
Proceedings of the 2016 Winter Simulation Conference
T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.

SEQUENTIAL SAMPLING FOR BAYESIAN ROBUST RANKING AND SELECTION

Xiaowei Zhang
Liang Ding

Department of Industrial Engineering and Logistics Management
The Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong, CHINA

ABSTRACT

We consider a Bayesian ranking and selection problem in the presence of input distribution uncertainty. The
distribution uncertainty is treated from a robust perspective. A naive extension of the knowledge gradient
(KG) policy fails to converge in the new robust setting. We propose several stationary policies that extend
KG in various aspects. Numerical experiments show that the proposed policies have excellent performance
in terms of both probability of correction selection and normalized opportunity cost.

1 INTRODUCTION

Simulation is a general-purpose tool for facilitating decision-making related to complex stochastic systems.
In particular, a decision-maker may need to choose one from a finite collection of alternatives. The
alternatives could be investment strategies, surgery schedules, supply chain configurations, warehouse
layouts, etc. However, the value of each alternative is typically unknown and must be measured via
simulation. This is known as the ranking and selection (R&S) problem (Bechhofer, Santner, and Goldsman
1995). Simulating a complex system could be computationally expensive. Given a computational budget
in terms of measurements or sampling opportunities, the goal of the R&S problem is to allocate the
computational budget in an efficient way such that as much information as possible about the true value
of each alternative can be obtained.

When constructing simulation models for the alternatives, a decision-maker often encounters the
challenge of choosing proper input distributions, if multiple candidate distributions can fit the input data
reasonably well. One approach to address the issue is Bayesian model averaging (BMA); see Hoeting
et al. (1999) for a general introduction on the subject and Chick (2001) for its application in the context
of stochastic simulation. With BMA one may specify one’s prior belief on the probability that a candidate
input distribution is the correct one. Then the value of the simulation model in the presence of input
distribution uncertainty is essentially the average value over the candidate input distributions weighted by
the prior belief. BMA may be appropriate for a decision-maker who is risk-neutral with respect to the
input distribution.

Another approach, motivated by robust optimization (Ben-Tal and Nemirovski 2002, Ben-Tal, El Ghaoui,
and Nemirovski 2009), is more appealing to a risk-averse decision-maker especially when implementing an
alternative is highly costly. Rather than averaging over candidate input distributions, this approach uses the
“worse-case” scenario among them to represent the value of an alternative. Fan, Hong, and Zhang (2013)
adopts this robust perspective to address the R&S problem in the presence of input distribution uncertainty.
In particular, they model the input distribution uncertainty by a finite set of possible distributions, and the
best alternative in the R&S problem is then defined as the one having the best worse-case performance.
We follow this modeling perspective in the present paper and call it a robust R&S problem.

In contrast to the frequentist approach in Fan, Hong, and Zhang (2013), we take a Bayesian view on
the true value of a system, which denotes an alternative under a candidate input distribution. Beginning
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with a prior belief about the systems, our belief is updated after one or several measurements. When the
computational budget is exhausted, we use the final belief to rank the systems and select the optimal one.
This Bayesian framework for R&S has been widely used to develop sequential sampling policies, including
the optimal computing budget allocation (OCBA) policy (Chen, Dai, and Chen 1996, Chen et al. 2000,
Chen, Chen, and Yücesan 2000, and He, Chick, and Chen 2007), the knowledge gradient (KG) policy
(Gupta and Miescke 1996, Frazier, Powell, and Dayanik 2008, and Frazier, Powell, and Dayanik 2009),
and the expected value of information (EVI) approach (Chick and Inoue 2001a, Chick and Inoue 2001b,
and Chick, Branke, and Schmidt 2010).

Specifically, we model the unknown mean performance measures of all the systems using a multivariate
normal random variable. Following the setup of the KG policy, we assume that the prior belief about
the systems is multivariate normal and that sampling a system produces unbiased random output with
known variance. This implies that the posterior belief is multivariate normal as well. Further, we assume
independence among alternatives but explore correlations among the performance measures of an alternative
under different input distributions. By doing so, sampling an alternative under one input distribution helps
us learn about the same alternative under different input distributions, but provides no useful information
about other alternatives. Such an independence assumption can be relaxed but would significantly increase
computational expense due to lack of sparsity in the large covariance matrix of the systems.

