
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

CLASSIFICATION AIDED DOMAIN REDUCTION FOR HIGH DIMENSIONAL
OPTIMIZATION

Prashant Singh
Francesco Ferranti
Dirk Deschrijver

Ivo Couckuyt
Tom Dhaene

Ghent University - iMinds
Dept. of Information Technology (INTEC)

Gaston Crommenlaan 8
9050 Ghent, BELGIUM

ABSTRACT

Engineering design optimization often involves computationally expensive time consuming simulations.
Although surrogate-based optimization has been used to alleviate the problem to some extent, surrogate
models (like Kriging) struggle as the dimensionality of the problem increases to medium-scale. The
enormity of the design space in higher dimensions (above ten) makes the search for optima challenging
and time consuming. This paper proposes the use of probabilistic support vector machine classifiers to
reduce the search space for optimization. The proposed technique transforms the optimization problem
into a binary classification problem to differentiate between feasible (likely containing the optima) and
infeasible (not likely containing the optima) regions. A model-driven sampling scheme selects batches of
probably-feasible samples while reducing the search space. The result is a reduced subspace within which
existing optimization algorithms can be used to find the optima. The technique is validated on analytical
benchmark problems.

1 INTRODUCTION

Numerous real-world problems are high-dimensional in nature. The ‘curse of dimensionality’ limits the
applicability of existing optimization techniques and often makes the search for optima computationally
infeasible. Problems are compounded when the objective function to be optimized is expensive to evaluate.

Surrogate-based methods are often used to solve such expensive optimization problems (Forrester
and Keane 2009). Surrogate based methods aim to minimize the number of evaluations of the expensive
objective function by constructing a cheaper surrogate model that serves as a full or partial replacement of
the expensive objective function or simulator. Although attractive, surrogate based optimization becomes
impractical for medium to high scale (above 50 dimensions) problems. The modeling times and memory
requirements needed to construct the surrogate model scale exponentially with the dimensionality of the
problem (Couckuyt, Forrester, Gorissen, De Turck, and Dhaene 2012) and severely limit the applicability
of surrogate based methods.

Reducing the search space is a way to relieve the curse of dimensionality for optimization problems.
This can be done by either reducing the number of dimensions, or reducing the domain of each dimension.
Kohavi and John (Kohavi and John 1997) discuss feature subset selection techniques for machine learning.
Feature selection deals with removing irrelevant dimensions, while feature extraction deals with reducing
the dimensionality of the problem by clumping multiple features or dimensions together. Feature selection
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has been used in surrogate based optimization (Couckuyt, Forrester, Gorissen, De Turck, and Dhaene 2012)
but surrogate based methods are still limited to low or medium-scale optimization problems due to the
computational expense of building a model in high dimensional spaces which would also need a lot of
samples.

This paper does not concern feature selection techniques but instead focuses on domain reduction.
Spaans and Luus (Spaans and Luus 1992) illustrate the importance of domain reduction for derivative-free
methods by showing that a relatively small number of function evaluations are sufficient to converge when
domain reduction is applied, even if the starting point is far from the optima. Domain reduction has been
applied to simulation-based optimization problems in literature (Stander and Craig 2002), (Wan, Pekny,
and Reklaitis 2005). Stander and Craig (Stander and Craig 2002) construct linear models in a sub-region of
the design space and iteratively contract the size of this subregion. Wan et. al. (Wan, Pekny, and Reklaitis
2005) use domain reduction in a surrogate modeling setting. They find a promising region by building a
regression tree and focus the sampling on this region alone. The surrogate model is also only built over
the promising region.

This work focusses on using classification methods to reduce the search domain for unconstrained single-
objective optimization problems. Classification techniques have previously been applied to optimization
problems in literature. Handoko et. al. (Handoko, Keong, and Soon 2008), (Handoko, Kwoh, and Ong 2009)
proposed classification-assisted memetic algorithms for constrained optimization problems. The classifier is
used to approximate the decision boundary in this case and the search for optima is concentrated in regions
near this boundary (Handoko, Kwoh, and Ong 2010). Singh et. al. used adaptive classification methods
to find multi-class regions in the input space by combining support vector machine (SVM) classifiers and
sequential sampling strategies (Singh, Deschrijver, Pissoort, and Dhaene 2013).

