
Efficient simulation for branching linear recursions

Ningyuan Chen and Mariana Olvera-Cravioto

Industrial Engineering and Operations Research
Columbia University

New York, NY 10027, USA

May 31, 2021

Abstract

We consider a linear recursion of the form

R(k+1) D
=

N∑
i=1

CiR
(k)
i +Q,

where (Q,N,C1, C2, . . .) is a real-valued random vector with N ∈ N = {0, 1, 2, . . . }, {R(k)
i }i∈N is

a sequence of i.i.d. copies of R(k), independent of (Q,N,C1, C2, . . .), and
D
= denotes equality in

distribution. For suitable vectors (Q,N,C1, C2, . . .) and provided the initial distribution of R(0)

is well-behaved, the process R(k) is known to converge to the endogenous solution of the corre-
sponding stochastic fixed-point equation, which appears in the analysis of information ranking
algorithms, e.g., PageRank, and in the complexity analysis of divide and conquer algorithms,
e.g. Quicksort. Naive Monte Carlo simulation of R(k) based on the branching recursion has ex-
ponential complexity in k, and therefore the need for efficient methods. We propose in this paper
an iterative bootstrap algorithm that has linear complexity and can be used to approximately
sample R(k). We show the consistency of estimators based on our proposed algorithm.

1 Introduction

The complexity analysis of divide and conquer algorithms such as Quicksort [11, 6, 12] and the more
recent analysis of information ranking algorithms on complex graphs (e.g., Google’s PageRank)
[14, 7, 3] motivate the analysis of the stochastic fixed-point equation

R
D
=

N∑
r=1

CrRr +Q, (1.1)

where (Q,N,C1, C2, . . .) is a real-valued random vector with N ∈ N, and {Ri}i∈N is a sequence of
i.i.d. copies of R, independent of (Q,N,C1, C2, . . .). More precisely, the number of comparisons
required in Quicksort for sorting an array of length n, properly normalized, satisfies in the limit as
the array’s length grows to infinity a distributional equation of the form in (1.1). In the context

1

ar
X

iv
:1

50
3.

09
15

0v
1

 [
m

at
h.

PR
]

 3
1

M
ar

 2
01

5

of ranking algorithms, it has been shown that the rank of a randomly chosen node in a large
directed graph with n nodes converges in distribution, as the size of the graph grows, to R, where
N represents the in-degree of the chosen node and the {Ci}i≥1 are functions of the out-degrees of
its neighbors.

Although equation (1.1) is known to have multiple solutions, and an extensive amount of literature
has been devoted to their characterization (see e.g. [1, 1, 2] and the references therein), in applica-
tions we are often interested only in the so-called endogenous solution. This solution can be shown
to be the unique limit under iterations of the distributional recursion

R(k+1) D=
N∑
i=1

CiR
(k)
i +Q, (1.2)

where (Q,N,C1, C2, . . .) is a real-valued random vector with N ∈ N, and {R(k)
i }i∈N is a sequence

of i.i.d. copies of R(k), independent of (Q,N,C1, C2, . . .), provided one starts with an initial distri-
bution for R(0) with sufficient finite moments (see, e.g., Lemma 4.5 in [8]). Moreover, asymptotics
for the tail distribution of the endogenous solution R are available under several different sets of as-
sumptions for (Q,N,C1, C2, . . .) [7, 9, 8, 10]. However, no approximations exist for the distribution
of R besides its tail behavior, and even the calculation of its non-integer/absolute moments can be
difficult. Hence the need to design efficient numerical methods to compute relevant statistics.

As will be discussed later, the endogenous solution to (1.1) can be explicitly constructed on a
weighted branching process. Thus, drawing some similarities with the analysis of branching pro-
cesses, and the Galton-Watson process in particular, one could think of using the Laplace transform
of R to obtain its distribution. Unfortunately, the presence of the weights {Ci} in the Laplace trans-
form

ϕ(s) = E [exp (−sR)] = E

[
exp (−sQ)

N∏
i=1

ϕ(sCi)

]
makes its inversion problematic, making a simulation approach even more important.

The first observation we make regarding the simulation of R, is that when P (Q = 0) < 1 it is enough
to be able to approximate R(k) for fixed values of k, since both R(k) and R can be constructed
in the same probability space in such a way that the difference |R(k) − R| is geometrically small.
More precisely, under very general conditions (see Proposition 2.1 in Section 2), there exist positive
constants K <∞ and c < 1 such that

E

[∣∣∣R(k) −R
∣∣∣β] ≤ Kck+1. (1.3)

Our goal is then to simulate R(k) for a suitably large value of k.