We formulate a sequential sampling scheme for the robust R&S problem as a dynamic program that
aims to minimize the terminal reward, which is of a “minimax” form due to the robust perspective and
is collected after a given number of sampling opportunities are executed. This dynamic program is an
extension of the one analyzed in Frazier, Powell, and Dayanik (2008) and Frazier, Powell, and Dayanik
(2009) for the KG policy. We focus on sampling policies that are stationary in time because they can be
computed much more easily. However, a naive extension of the KG policy to the new robust setting fails to
converge, in the sense of sampling each each system infinitely often if an infinite computational budget is
available. Hence, we propose stationary policies that extend the KG policy in nontrivial ways by revising
the objective of the dynamic program to another related one. Numerical experiments demonstrate that the
proposed policies have excellent performance with regard to identifying the best alternative in terms of
both probability of correct selection and normalized opportunity cost.

The rest of the paper is organized as follows. Section 2 introduces our Bayesian framework for robust
R&S and formulates the sequential sampling decisions as a dynamic program. Section 3 proposes several
stationary sampling policies for solving the dynamic program. Section 4 presents numerical experiments
and Section 5 concludes.

2 PROBLEM FORMULATION

In the setting of stochastic simulation, the performance measure of a simulation model is generally expressed
as a function g of the decision variable s and the environmental variable ξ , where the former is controllable
and deterministic whereas the latter is uncontrollable and random. The mean performance that we attempt
to estimate via simulation is then

EP[g(s,ξ )],
where the expectation is taken with respect to ξ having probability distribution P. For example, in a
queueing simulation s may be the number of servers, ξ may be the collection of interarrival times and
service times, while g could be the steady-state waiting time.

Suppose that we have a set of M distinct possible decisions or alternatives S = {s1, . . . ,sM} and a set
of K distinct possible distributions P = {P1, . . . ,PK}. For a given distribution P, we define the optimal
decision to be the one that delivers the smallest mean performance, i.e.,

min
s∈S

EP[g(s,ξ )].

In light of the uncertainty about the distribution P, when assessing the decisions we adopt a robust perspective
and base the comparison on the worst-case performance of a decision over the set P . In particular, we
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are interested in the following optimization problem,

min
s∈S

max
P∈P

EP[g(s,ξ )]. (1)

2.1 Bayesian Formulation

To facilitate the presentation, we refer to the pair (si,Pj) as “system (i, j)” and let θi, j = EPj [g(si,ξ )],
i = 1, . . . ,M, j = 1, . . . ,K. We let θ denote the matrix formed by the θi, j’s and θ

ᵀ
i: denote its ith row, i.e.,

(θi,1, . . . ,θi,K). Suppose that samples from system (i, j) are independent and have a normal distribution with
unknown mean θi, j and known variance δ 2

i, j. (In general, g(si,ξ ) is not normally distributed. Nevertheless,
the sample average of a sufficiently large number of its multiple independent replications has approximately
a normal distribution by the law of large numbers. We can view such a sample average as “one sample”.)

Applying a Bayesian approach, we assume that the prior belief about θ is a multivariate normal
distribution with mean µ0 and covariance Σ0, i.e., θ ∼N(µ0,Σ0), where Σ0 is indexed by ((i, j),(i′, j′)),
1 ≤ i, i′ ≤M, 1 ≤ j, j′ ≤ K. Further, we assume that the prior belief about θ is such that θ1:, . . . ,θM: are
mutually independent.

Consider a sequence of N sampling decisions, (x0,y0),(x1,y1), . . . ,(xN−1,yN−1). At each time 0≤ n<N,
the sampling decision (xn,yn) selects a system from the set {(i, j) : 1≤ i≤M,1≤ j ≤ K}. Conditionally
on the decision (xn,yn), the sample observation is ẑn+1 = θxn,yn + εn+1, where εn+1 ∼ N(0,δ 2

xn,yn) is the
sampling error. We assume that the errors ε1, . . . ,εN are mutually independent and are independent of θ .

We define a filtration {F n : 0 ≤ n < N}, where F n is the sigma-algebra generated by the samples
observed and the decisions made by time n, namely, (x0,y0), ẑ1, . . . ,(xn−1,yn−1), ẑn. We use En[·] to denote
the conditional expectation E[·|F n] and define µn := En[θ ] and Σn := Cov[θ |F n]. By Bayes rule, the
posterior distribution of θ conditionally on F n is multivariate normal with mean µn and covariance Σn.
Our uncertainty about θ decreases during the process of the sequential sampling. After all the N sampling
decisions are executed, the decision-maker selects a system that attains mini max j µN

i, j in light of (1).
We now present the updating equations that stipulate how µn+1 and Σn+1 are expressed explicitly in

terms of µn, Σn, (xn,yn), and ẑn+1. The independence assumption on θx: and θx′: in the prior belief results
in their independence in the posterior distribution, i.e.,