The proposed Iterative Volume Reduction Algorithm (IVRA) formulates the optimization problem as a
binary classification problem with classes feasible (likely to contain the optimum) and infeasible (not likely
to contain the optimum). It uses a probabilistic SVM classifier to drive the modeling/sampling process
towards feasible regions. Experimental results show that the algorithm is capable of significantly reducing
the volume of the search space in very few sampling iterations depending upon the complexity of the
problem. However, being a sampling-based approach, the algorithm can miss global optima if the size of
the initial design is too small.

The paper is organized as follows. Support vector machine classifiers are discussed in Section 2.
The proposed algorithm is described in Section 3. Its performance is demonstrated in Section 4 and the
concluding remarks are presented in Section 5.

2 SUPPORT VECTOR MACHINE CLASSIFIERS

Support Vector Machines or SVMs have been extensively applied to various problems in literature such as
cancer diagnosis, signal processing, image recognition, etc. (Wang 2005). The popularity of SVMs stems
from their good generalization capability demonstrated on benchmark problems (Van Gestel, Suykens,
Baesens, Viaene, Vanthienen, Dedene, De Moor, and Vandewalle 2004), (Liu, Nakashima, Sako, and
Fujisawa 2003) as well as practical applications across various fields.

SVM classifiers are supervised machine learning classification models proposed by Vapnik (Vapnik
1979) as early as 1979, but only gained popularity after good results were obtained in digit recognition,
computer vision, text classification and benchmark problems (Wang 2005) and soft margin classifier was
proposed by Cortes and Vapnik (Cortes and Vapnik 1995) in 1995. SVMs have been an active research area
since, and availability of implementations like LIBSVM (Chang and Lin 2011) and LS-SVMlab (Pelckmans,
Suykens, Van Gestel, De Brabanter, Lukas, Hamers, De Moor, and Vandewalle 2002) has contributed to
their increased use over the years.

Standard SVMs output a class label given a data point. However, in certain situations it is more desirable
to have a measure of the degree to which a data point belongs to a certain class, i.e., the probability of
the data point belonging to a certain class. Platt (Platt et al. 1999) proposed a method to obtain posterior
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probabilities along with class labels for binary classification problems, and this gave birth to Probabilistic
SVMs. The method of Wu et. al. (Wu, Lin, and Weng 2004) to obtain posterior probabilities is implemented
in the LIBSVM library and is used in this work.

The classification problem can be defined as follows. We define D as a n-dimensional input space
spanned by a set of features (or attributes) A = {A1, ...,An}. Denoting the domain of feature Ai as dom(Ai),
∀i if dom(Ai)⊂R then D⊂Rn. S = {x1, ...,xl||y} ∈D is a training set of l samples. Each training instance
xi ∈ S has a corresponding target value yi, and the vector y consists of all target values in S. The target
value yi ∈ {−1,+1} for a binary classification problem and yi ∈ [1..k] for a k−class classification problem.
This work only concerns the binary formulation.

2.1 Soft margin SVMs

An SVM classifier maps the input vectors into a high-dimensional feature space Z using a specified non-
linear mapping such that the input vectors are linearly-separable in Z. This linear separating hyper-surface
in Z is constructed with the aim of achieving good generalization capability (Cortes and Vapnik 1995).
This is done by selecting a decision boundary from candidate decision boundaries which maximizes the
margin, or the sum of distances between the candidate decision boundary and the closest positive training
instance, and between the candidate decision boundary and the closest negative training instance.

Given a weight vector w and a scalar b, the training set S is said to be linearly separable if the inequalities

w ·xi +b≥ 1 when yi = 1,

w ·xi +b≤−1 when yi =−1,∀i ∈ [1..l]

are valid for all elements of S. The inequalities can be written in the form (Cortes and Vapnik 1995):

yi(w ·xi +b)≥ 1 (1)

The optimal hyperplane that separates the training instances is of the form:

w0 ·x+b0 = 0

and is unique as it has the maximal margin. The margin is 2/|w0| for the hyperplane with arguments (w0,
b0) which minimizes w ·w under the constraints specified by Eq. 1.