The simulation of R(k) is not that straightforward either, since naive Monte Carlo using (1.2)
starting from some initial distribution R(0) implies the computation of a geometric number of
copies of (Q,N,C1, C2, . . .), of order (E[N])k when E[N] > 1, which is usually the case in the
applications we are interested in. Hence, the naive simulation approach can be prohibitive. Instead,
we propose in this paper an iterative bootstrap algorithm that outputs a sample pool of observations

{R̂(k,m)
i }mi=1 whose empirical distribution converges, in the Kantorovich-Rubinstein distance, to that

2

Π∅ = 1

Π1 = C1 Π2 = C2 Π3 = C3

Π(1,1) = C(1,1)C1

Π(1,2) = C(1,2)C1

Π(2,1) = C(2,1)C2

Π(3,1) = C(3,1)C3

Π(3,2) = C(3,2)C3

Π(3,3) = C(3,3)C3

Figure 1: Weighted branching process

of R(k) as the size of the pool m→∞. This mode of convergence is equivalent to weak convergence
and convergence of the first absolute moments (see, e.g., [13]). Moreover, the complexity of our
proposed algorithm is linear in k.

The paper is organized as follows. Section 2 describes the weighted branching process and the
linear recursion. The algorithm itself is given in Section 3 . Section 4 introduces the Kantorovich-
Rubinstein distance and proves the convergence properties of our proposed algorithm. Numerical
examples to illustrate the precision of the algorithm are presented in Section 5.

2 Linear recursions on weighted branching processes

As mentioned in the introduction, the endogenous solution to (1.1) can be explicitly constructed
on a weighted branching process. To describe the structure of a weighted branching process, let
N+ = {1, 2, 3, . . . } be the set of positive integers and let U =

⋃∞
k=0(N+)k be the set of all finite

sequences i = (i1, i2, . . . , in), n ≥ 0, where by convention N0
+ = {∅} contains the null sequence ∅. To

ease the exposition, we will use (i, j) = (i1, . . . , in, j) to denote the index concatenation operation.

Next, let (Q,N,C1, C2, . . .) be a real-valued vector with N ∈ N. We will refer to this vector as
the generic branching vector. Now let {(Qi, Ni, C(i,1), C(i,2), . . .)}i∈U be a sequence of i.i.d. copies
of the generic branching vector. To construct a weighted branching process we start by defining a
tree as follows: let A0 = {∅} denote the root of the tree, and define the nth generation according
to the recursion

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 1.

Now, assign to each node i in the tree a weight Πi according to the recursion

Π∅ ≡ 1, Π(i,in) = C(i,in)Πi, n ≥ 1,

see Figure 1. If P (N < ∞) = 1 and Ci ≡ 1 for all i ≥ 1, the weighted branching process reduces
to a Galton-Watson process.

For a weighted branching process with generic branching vector (Q,N,C1, C2, . . .), define the pro-
cess {R(k) : k ≥ 0} as follows:

R(k) =

k∑
j=0

∑
i∈Aj

QiΠi, k ≥ 0. (2.1)

3

By focusing on the branching vector belonging to the root node, i.e., (Q∅, N∅, C1, C2, . . .) we can
see that the process {R(k)} satisfies the distributional equations

R(0) = Q∅
D
= Q

R(k) =

N∅∑
r=1

Cr

 k∑
j=1

∑
(r,i)∈Aj

Q(r,i)Π(r,i)/Cr

+Q∅
D
=

N∑
r=1

CrR
(k−1)
r +Q, k ≥ 1, (2.2)

where R
(k−1)
r are i.i.d. copies of R(k−1), all independent of (Q,N,C1, C2, . . .). Here and throughout

the paper the convention is that XY/Y ≡ 1 if Y = 0. Moreover, if we define

R =

∞∑
j=0

∑
i∈Aj

QiΠi, (2.3)

we have the following result. We use x ∨ y to denote the maximum of x and y.