Σ
n
x:,x′: = 0, if x 6= x′,

for all 0≤ n < N, where Σn
x:,x′: denotes the covariance matrix of θx: and θx′: conditionally on F n. Sampling

system (x,y) provides no information about system (x′,y′) if x′ 6= x. Adopting the calculation in Section
2.1 of Frazier, Powell, and Dayanik (2009) for each θx:, x = 1, . . . ,M, we find that

µ
n+1
x: =

 µ
n
x: +

ẑn+1−µn
x,y

δ 2
x,y +Σn

(x,y),(x,y)
Σ

n
x:,x:ey, if xn = x, yn = y,

µn
x:, if xn 6= x, yn = y,

(2)

and

Σ
n+1
x:,x: =

 Σ
n
x:,x:−

Σn
x:,x:eyeᵀy Σn

x:,x:

δ 2
x,y +Σn

(x,y),(x,y)
, if xn = x, yn = y,

Σn
x:,x:, if xn 6= x, yn = y,

where ey is a vector in RK whose elements are all 0’s except a single 1 at index y.
We now define a RK-valued function σ̃ as

σ̃(Σ,x,y) :=
Σn

x:,x:ey√
δ 2

x,y +Σn
(x,y),(x,y)

, (3)
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and we define a random variable Zn+1 as

Zn+1 :=
ẑn+1−µn

xn,yn√
δ 2

xn,yn +Σn
(xn,yn),(xn,yn)

.

Then Zn+1 is standard normal conditionally on F n, since

Var[ẑn+1−µ
n
xn,yn |F n] = Var[θxn,yn + ε

n+1|F n] = δ
2
xn,yn +Σ

n
xn:,xn:.

It follows from (2) and (3) that

µ
n+1
x: =

{
µn

x: + σ̃(Σn,xn,yn)Zn+1, if xn = x, yn = y,
µn

x:, if xn 6= x, yn = y.
(4)

2.2 Dynamic Program

We suppose that the decision-maker makes the sampling decisions sequentially. In particular, the decision
(xn,yn) is F n-measurable so that a sampling decision depends only on samples observed and decisions
made in the past. Let Π denote the set of sampling policies that satisfy the above sequential requirement,

Π :=
{(

(x0,y0), . . . ,(xN−1,yN−1)
)

: 1≤ xn ≤M,1≤ yn ≤ K,(xn,yn) is F n-measurable,0≤ n < N
}
.

We will use π to denote a generic element in Π and write Eπ [·] to indicate the expectation taken when the
sampling policy is fixed to be π .

Our goal is to solve
min
π∈Π

Eπ

[
min

1≤i≤M
max

1≤ j≤K
µ

N
i, j

]
(5)

with a dynamic programming approach. Clearly, µn takes its values in RM×K while Σn is in the space of
positive semidefinite matrices of size (MK)× (MK). We define S, the state space of Sn := (µn,Σn), to be
the cross-product of these two spaces. Define the value function V n : S 7→ R

V n(s) := min
π∈Π

Eπ

[
min

1≤i≤M
max

1≤ j≤K
µ

N
i, j

∣∣Sn = s
]
, s ∈ S.

Then, the terminal value function is given by

V N(s) = min
1≤i≤M

max
1≤ j≤K

µi, j, s = (µ,Σ) ∈ S,

and our goal in (5) is to compute V 0(s) for any s ∈ S. The dynamic programming principle dictates that
the value function V n(s), for any 0≤ n < N, can be computed by recursively solving

V n(s) = min
1≤x≤M,1≤y≤K

E
[
V n+1(Sn+1)

∣∣Sn = s,(xn,yn) = (x,y)
]
.

Unfortunately, the above recursive equation has no analytical solution and a numerical solution is compu-
tationally infeasible due to the curse of dimensionality caused by the continuous nature of the state space.
Consequently, we will focus on policies that are stationary in time. This is a treatment widely used in the
literature including Frazier, Powell, and Dayanik (2009), Chick, Branke, and Schmidt (2010), and so forth.
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3 STATIONARY POLICIES FOR SEQUENTIAL SAMPLING

For a policy π , we denote by Aπ,n : S 7→ {1, . . . ,M}×{1, . . . ,K} the decision function associated with π ,
i.e. Aπ,n(Sn) = (xn,yn) almost surly under Pπ , the probability measure induced by π . We call a policy π

stationary if Aπ,n is independent of n, i.e. Aπ,0 = Aπ,1 = · · · = AN−1 almost surly under Pπ . Moreover,
we simply write Aπ if π is stationary.