When S is not linearly-separable, the learning task becomes minimization of:

1
2

w2 +CF

(
l

∑
i=1

ξi

)
subject to the following constraints:

yi(w ·xi +b)≥ 1−ξi,

ξi ≥ 0,∀i ∈ [1..l]

where ξi ≥ 0, i = 1,...,l are non-negative slack variables which measure constraint violations, F(·) is a
monotonic convex function and C is a constant error penalty for regularization. C-SVMs are also called
soft margin SVMs.

The training vectors xi ·xj are mapped onto the feature space φ(xi) · φ(xj) using a kernel function
K(xi,xj) = φ(xi) ·φ(xj). The learning now involves maximization of the Lagrangian (Chen, Bourlard, and
Thiran 2001):

W (α) =
l

∑
i=1

αi−
1
2

l

∑
i, j=1

αiα jyiy jK(xi ·xj)
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subject to the constraints:

αi ≥ 0,
l

∑
i=1

αiyi = 0.

where αi are the Lagrange multipliers. W (α) can be solved using quadratic programming techniques
and upon finding the optimal value of α , the classification task reduces to the evaluation of the function

G(xtest) = sign

(
l

∑
i=1

αiyiK(xtest,xi)+b

)
,

where xtest is the sample to be classified.

2.2 Probabilistic SVMs

Platt (Platt et al. 1999) used the sigmoid function as a probability model to directly fit P(y = 1|G), where
G is the decision function of the two-class SVM. The probability model can be defined as:

P(y = 1|G) =
1

1+ exp(MG+N)

where M and N are scalars fit by maximum likelihood estimation. Lin et. al. (Lin, Lin, and Weng 2007)
proposed an improved formulation of this scheme which is implemented in LIBSVM and used for the
experiments in this work.

3 ITERATIVE VOLUME REDUCTION ALGORITHM

The motivation behind IVRA is to find a smaller subregion in the input or design space which contains
the optima of a high-dimensional function f (x). An existing optimization algorithm often finds it easier
to converge when applied to a smaller domain. The flowchart of IVRA can be seen in Fig. 1 and the
algorithm is described in Alg. 1. The algorithm can be divided into the following four phases:

Algorithm 1 IVRA( f ,s, tr,τ,A, lc)
n← NumberO fColumns(A) {Dimensionality}
x← I(s,n) {Initial Design} {Generate samples according to an initial design (e.g., Latin Hypercubes)}
fe ← f (x) {Evaluate the function over the points obtained from the initial design}
if τ = NULL then

τ ← (n+1)th order statistic of fe {Optima was not known beforehand/user did not specify a value}
end if
i← 0
while i≤ b tr−s

lc
c do

yτ ← PartitionIntoClasses(fe ,τ) {Values in fe ≤ τ are assigned the class label +1, and the rest -1}
model← PSV M−T RAIN(x,yτ )
Dτ ← DomainO f FeasibleRegion(x,yτ ) {Simply the min and max of positive samples for Ai (See Eq. 4)}
xc ← RandomCandidates(lc ,Dτ ) {Generate lc candidates within the feasible region}
pc ← PSV M−PREDICT (model,xc)
xlc ← SortDecreasing(pc,xc) {Choose top lc points ranked according to decreasing probability}
x← x∪xlc
fe ← fe ∪ f (xlc )
τ ← (n+1)th order statistic of fe
i← i+1

end while

return Dred ← DomainO f FeasibleRegion(x,yτ )

3.1 Initial Design

The algorithm begins by generating an initial design I (e.g., a Latin Hypercube) of a user-specified size s
which aims at capturing as much of the design space as possible. The initial design also serves as IVRA’s
exploration component. The size s should be sufficiently large to cover the entire design space. The authors
recommend setting s to at least 10∗n, where n is the dimensionality of the problem.
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Figure 1: Flowchart of the Iterative Volume Reduction Algorithm.