Proposition 2.1 Let β ≥ 1 be such that E[|Q|β] < ∞ and E

[(∑N
i=1 |Ci|

)β]
< ∞. In addition,

assume either (i) (ρ1 ∨ ρβ) < 1 , or (ii) β = 2, ρ1 = 1, ρβ < 1 and E[Q] = 0. Then, there exist
constants Kβ > 0 and 0 < cβ < 1 such that for R(k) and R defined according to (2.1) and (2.3),
respectively, we have

sup
k≥0

E
[
|R(k)|β

]
≤ Kβ <∞ and E

[
|R(k) −R|β

]
≤ Kβc

k+1
β .

Proof. For the case ρ1∨ρβ < 1, Lemma 4.4 in [8] gives that for Wn =
∑

i∈An QiΠi and some finite
constant Hβ we have

E
[
|Wn|β

]
≤ Hβ(ρ1 ∨ ρβ)n.

Let cβ = ρ1 ∨ ρβ. Minkowski’s inequality then gives

∣∣∣∣∣∣R(k)
∣∣∣∣∣∣
β
≤

k∑
n=0

||Wn||β ≤
∞∑
n=0

(
Hβc

n
β

)1/β
=

 Hβ

1− c1/ββ

1/β

, (Kβ)1/β <∞.

Similarly,∣∣∣∣∣∣R(k) −R
∣∣∣∣∣∣
β
≤

∞∑
n=k+1

||Wn||β ≤
∞∑

n=k+1

(
Hβc

n
β

)1/β
= c

(k+1)/β
β

(
Hβ

1− (ρ1 ∨ ρβ)1/β

)1/β

=
(
Kβc

k+1
β

)1/β
.

For the case β = 2, ρ1 = 1, ρβ < 1 and E[Q] = 0 we have that

E
[
W 2
n

]
= E

 N∅∑
r=1

CrWn−1,r

2 = E

 N∅∑
r=1

C2
r (Wn−1,r)

2 +
∑

1≤r 6=s≤N∅

CrCsWn−1,rWn−1,s

 ,
4

where Wn−1,r =
∑

(r,i)∈An Q(r,i)Π(r,i)/Cr, and the {Wn−1,r}r≥1 are i.i.d. copies of Wn−1, indepen-
dent of (N∅, C1, C2, . . .). Since E[Wn] = 0 for all n ≥ 0, it follows that

E[W 2
n] = ρ2E[W 2

n−1] = ρn2E[W 2
0] = Var(Q)ρn2 .

The two results now follow from the same arguments used above with H2 = Var(Q) and c2 = ρ2.

It follows from the previous result that under the conditions of Proposition 2.1, R(k) converges to
R both almost surely and in Lβ-norm. Similarly, if we ignore the Q in the generic branching vector,
assume that Ci ≥ 0 for all i, and define the process

W (k) =
∑
i∈Ak

Πi =

N∅∑
r=1

Cr

 ∑
(r,i)∈Ak

Π(r,i)/Cr

 D
=

N∑
r=1

CrW
(k−1)
r ,

where the {W (k−1)
r }r≥1 are i.i.d. copies of W (k−1) independent of (N,C1, C2, . . .), then it can be

shown that {W (k)/ρk1 : k ≥ 0} defines a nonnegative martingale which converges almost surely to
the endogenous solution of the stochastic fixed-point equation

W
D
=

N∑
i=1

Ci
ρ1
Wi,

where the {Wi}i≥1 are i.i.d. copies of W , independent of (N,C1, C2, . . .). We refer to this equation
as the homogeneous case.

As mentioned in the introduction, our objective is to generate a sample of R(k) for values of k
sufficiently large to suitably approximate R. Our proposed algorithm can also be used to simulate
W (k), but due to space limitations we will omit the details.

3 The algorithm

Note that based on (2.1), one way to simulate R(k) would be to simulate a weighted branching
process starting from the root and up to the k generation and then add all the weights QiΠi for
i ∈ ⋃k

j=0Aj . Alternatively, we could generate a large enough pool of i.i.d. copies of Q which would

represent the Qi for i ∈ Ak, and use them to generate a pool of i.i.d. observations of R(1) by setting

R
(1)
i =

Ni∑
r=1

C(i,r)R
(0)
r +Qi,

where {(Qi, Ni, C(i,1), C(i,2), . . .)}i≥1 are i.i.d. copies of the generic branching vector, independent

of everything else, and the R
(0)
r are the Q’s generated in the previous step. We can continue this

process until we get to the root node. On average, we would need (E[N])k i.i.d. copies of Q for
the first pool of observations, (E[N])k−1 copies of the generic branching vector for the second pool,
and in general, (E[N])k−j for the jth step. This approach is equivalent to simulating the weighted
branching process starting from the kth generation and going up to the root, and is the result of
iterating (1.2).

