Abstract:
Discrete-event simulation is a well-accepted method for planning, evaluating, and monitoring processes in production and logistics contexts. In order to reduce time and e...Show MoreMetadata
Abstract:
Discrete-event simulation is a well-accepted method for planning, evaluating, and monitoring processes in production and logistics contexts. In order to reduce time and effort spent on creating the simulation model, automatic simulation model generation is an important area in modeling methodology research. When automatically generating a simulation model from existing data sources, the correct reproduction of the dynamic behavior of the modelled system is a common challenge. One example is the representation of dispatching and scheduling strategies of production jobs. When generating a model automatically, the underlying rules for these strategies are typically unknown but yet have to be adequately emulated. In previous work, we presented an approach to approximate the behavior through artificial neural networks. In this paper, we investigate the suitability of various other data mining and supervised machine learning methods for emulating job scheduling decisions with data obtained from production data acquisition.
Published in: 2015 Winter Simulation Conference (WSC)
Date of Conference: 06-09 December 2015
Date Added to IEEE Xplore: 18 February 2016
ISBN Information:
Electronic ISSN: 1558-4305