above 90% 

Utilization Avg and stdv among opera-

tions in segment, avg and 

max of U/A. 

  

Number of tools in 

the segment 

    

Number of tool 

breakages 

Average and max of tool 

breakage in the segment 

  

Stdv of inter-arrival 

time 

Average, maximum    

Process time Average   

Scheduling method   FCFS or LBA 

Cycle time Avg   
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1.3 Experimental Design 

After setting the simulation framework and its data processing infrastructure, we contemplated the type of 

experiment that would be the most suitable to achieve our goal, i.e., to correlate CT with various segment 

descriptors under a range of situations. We clearly needed to generate a large number of observations that 

were sufficiently different from one another. On the other hand, we decided, a priori, to discard any data 

from a simulation that would not stabilize. We therefore wanted to maintain the highest possible level of 

control and reduce the chances of creating an exploding WIP situation. With these two contradictory ideas 

in mind, we created a total of 400 scenarios, presented in Table 2, under two scheduling regimes: 200 un-

der FCFS (First Come First Served) and 200 under LBA (Lowest Buffer Ahead). We randomly altered 

the basic settings supplied by SEMATECH (after our changes as described earlier) at two levels: First, we 

changed the product mix for each experiment. The original figures were 2400 and 1200 wafers per week 

for Products 1 and 2, respectively. For each experiment, the release rate of Product 1 was randomly cho-

sen from a uniform distribution between 2000 and 2600. A total release rate of 3600 wafers per week was 

maintained, and the release rate for Product 2 was set accordingly. 

Table 2: 400 simulation scenarios based on modulation of MIMAC values. 

 
Total: 400 Scenarios 

Mix Product 1 from U[2000; 2600] Prod.2 to complete to 3600 total wafer starts 

Scheduling FCFS - 200 scenarios LBA - 200 scenarios 

Availability 

Avail kept cst. 

Both MTTR and 

MTBF are multi-

plied by a factor 

from U[0.5; 2] 

MTTR set at origi-

nal MIMAC value, 

MTBF multiplied 

by a factor from 

U[0.7; 1.05] for BN 

and from U[0.8; 2] 

for non BN stations 

Avail kept cst. Both 

MTTR and MTBF 

are multiplied by a 

factor from U[0.5; 

2] 

MTTR set at original 

MIMAC value, MTBF 

multiplied by a factor 

from U[0.7; 1.05] for 

BN and from U[0.8; 2] 

for non BN stations 

 

 In parallel, to change the operational stress on each station individually, we altered station availability 

definitions in two ways: For the first half of the scenarios, we multiplied both the MTBF and the MTTR 

of each station by the same random factor taken from a uniform distribution in a range of [0.5; 2]. In these 

scenarios, the resulting availability was not changed, and we acted only on the variance of the availability. 

In the second half of the scenarios, the overall availability was changed. The MTTR was set at its original 

value, and the MTBF was multiplied by a factor chosen randomly from a uniform distribution. The distri-

bution ranges were [0.7; 1.05] for bottleneck and [0.8; 1.2] for non-bottleneck stations under the 

SEMATECH basic scenario. This differentiation was made to minimize the chances of creating an unsta-

ble scenario. At this stage, we conducted a single simulation run for each of the 400 scenarios and exam-

ined their stabilizations. We found that 34 of the FCFS scenarios and 39 of the LBA scenarios diverged, 

and hence, we discarded their data. The remaining usable raw data formed a list of 148,785 observation 

vectors (455 operations over two products × 327 valid scenarios), each of which comprised 32 variables 

(scheduling method was added to the basic vector).  

2 PREDICTION OF CT AND PROCESS SEGMENTATION 

2.1 Prediction Models and their Evaluation 

We used commercial, off-the-shelf data mining software to explore the database. We addressed two main 

questions about CT predictability:  
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 Can one predict the steady state CT of a segment of operations corresponding to the product lay-

er? 

 What is the line segmentation method that allows for the best CT prediction? 

 

 We avoided “black box” type models, and used the regression tree technique and the classification 

and regression tree (CART) algorithm to generate the trees (Han et al. 2012).  First, the data were ran-

domly divided into a training set (70% of the tuples – each representing one operation under one scenar-

io), on which the regression tree was built with the segment CT as the predicted variable.  

CART builds a binary tree, and since the target (CT) is continuous, it uses the least squared deviation 

(LSD) impurity measure for branching. With ( )CT i and ( )CT t  denoting, respectively, the CT of tuple i 

and the mean CT of node t population, the LSD at t is simply the within-node variance and is given by: 

 
2

( ) ( )

( )
( )

i t

CT i CT t

R t
N t








. 