5

Our proposed algorithm is based on this “leaves to root” approach, but to avoid the need for a
geometric number of “leaves”, we will resample from the initial pool to obtain a pool of the same
size of observations of R(1). In general, for the jth generation we will sample from the pool obtained
in the previous step of (approximate) observations of R(j−1) to obtain conditionally independent
(approximate) copies of R(j). In other words, to obtain a pool of approximate copies of R(j) we
bootstrap from the pool previously obtained of approximate copies of R(j−1). The approximation
lies in the fact that we are not sampling from R(j−1) itself, but from a finite sample of conditionally
independent observations that are only approximately distributed as R(j−1). The algorithm is
described below.

Let (Q,N,C1, C2, . . .) denote the generic branching vector defining the weighted branching process.
Let k be the depth of the recursion that we want to simulate, i.e., the algorithm will produce a
sample of random variables approximately distributed as R(k). Choose m ∈ N+ to be the bootstrap

sample size. For each 0 ≤ j ≤ k, the algorithm outputs P(j,m) ,
(
R̂

(j,m)
1 , R̂

(j,m)
2 , . . . , R̂

(j,m)
m

)
, which

we refer to as the sample pool at level j.

1. Initialize: Set j = 0. Simulate a sequence {Qi}mi=1 of i.i.d. copies of Q and let R̂
(0,m)
i = Qi

for i = 1, . . . ,m. Output P(0,m) =
(
R̂

(0,m)
1 , R̂

(0,m)
2 , . . . , R̂

(0,m)
m

)
and update j = 1.

2. While j ≤ k:

i) Simulate a sequence {(Qi, Ni, C(i,1), C(i,2), . . .)}mi=1 of i.i.d. copies of the generic branch-
ing vector, independent of everything else.

ii) Let

R̂
(j,m)
i =

Ni∑
r=1

C(i,r)R̂
(j−1,m)
(i,r) +Qi, i = 1, . . . ,m, (3.1)

where the R̂
(j−1,m)
(i,r) are sampled uniformly with replacement from the pool P(j−1,m).

iii) Output P(j,m) =
(
R̂

(j,m)
1 , R̂

(j,m)
2 , . . . , R̂

(j,m)
m

)
and update j = j + 1.

Bootstrapping refers broadly to any method that relies on random sampling with replacement [5].
For example, bootstrapping can be used to estimate the variance of an estimator, by constructing
samples of the estimator from a number of resamples of the original dataset with replacement.
With the same idea, our algorithm draws samples uniformly with replacement from the previous

bootstrap sample pool. Therefore, the R̂
(j−1,m)
(i,r) on the right-hand side of (3.1) are only condition-

ally independent given P(j−1,m). Hence, the samples in P(j,m) are identically distributed but not
independent for j ≥ 1.

As we mentioned earlier, the distribution of the {R̂(j,m)
i } in P(j,m) are only approximately dis-

tributed as R(j), with the exception of the {R̂(0,m)
i } which are exact. The first thing that we need

to prove is that the distribution of the observations in P(j,m) does indeed converge to that of R(j).

Intuitively, this should be the case since the empirical distribution of the {R̂(0,m)
i } is the empirical

distribution of m i.i.d. observations of R(0), and therefore should be close to the true distribution

of R(0) for suitably large m. Similarly, since the {R̂(1,m)
i } are constructed by sampling from the

6

empirical distribution of P(0,m), which is close to the true distribution of R(0), then their empirical
distribution should be close to the empirical distribution of R(1), which in turn should be close to
the true distribution of R(1). Inductively, provided the approximation is good in step j− 1, we can
expect the empirical distribution of P(j,m) to be close to the true distribution of R(j). In the follow-
ing section we make the mode of the convergence precise by considering the Kantorovich-Rubinstein
distance between the empirical distribution of P(j,m) and the true distribution of R(j).

The second technical aspect of our proposed algorithm is the lack of independence among the
observations in P(k,m), since a natural estimator for quantities of the form E[h(R(k))] would be to
use

1

m

m∑
i=1

h(R̂
(k,m)
i). (3.2)

Hence, we also provide a result establishing the consistency of estimators of the form in (3.2) for a
suitable family of functions h.

We conclude this section by pointing out that the complexity of the algorithm described above is
of order km, while the naive Monte Carlo approach has order (E[N])km. This is a huge gain in
efficiency.