3.2 Reducing Optimization to Classification

A binary classification problem is now derived from the optimization problem. The idea is to subdivide
the input region into a feasible class that contains only positive samples (which correspond to the optima),
and an infeasible class that contains the negative samples. Since it is highly unlikely that any of the points
landed at locations corresponding to optima, all the points will correspond to the negative class.

In order to have a dataset which contains both positive and negative samples for the classification
problem, a threshold value τ is introduced to distinguish between positive and negative samples. The
value of τ decides how quickly IVRA reduces the domain in successive iterations. A smaller value of τ

would lead to a rapid reduction at the cost of being more prone to be trapped in local minima. A larger
value of τ leads to a slower reduction, although with the benefit of being less likely to get stuck in local
minima. IVRA sets the threshold τ to the (n+ 1)th order statistic of values f (x) by default, where n is
the dimensionality of the problem. 1 The authors used τ = (n+1)th order statistic of evaluated function
values for the experiments in this paper and find this to be a good choice for a majority of problems2.

The samples x ∈ I are evaluated and the values f (x) are mapped to class labels {+1,-1} based on the
threshold τ resulting in a binary vector yτ with:

y =+1, if f (x)≤ τ , (in case of minimization) (2)

y =−1, if f (x)> τ. (3)

1It is ensured that min(Aτ
i ) 6= max(Aτ

i ), ∀i ∈ Dτ so that an n-dimensional hypercube can be specified.
2Given an initial design of s samples, intuitively it might be desirable to set τ = s

2 to obtain a balanced training set.
However, as the authors have observed, this allows for a slow reduction of the feasible region. Since the number of iterations
available to the algorithm for domain reduction is limited, it is desirable to shrink the feasible region as quickly as possible.
Allotting s = (10 ∗ n) samples to initial design, the value n+ 1 is roughly s

10 , which was found to be a good compromise
between having sufficient positive samples and achieving fast reduction
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This task is performed by the routine PartitionIntoClasses. The process results in a training set S =
{x||yτ}, which is used to build a probabilistic SVM model 3.

3.3 Domain Reduction using Adaptive Sampling

The presence of positive samples (Section 3.2) allows for a definition of a hypercube around the feasible
region. This hypercube (which is likely to contain the optima) is defined by the min and max value of the
attributes for each dimension.

A large number of new candidate samples xc are generated randomly within this hypercube using the
routine RandomCandidates and the probabilistic SVM model is used to predict the probability of each
candidate sample belonging to the feasible class. The samples with high probability values will lie within
or close to the region containing the optima. In each iteration IVRA selects a user-specified number lc of
best candidate samples which are the top lc candidate samples ranked in decreasing order of probability
predicted by the SVM model. These new samples are used to augment the training set S and the value of
τ is updated. The probabilistic model is rebuilt after redefining the classes according to the updated value
of τ . The significance of relaxing τ is that the feasible class corresponds to a region Aτ in the design
space which likely contains the optimum. In future iterations Aτ (and the corresponding hypercube) will
be progressively shrunk.

This sample selection process is IVRA’s exploitation component since it allows the algorithm to rapidly
shrink the feasible region. This process continues iteratively till the sampling budget tr specified by the
user has been exhausted. The total number of iterations performed by IVRA are b tr−s

lc
c.

3.4 Defining the Reduced Domain

Once the sampling budget is exhausted, the final hypercube corresponding to the reduced search space Dred
is defined as:

Dred =

[
min(A f

1) min(A f
2) · · · min(A f

n)

max(A f
1) max(A f

2) · · · max(A f
n)

]
(4)

where the domain of each attribute or dimension A f
i , i∈ [1..n] is set to the min and max value per dimension

of the samples lying within the feasible region.
Dred now serves as a reduced subspace of D within which any optimization algorithm can be used to

search for the optimum. For the problems in this paper, optimization algorithms from the NLopt non-linear
optimization library 4 were used.

3.5 Limitations

The algorithm suffers from the inherent limitations of sampling-based methods. There is always the danger
of missing the region containing the optima, or getting stuck in local minima. Since the algorithm generates
candidate samples only within the feasible region, it might miss the true optima in case it is far away in a
region where the initial design was unable to land any samples.