 The algorithm recursively chooses the next split as the one that maximizes the value of

   ( ) L L R RR t p R t p R t  where 
Lt  and  

Rt are the left and right nodes generated at t by the split, and 

Lp  and 
Rp  the proportion of tuples from t in these nodes, respectively. 

 Once built, the prediction model was applied to the test set (the 30% remaining vectors), and its per-

formance was analyzed. We repeated this process several times to limit the risk of a biased separation be-

tween the training and test sets, which could potentially affect model performance. The performance crite-

rion of the model is its explained variance, which was computed as follows: 

The prediction error for one instance was defined as the gap between the CT predicted by the model and 

the actual CT of the segment: 

)()()( iCTiCTierr   

where i is tuple index in the test set. Model performance can be evaluated by the mean square of its pre-

diction errors. We can compare this value to the variance of the test set to get the proportion of unex-

plained variance.  

The proportion of variance explained by the model is thus: 

 

2

1

( ) 1

1
( )

n

i

err i n

ExplainedVariance
Variance test set





 


 

where n is the number of observations in the test set.  

2.2 Layer CT Predictability  

We begin by presenting the performance of models obtained by the CART algorithm with the layer CT as 

a target.  

 The first step in this analysis was to segment the process following the re-entrance loops. We defined 

the “Develop” step, which ends every Litho sequence in the process (Vapor prime; Coat; Expose; Devel-

op), as the end of the layer. Any definitions based on the Litho operations could have been acceptable.  

 After this aggregation phase, we had 10,464 tuples, each of which represented a specific layer in a 

certain scenario (32 layers × 327 valid scenarios). This array of 10,464 tuples by 32 descriptors (Table 1) 

represents the raw data for the CART modeling. At this stage we repeated the random split 10 times to 

obtain 1) a training set on which the prediction model was built, and 2) a test set on which model perfor-

mance was measured. The resulting explained variance ranged from 84% to 88%, and its average was 
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86.1%. We thus conclude that the variables describing the segment contain enough information to predict 

the layer’s CT with reasonable precision. 

2.3 Segment CT Predictability  

Next, we wanted to compare the results obtained thus far for layers to the CT predictability for operation 

segments of different lengths. We repeatedly segmented the process in fixed length groups of operations 

beginning with the first operation. We then discarded the last segments, whose lengths typically did not 

fit the length definition for the same experiment, and conducted five replications of the model building 

procedure as described in section 1. We tested the ability to predict the CT of individual operations. Then 

incrementally larger segmentations were tested, from 2 to 40 operations in increments of two, and from 

45 to 100 operations in increments of five (setting the segment length at 100 operations yielded only two 

usable segments). Finally, we tried our prediction method on the whole process.  

 The performances of the models obtained (Figure 1) prompt a few observations. First, the best per-

formance in this experiment is still lower than the average performance in the layer experiment presented 

in the previous section. Second, CT value prediction for short and long segments is more difficult than for 

segments of intermediate length. Prediction models for the CT of a single operation score about 40% ex-

plained variance, and those for the whole process score about 22% explained variance. In the framework 

of this study, we can only postulate on the reasons for such behavior: The shorter segment’s CT, which 

exhibited greater change under different scenarios, is more difficult to predict. On the other hand, as the 

aggregation progresses and adds more operations to a segment, part of the difference between segments is 

lost. To illustrate this phenomenon, we consider the important variable “maximum load in the segment.” 

As the segments become longer, more of them include the same high load tool, and therefore, they are 

characterized by the same value for this variable. This progressive loss of differentiation as the segments 

get longer makes it harder for the CART algorithm to build a prediction model based on this variable. 
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Figure 1: Prediction performances for fix length segments. 

 Finally, we remark that there is a plateau of higher values at intermediate segment lengths, peaking 

with models based on fourteen operations, an observation that may or may not be related to this length 

value being the closest to the average layer length.  

 As we see from this analysis, the mere agglomerations of operations in segments do not fully explain 

the high levels of layer CT predictability. 
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3 CONCLUSION 

The results of the experimentation conducted here are twofold: first we assess the ability, in theory, to 

predict CT in fabs through the use of off-the-shelf data mining software. Second, but no less important, 

we show that the operation segments corresponding to the product layers seem to behave following more 

predictable dynamics than under other segmentation scenarios. These ideas can be easily implemented in 

real fabs, where more accurate CT modeling and control will ultimately improve CT, which is among the 

most important goals conducted by Industrial Engineers. 
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