4 Convergence and consistency

In order to show that our proposed algorithm does indeed produce observations that are approxi-
mately distributed as R(k) for any fixed k, we will show that the empirical distribution function of
the observations in P(k,m) , i.e.,

F̂k,m(x) =
1

m

m∑
i=1

1(R̂
(k,m)
i ≤ x)

converges as m → ∞ to the true distribution function of R(k), which we will denote by Fk. We
will show this by using the Kantorovich-Rubinstein distance, which is a metric on the space of
probability measures. In particular, convergence in this sense is equivalent to weak convergence
plus convergence of the first absolute moments.

Definition 1 let M(µ, ν) denote the set of joint probability measures on R × R with marginals µ
and ν. then, the Kantorovich-Rubinstein distance between µ and ν is given by

d1(µ, ν) = inf
π∈M(µ,ν)

∫
R×R
|x− y| dπ(x, y).

We point out that d1 is only strictly speaking a distance when both µ and ν have finite first absolute
moments. Moreover, it is well known that

d1(µ, ν) =

∫ 1

0
|F−1(u)−G−1(u)|du =

∫ ∞
−∞
|F (x)−G(x)|dx, (4.1)

where F and G are the cumulative distribution functions of µ and ν, respectively, and f−1(t) =
inf{x ∈ R : f(x) ≥ t} denotes the pseudo-inverse of f . It follows that the optimal coupling of

7

two real random variables X and Y is given by (X,Y) = (F−1(U), G−1(U)), where U is uniformly
distributed in [0, 1].

Remark 4.1 The Kantorovich-Rubinstein distance is also known as the Wasserstein metric of
order 1. In general, both the Kantorovich-Rubinstein distance and the more general Wasserstein
metric of order p can be defined in any metric space; we restrict our definition in this paper to the
real line since that is all we need. We refer the interested reader to [13] for more details.

With some abuse of notation, for two distribution functions F and G we use d1(F,G) to denote
the Kantorovich-Rubinstein distance between their corresponding probability measures.

The following proposition shows that for i.i.d. samples, the expected value of the Kantorovich-
Rubinstein distance between the empirical distribution function and the true distribution converges
to zero.

Proposition 4.2 Let {Xi}i≥1 be a sequence of i.i.d. random variables with common distribution
F . Let Fn denote the empirical distribution function of a sample of size n. Then, provided there
exists α ∈ (1, 2) such that E [|X1|α] <∞, we have that

E [d1(Fn, F)] ≤ n−1+1/α

(
2α

α− 1
+

2

2− α

)
E[|X1|α].

Proposition 4.2 can be proved following the same arguments used in the proof of Theorem 2.2 in
[4] by setting M = 1, and thus we omit it.

We now give the main theorem of the paper, which establishes the convergence of the expected
Kantorovich-Rubinstein distance between F̂k,m and Fk. Its proof is based on induction and the

explicit representation (4.1). Recall that ρβ = E
[∑N

i=1 |Ci|β
]
.

Theorem 4.3 Suppose that the conditions of Proposition 2.1 are satisfied for some β > 1. Then,
for any α ∈ (1, 2) with α ≤ β, there exists a constant Kα <∞ such that

E
[
d1(F̂k,m, Fk)

]
≤ Kαm

−1+1/α
k∑
i=0

ρi1. (4.2)

Proof. By Proposition 2.1 there exists a constant Hα such that

Hα = sup
k≥0

E
[
|R(k)|α

]
≤ sup

k≥0

(
E
[
|R(k)|β

])α/β
<∞.

Set Kα = Hα

(
2α
α−1 + 2

2−α

)
. We will give a proof by induction.

For j = 0, we have that

F̂0,m(x) =
1

m

m∑
i=1

1(Qi ≤ x),

8

where {Qi}i≥1 is a sequence of i.i.d. copies of Q. It follows that F̂0,m is the empirical distribution
function of R(0), and by Proposition 4.2 we have that

E
[
d1(F̂0,m, F0)

]
≤ Kαm

−1+1/α.