Using a large enough space-filling initial design circumvents this problem. Since the initial design
is the only component responsible for exploration, it is crucial to make sure its size s is large enough as
explained in Section 3.1.

3Handling Data Bias:
As the algorithm progresses and more samples are selected, the total number of samples in the negative class (tr− (n+1))
will be much larger than the number of samples in the positive class (n+1). The imbalance can pose a problem during the
training of the SVM model, making the classifier biased. To solve this problem, a penalty is imposed on misclassification of
positive samples during the training process. The reader is referred to the section on weighted SVMs in Osuna et. al. (Osuna,
Freund, and Girosi 1997).

4Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt
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Table 1: Experimental settings for the test problems.

Component Number of samples

Initial Design 400

Domain Reduction using IVRA 200

Optimizer 400

Total budget 1000

Batch size for sample selection 10

4 EXPERIMENTS

The efficacy of the proposed IVRA algorithm was tested on analytical benchmark optimization problems
listed in the Appendix.

The experimental settings were kept the same for all functions and are described in Table 1.The
experimental setup for the benchmark problems can be seen in Fig. 2. IVRA was used to reduce the search
space and thereafter optimizers were used within this reduced space to find the optima. The optimization
algorithms tested were Controlled Random Search (CRS) with local mutation (Kaelo and Ali 2006) and
Improved Stochastic Ranking Evolution Strategy (ISRES) (Runarsson and Yao 2005).

Original Design 
Space

Reduced Search 
Space

OptimaOptimizerIVRA

Figure 2: Experimental setup for the test problems.

The results of the experiments can be seen in Table 2. Each value in the table is an average of 20 runs
and indicates the mean and standard deviation (µ±1.96∗σ ). The values for the ‘Optimizer Only’ case
correspond to running the respective optimizer with t = 1000 evaluations to match IVRA’s experimental
settings.

It can be seen that IVRA always helps the optimizer improve the best optima reached even when the
function is shifted or asymmetric. The extent of improvement IVRA offers depends upon the nature of the
function/simulator. In case of the Ackley function, the benefit of domain reduction was not substantial as
the optimum lies in a very narrow valley. This is a perfect example of the limitations of a sampling-based
approach. Since the likelihood of landing a sample in the extremely narrow valley is very low, more often
than not sampling-based methods will struggle to reach the valley. The probabilistic SVM model did not
have any training samples in the valley and hence was unable to assign higher probabilities to candidates
lying in the valley.

Contrarily, IVRA performed better and offered substantial reduction in search space for rest of the
functions which do not have the optima in a very narrow region. The volume of the feasible region itself
was very small compared to the entire design space. As seen in Table 2, the reduction in search space is
greater than 99.9% in all the cases.

The nature of two of the test functions can be seen in Fig. 3 and Fig. 4. The non-linearities of Ackley
and Griewank functions are very pronounced near the optima. Optimization methods like surrogate-based
methods which build a model of the underlying function or simulator will struggle to be accurate in light
of these pronounced non-linearities, while IVRA performs well by virtue of negating the non-linearities
by only considering classes - using the threshold τ . This simplifies the problem to an extent and yields
substantial performance gains as can be seen in the case of the Griewank function.

Table 2 also lists IVRA’s running time which hovers around approximately a quarter of a minute for
20-dimensional problems and three quarters of a minute for 50-dimensional problems. The running times
of the optimizers themselves are of the order of a few (less than 3) seconds. In comparison to IVRA,
surrogate-based methods like Kriging would take several hours for a single run comprising 1000 total
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Table 2: IVRA’s performance on benchmark analytical functions. Each value is the average of optima
reached over 20 runs. The values are indicated in the form (µ±1.96∗σ ) where µ is the mean, and σ is
the standard deviation over 20 runs.