Now suppose that (4.2) holds for j − 1. Let {U ir}i,r≥1 be a sequence of i.i.d. Uniform(0, 1) random
variables, independent of everything else. Let {(Qi, Ni, C(i,1), C(i,2), . . .)}i≥1 be a sequence of i.i.d.
copies of the generic branching vector, also independent of everything else. Recall that Fj−1 is the
distribution function of R(j−1) and define the random variables

R̂
(j,m)
i =

Ni∑
r=1

C(i,r)F̂
−1
j−1,m(U ir) +Qi and R

(j)
i =

Ni∑
r=1

C(i,r)F
−1
j−1(U

i
r) +Qi

for each i = 1, 2, . . . ,m. Now use these random variables to define

F̂j,m(x) =
1

m

m∑
i=1

1(R̂
(j,m)
i ≤ x) and Fj,m(x) =

1

m

m∑
i=1

1(R
(j)
i ≤ x).

Note that Fj,m is an empirical distribution function of i.i.d. copies of R(j), which has been carefully
coupled with the function F̂j,m produced by the algorithm.

By the triangle inequality and Proposition 4.2 we have that

E
[
d1(F̂j,m, Fj)

]
≤ E

[
d1(F̂j,m, Fj,m)

]
+ E [d1(Fj,m, Fj)] ≤ E

[
d1(F̂j,m, Fj,m)

]
+Kαm

−1+1/α.

To analyze the remaining expectation note that

E
[
d1(F̂j,m, Fj,m)

]
= E

[∫ ∞
−∞
|F̂j,m(x)− Fj,m(x)|dx

]
≤ 1

m

m∑
i=1

E

[∫ ∞
−∞

∣∣∣1(R̂
(j,m)
i ≤ x)− 1(R

(j)
i ≤ x)

∣∣∣ dx]

=
1

m

m∑
i=1

E
[∣∣∣R̂(j,m)

i −R(j)
i

∣∣∣]
=

1

m

m∑
i=1

E

[∣∣∣∣∣
Ni∑
r=1

C(i,r)(F̂
−1
j−1,m(U ir)− F−1j−1(U

i
r))

∣∣∣∣∣
]

≤ E
[
N∑
r=1

|Cr|
]
E
[
d1(F̂j−1,m, Fj−1)

]
,

where in the last step we used the fact that (Ni, C(i,1), C(i,2), . . .) is independent of
{
U ir
}
r≥1 and of

F̂j−1,m, combined with the explicit representation of the Kantorovich-Rubinstein distance given in

9

(4.1). The induction hypothesis now gives

E
[
d1(F̂j,m, Fj)

]
≤ ρ1E

[
d1(F̂j−1,m, Fj−1)

]
+Kαm

−1+1/α

≤ Kαm
−1+1/αρ1

j−1∑
i=0

ρi1 +Kαm
−1+1/α

= Kαm
−1+1/α

j∑
i=0

ρi1.

This completes the proof.

Note that the proof of Theorem 4.3 implies that R̂
(j,m)
i → R

(j)
i =

∑Ni
r=1C(i,r)F

−1
j−1(U

i
r) +Qi

D
= R(j)

in L1-norm for all fixed j ∈ N, and hence in distribution. In other words,

P
(
R̂

(k,m)
i ≤ x

)
→ Fk(x) as m→∞, (4.3)

for all i = 1, 2, . . . ,m, and for any continuity point of Fk. This also implies that

E
[
F̂k,m(x)

]
= P

(
R̂

(k,m)
1 ≤ x

)
→ Fk(x) as m→∞, (4.4)

for all continuity points of Fk.

Since our algorithm produces a pool P(k,m) of m random variables approximately distributed ac-
cording to Fk, it makes sense to use it for estimating expectations related to R(k). In particular,
we are interested in estimators of the form in (3.2). The problem with this kind of estimators is
that the random variables in P(k,m) are only conditionally independent given F̂k−1,m.

Definition 2 We say that Θn is a consistent estimator for θ if Θn
P→ θ as n → ∞, where

P→
denotes convergence in probability.

Our second theorem shows the consistency of estimators of the form in (3.2) for a broad class of
functions.

Theorem 4.4 Suppose that the conditions of Proposition 2.1 are satisfied for some β > 1. Suppose
h : R → R is continuous and |h(x)| ≤ C(1 + |x|) for all x ∈ R and some constant C > 0. Then,
the estimator

1

m

m∑
i=1

h(R̂
(k,m)
i) =

∫
R
h(x)dF̂k,m(x),

where P(k,m) =
(
R̂

(k,m)
1 , R̂

(k,m)
2 , . . . , R̂

(k,m)
m

)
, is a consistent estimator for E[h(R(k))].