Function IVRA Optimizer Only timeIV RA (s) Reduction (%)

CRS Optimizer
Ackley 20D 7.22±1.03 16.63±2.62 16.40±1.80 > 99.9

Ellipsoid 20D 12.49±5.15 237.79±215.61 19.35±1.97 > 99.9

Griewank 20D 4.40±1.25 93.01±74.28 17.45±2.10 > 99.9

Rosenbrock 20D 59.18±24.97 518.75±330.51 16.60±1.59 > 99.9

Shifted Griewank 20D −177.15±1.08 −70.73±105.25 15.30±1.53 > 99.9

Shifted Rosenbrock 20D 4.08e+06±9.78e+06 2.37e+09±3.68e+09 15.20±1.71 > 99.9

Ackley 50D 18.40±0.55 20.57±0.29 48.65±5.78 > 99.9

Ellipsoid 50D 2244.76±367.32 6294.53±976.35 46.30±4.99 > 99.9

Griewank 50D 318.47±55.47 911.21±151.88 47.75±2.96 > 99.9

Rosenbrock 50D 2400.25±449.13 10657.30±1355.38 43.40±1.68 > 99.9

Shifted Griewank 50D 83.04±26.62 754.18±90.12 40.00±2.47 > 99.9

Shifted Rosenbrock 50D 3.89e+09±1.53e+09 4.47e+10±1.11e+10 42.25±2.63 > 99.9

ISRES Optimizer
Ackley 20D 7.17±1.02 19.26±0.65 16.55±1.57 > 99.9

Ellipsoid 20D 12.63±6.41 472.29±112.76 17.95±1.80 > 99.9

Griewank 20D 5.18±2.02 189.51±39.02 18.05±2.27 > 99.9

Rosenbrock 20D 61.87±14.78 1341.57±646.68 18.20±1.58 > 99.9

Shifted Griewank 20D −177.26±1.08 −1.70±52.39 15.25±1.37 > 99.9

Shifted Rosenbrock 20D 4.50e+06±1.25e+07 4.20e+09±2.21e+09 15.40±2.98 > 99.9

Ackley 50D 18.44±0.49 20.57±0.27 45.40±2.51 > 99.9

Ellipsoid 50D 2297.01±384.02 6313.49±1040.49 46.80±1.82 > 99.9

Griewank 50D 323.47±52.51 907.38±138.77 47.80±5.92 > 99.9

Rosenbrock 50D 2447.37±529.91 10372.90±1915.99 46.90±7.47 > 99.9

Shifted Griewank 50D 80.14±31.85 714.00±109.80 39.75±1.84 > 99.9

Shifted Rosenbrock 50D 3.55e+09±1.36e+09 4.48e+10±7.88e+09 39.75±1.72 > 99.9

function evaluations. The main overhead in case of surrogate-based methods (e.g., Kriging) is model-
building, often having a complexity cubic in the number of samples, and growing exponentially with the
number of dimensions. The complexity of the SVM implementation used is quadratic in the number of
samples. The running time becomes even more important when the dimensionality increases and simulations
are expensive. The time taken by IVRA to reduce the search space is small compared to the time taken
per simulation (which might even be hours in some cases) when the simulations are expensive.

For the purpose of experiments, no parameter optimization was performed for IVRA. Parameters such
as the size s of the initial design I, the number of function evaluations given to IVRA and the optimizer
can be optimized to obtain better results. Additionally, the choice of the optimizer also affects the speed of
convergence. Table 3 lists the results of experiments in which the most appropriate optimizer was used in
conjunction with IVRA. The Ellipsoid function is quadratic and hence the BOBYQA (Bound Optimization
BY Quadratic Approximation) (Powell 2009) algorithm was chosen for the function as is performs quadratic
approximation of the objective function. The Griewank function has quadratic and cosine terms, so the

Figure 3: Ackley func-
tion in 2D within the
range [-2, 2].

Figure 4: Griewank
function in 2D within
the range [-10,10].
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Table 3: IVRA’s performance when the most appropriate optimizer is chosen for each benchmark function.
Each value is the average of optima reached over 20 runs.