Proof. For any M > 0, define hM (x) as

hM (x) = h(−M)1(x ≤ −M) + h(x)1(−M < x ≤M) + h(M)1(x > M),

10

and note that hM is uniformly continuous. We then have∣∣∣∣∫
R
h(x)dF̂k,m(x)−

∫
R
h(x)dFk(x)

∣∣∣∣ ≤ 2C

∫
|x|>M

(1 + |x|)dFk(x) + 2C

∫
|x|>M

(1 + |x|)dF̂k,m(x)

+

∣∣∣∣∫
R
hM (x)dF̂k,m(x)−

∫
R
hM (x)dFk(x)

∣∣∣∣ . (4.5)

Fix ε > 0 and choose Mε > 0 such that E
[
(|R(k)|+ 1)1(|R(k)| > Mε)

]
≤ ε/(4C) and such that

−Mε and Mε are continuity points of Fk. Define (R̂(k,m), R(k)) = (F̂−1k,m(U), F−1k (U)), where U is a

uniform [0, 1] random variable independent of P(k,m). Next, note that g(x) = 1 + |x| is Lipschitz
continuous with Lipschitz constant one and therefore∫
|x|>Mε

(1 + |x|)dF̂k,m(x) = (1 +Mε)
(
F̂k,m(−Mε) + 1− F̂k,m(Mε)

)
+

∫
x<−Mε

F̂k,m(x) dx+

∫
x>Mε

(1− F̂k,m(x))dx

≤ (1 +Mε)
(
F̂k,m(−Mε) + 1− F̂k,m(Mε)

)
+ d1(F̂k,m, Fk)

+

∫
x<−Mε

Fk(x) dx+

∫
x>Mε

(1− Fk(x))dx

= (1 +Mε)
(
F̂k,m(−Mε)− Fk(−Mε) + Fk(Mε)− F̂k,m(Mε)

)
+ d1(F̂k,m, Fk)

+ E
[
(|R(k)|+ 1)1(|R(k)| > Mε)

]
.

Finally, since hMε is bounded and uniformly continuous, then ω(δ) = sup{|hMε(x) − hMε(y)| :
|x− y| ≤ δ} converges to zero as δ → 0. Hence, for any γ > 0,∣∣∣∣∫

R
hMε(x)dF̂k,m(x)−

∫
R
hMε(x)dFk(x)

∣∣∣∣ ≤ E [∣∣∣hMε(R̂
(k,m))− hMε(R

(k))
∣∣∣∣∣∣ F̂k,m]

≤ ω(m−γ) +KεE
[

1
(
|R̂(k,m) −R(k)| > m−γ

)∣∣∣ F̂k,m]
≤ ω(m−γ) +Kεm

γd1(F̂k,m, Fk),

where 2Kε = sup{|hMε(x)| : x ∈ R}. Choose 0 < γ < 1− 1/α for the α ∈ (1, 2) in Theorem 4.3 and
combine the previous estimates to obtain

E

[∣∣∣∣∫
R
h(x)dF̂k,m(dx)−

∫
R
h(x)dFk(dx)

∣∣∣∣]
≤ 2C(1 +Mε)

(
E[F̂k,m(−Mε)]− Fk(−Mε) + Fk(Mε)− E[F̂k,m(Mε)]

)
+ ε+ ω(m−γ) + (2C +Kεm

γ)E
[
d1(F̂k,m, Fk)

]
.

Since
E[F̂k,m(−Mε)]→ Fk(−Mε) and E[F̂k,m(Mε)]→ Fk(Mε)

by (4.4), and mγE
[
d1(F̂k,m, Fk)

]
→ 0 by Theorem 4.3, it follows that

lim sup
m→∞

E

[∣∣∣∣∫
R
h(x)dF̂k,m(dx)−

∫
R
h(x)dFk(dx)

∣∣∣∣] ≤ ε.
11

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

F10,1000

F̂10,1000

F̂10,200

Figure 2: The functions F10,1000(x), F̂10,200(x) and F̂10,1000(x).

Since ε > 0 was arbitrary, the convergence in L1, and therefore in probability, follows.

5 Numerical examples

This last section of the paper gives a numerical example to illustrate the performance of our
algorithm. Consider a generic branching vector (Q,N,C1, C2, . . .) where the {Ci}i≥1 are i.i.d. and
independent of N and Q, with N also independent of Q.