Function Best Worst Average Optimizer Used

Ackley 20D 3.43e−2 3.79 0.95 DIRECT

Ellipsoid 20D 2.65e−17 1.51 0.24 BOBYQA

Griewank 20D 3.54e−06 1.67 0.47 BOBYQA

Rosenbrock 20D 16.72 36.31 23.25 DIRECT

Shifted Griewank 20D −179.39 −177.84 −178.64 BOBYQA

Shifted Rosenbrock 20D 4.25e+4 1.96e+07 1.99e+06 DIRECT

Ackley 50D 4.78 6.04 5.58 DIRECT

Ellipsoid 50D 3.02e−13 0.33 0.03 BOBYQA

Griewank 50D 0.02 15.34 1.31 BOBYQA

Rosenbrock 50D 72.62 147.07 106.66 DIRECT

Shifted Griewank 50D −179.98 −178.98 −179.54 BOBYQA

Shifted Rosenbrock 50D 4.75e+5 1.52e+06 9.27e+5 DIRECT

BOBYQA algorithm was appropriate. The Ackley function is Gaussian while the Rosenbrock function
has low function values spanning a vast region in the input domain. Since no algorithm available to the
authors was particularly more suitable, the DIRECT (DIviding RECTangles) algorithm (Gablonsky and
Kelley 2001) was chosen which is a good general purpose optimizer.

The DIRECT algorithm was not used for comparisons in Table 2 since it divides dimensions in halves
in subsequent iterations which would make the comparison unfair, since the benchmark functions have
symmetric domains and the optima lies at the origin.

The results show the potential gain offered by IVRA, which can be further enhanced by hyper-parameter
optimization and choosing an appropriate optimizer according to the nature of the problem at hand (or a
good general purpose optimizer). As a pointer, IVRA is inappropriate when the simulation budget is very
limited (e.g., less than n∗10) since it will not have enough sampling iterations to reduce the search space.
Allocating the entire budget to the optimizer is advisable in such cases.

5 CONCLUDING REMARKS

A novel fast algorithm for solution of expensive high-dimensional optimization problems is presented in
this work. The algorithm reduces the search space by transforming the optimization problem into a binary
classification problem which is modeled using probabilistic support vector machines (PSVMs). Existing
optimization algorithms can then be applied to the reduced search space to find the optima quickly. The
efficacy of the proposed algorithm is demonstrated on analytical benchmark examples with comparisons
to optimization algorithms used with and without the aid of the proposed algorithm.
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6 APPENDIX

The following benchmark test functions were used for the experiments in this paper.
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6.1 Ackley Function

Minimize
x

−20 · exp(−0.2 ·

√√√√ 1
d
·

d

∑
i=1

x2
i )

−exp(
1
d
·

d

∑
i=1

cos(2π · xi))+20+ e

for

−32.768≤ xi ≤ 32.768 ∀i,
e = 2.7183,

d ∈ {20,50},
min : x∗ = 0.

6.2 Ellipsoid Function

Minimize
x

d

∑
i=1

ix2
i

for

−5.12≤ xi ≤ 5.12 ∀i,
d ∈ {20,50}
min : x∗ = 0.

6.3 Griewank Function

Minimize
x

1+
d

∑
i=1

x2
i

4000
−

d

∏
i=1

cos
(

xi√
i

)
for

−600≤ xi ≤ 600 ∀i,
d ∈ {20,50},
min : x∗ = 0.

6.4 Rosenbrock Function

Minimize
x

d

∑
i=1

(100(xi+1− x2
i )

2 +(1− xi)
2)

for

−2.048≤ xi ≤ 2.048 ∀i,
d ∈ {20,50},
min : x∗ = 0.

6.5 Shifted Griewank Function

Minimize
x

1+
d

∑
i=1

z2
i

4000
−

d

∏
i=1

cos
(

zi√
i

)
+ fbias

with

z = x−∆,

for

−600≤ xi ≤ 600 ∀i,
d ∈ {20,50},

∆ = {5,5, ...,5}d (the shifted optimum)

fbias =−180,

min : x∗ = fbias.

6.6 Shifted Rosenbrock Function

Minimize
x

d−1

∑
i=1

(100(z2
i − zi+1)

2 +(zi−1)2)+ fbias

with

z = x−∆+1,

for

−100≤ xi ≤ 100 ∀i,
d ∈ {20,50},

∆ = {5,5, ...,5}d (the shifted optimum)

fbias = 390,

min : x∗ = fbias.
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