Figure 2 plots the empirical cumulative distribution function of 1000 samples of R(10, i.e., F10,1000

in our notation, versus the functions F̂10,200 and F̂10,1000 produced by our algorithm, for the case
where the Ci are uniformly distributed in [0, 0.2], Q uniformly distributed in [0, 1] and N is a Poisson
random variable with mean 3. Note that we cannot compare our results with the true distribution
F10 since it is not available in closed form. Computing F10,1000 required 883.3 seconds using Python
with an Intel i7-4700MQ 2.40 GHz processor and 8 GB of memory, while computing F̂10,1000 required
only 2.1 seconds. We point out that in applications to information ranking algorithms E[N] can be
in the thirties range, which would make the difference in computation time even more impressive.

Our second example plots the tail distribution of the empirical cumulative distribution function
of R(10) for 10,000 samples versus the tail of F̂10,10000 for an example where N is a zeta random
varialbe with a probability mass function P (N = k) ∝ k−2.5, Q is an exponential random variable
with mean 1, and the Ci have a uniform distribution in [0, 0.5]. In this case the exact asymptotics

12

5 10 15 20 25 30 35 40
0

1

2

3

4
·10−2

x

1− F10,10000

1− F̂10,10000

G10

Figure 3: The functions 1− F10,10000(x), 1− F̂10,10000(x) and G10(x), where G10 is evaluated only
at integer values of x and linearly interpolated in between.

for P (R(k) > x) as x→∞ are given by

P (R(k) > x) ∼ (E[C1]E[Q])α

(1− ρ1)α
k∑
j=0

ρjα(1− ρk−j1)αP (N > x),

where P (N > x) = x−αL(x) is regularly varying (see Lemma 5.1 in [7]), which reduces for the
specific distributions we have chosen to

G10(x) ,
(0.25)2.5

(1− (0.49))2.5

10∑
j=0

(0.07)j(1− (0.49)10−j)2.5P (N > x) = (0.365)P (N > x).

Figure 3 plots the complementary distributions of F10,10000, F̂10,10000 and compares them to G. We
can see that the tails of both F10,10000 and F̂10,10000 approach the asymptotic roughly at the same
time.

References

[1] G. Alsmeyer, J.D. Biggins, and M. Meiners. The functional equation of the smoothing trans-
form. Ann. Probab., 40(5):2069–2105, 2012.

[2] G. Alsmeyer and M. Meiners. Fixed points of the smoothing transform: Two-sided solutions.
Probab. Theory Rel., 155(1-2):165–199, 2013.

13

[3] N. Chen, N. Litvak, and M. Olvera-Cravioto. Ranking algorithms on directed configuration
networks. ArXiv:1409.7443, pages 1–39, 2014.

[4] Eustasio del Barrio, Evarist Giné, and Carlos Matrán. Central limit theorems for the wasser-
stein distance between the empirical and the true distributions. Annals of Probability, pages
1009–1071, 1999.

[5] B. Efron and R. J. Tibshirani. An introductin to the bootstrap. 1993.

[6] J.A. Fill and S. Janson. Approximating the limiting Quicksort distribution. Random Structures
Algorithms, 19(3-4):376–406, 2001.

[7] P.R. Jelenković and M. Olvera-Cravioto. Information ranking and power laws on trees. Adv.
Appl. Prob., 42(4):1057–1093, 2010.

[8] P.R. Jelenković and M. Olvera-Cravioto. Implicit renewal theorem for trees with general
weights. Stochastic Process. Appl., 122(9):3209–3238, 2012.

[9] P.R. Jelenković and M. Olvera-Cravioto. Implicit renewal theory and power tails on trees.
Adv. Appl. Prob., 44(2):528–561, 2012.

[10] M. Olvera-Cravioto. Tail behavior of solutions of linear recursions on trees. Stochastic Process.
Appl., 122(4):1777–1807, 2012.

[11] U. Rösler. A limit theorem for “Quicksort”. RAIRO Theor. Inform. Appl., 25:85–100, 1991.

[12] U. Rösler and L. Rüschendorf. The contraction method for recursive algorithms. Algorithmica,
29(1-2):3–33, 2001.

[13] C. Villani. Optimal transport, old and new. Springer, New York, 2009.

[14] Y. Volkovich and N. Litvak. Asymptotic analysis for personalized web search. Adv. Appl.
Prob., 42(2):577–604, 2010.

14

	1 Introduction
	2 Linear recursions on weighted branching processes
	3 The algorithm
	4 Convergence and consistency
	5 Numerical examples