Note that we may write the terminal value V N(SN) as a telescoping sequence,

min
1≤i≤M

max
1≤ j≤K

µ
N
i, j =V N(SN) =

[
V N(SN)−V N(SN−1)

]
+ · · ·+

[
V N(Sn+1)−V N(Sn)

]
+V N(Sn), (6)

which decompose the terminal value into the sum of a single-period reward V N(Sn) at time n and subsequent
single-period rewards V N(Sk)−V N(Sk−1) at time k = n+1, . . . ,N. Now consider the stationary policy that
aims to maximize the expected single-period reward and name it the naive knowledge gradient (NKG)
policy. Its decision function is given by

AπNKG
(s) = argmin

1≤x≤M,1≤y≤K

{
En

[
min

1≤i≤M
max

1≤ j≤K
µ

n+1
i, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− min

1≤i≤M
max

1≤ j≤K
µ

n
i, j

}
, s ∈ S.

To compute the above decision function, the key step is compute the expectation inside the curly braces.
Note that by (4), µ

n+1
i, j is a linear transform of the same standard normal random variable Zn+1 for all

(i, j)’s. This expectation can be expressed in the form of ∑kE([a+bZ)Ick≤Z<ck+1 ], for some constants a,
b, and ck’s. The sequence of ck’s is in fact the change points of a piecewise linear function, formed by
the minimum of the K maxima of linear functions that transform µn

i, j to µ
n+1
i, j . These change points can

be computed by a sweep line algorithm combined with a divide-and-conquer strategy; see Section 6.2.1 of
Sharir and Agarwal (1995) for details of such an algorithm.

Note that if K = 1, then NKG is reduced to KG. The name KG stems from the following observation:
mini max j µ

n+1
i, j −mini max j µn

x, j may be thought of as a gradient in some sense since it represents the
incremental random value of the sampling decision (x,y) at time n. It is shown in Frazier, Powell, and
Dayanik (2009) that KG is convergent, in the sense that it samples each system infinitely often if given
infinite computational budget. Hence, a convergent policy can eventually identify the system that is truly
the optimal given sufficient computational budget. However, NKG, as a naive extension of KG to the
setting of K ≥ 2, is not convergent in general.

Convergence of a policy on its own indicates little about efficiency of the policy in the finite sample
case. For instance, the equal allocation policy which allocates the computational budget in a round-robin
fashion equally among the systems guarantees that every system is sampled infinitely often if infinite
computational budget is available, and thus it is convergent. But its performance in the finite sample case
is not particularly satisfying. Nevertheless, convergence should be a desired feature of a good sampling
policy as it ensures that the policy does not “stick” in a proper subset of the systems, in which case the
other systems would not be sampled infinitely often and thus would never be learned perfectly even given
infinite computational budget.

We demonstrate the non-convergence of NKG via the following somewhat artificial example. More
realistic numerical results are given in Section 4.
Example 1 Let M = K = 2. Suppose that every element of Σ0 is 0 except Σ0

(1,1),(1,1) > 0. In other words,
the prior belief about θ is such that θ1,1 is unknown, whereas θ1,2,θ2,1,θ2,2 are all known with certainty.
The updating equation (4) implies that if (x0,y0) = (1,1), then

µ
1
1,1 = µ

0
1,1 +σZ, and µ

1
i, j = µ

0
i, j, (i, j) 6= (1,1),

for some σ > 0, where Z is a standard normal random variable; otherwise, µ1
i, j = µ0

i, j for any (i, j).
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Clearly, the expected single-period reward associated with the sampling decision (i, j) is 0 if (i, j) 6=(1,1).
With (x0,y0) = (1,1), the same quantity becomes

E
[
max

(
µ

0
1,1 +σZ1,µ0

1,2
)
∧max(µ0

2,1,µ
0
2,2)
]
−min

i
max

j
µ

0
i, j. (7)

Without loss of generality, set µ0
1,1 = 0. Consider the special case where

µ
0
1,2 < 0 < max(µ0

2,1,µ
0
2,2).

It follows that mini max j µ0
i, j = 0 and that (7) equals

aP(σZ < a)+bP(σZ > b)+E[σZIa≤σZ≤b], (8)

where a = µ0
1,2 and b = max(µ0

2,1,µ
0
2,2), since a and b are both constants. It is easy to show that (8) is

positive if a+b > 0. Hence, the optimal decision is not to sample the unknown θ1,1 but to sample any of
the known systems, in which case the state of the systems remains the same in all the subsequent time
epochs. Consequently, if NKG is adopted, system (1,1) will never be sampled.

By contrast, if K = 1, then it is equivalent to set a =−∞ in (8) and the expected single-period reward is
always negative if the decision is to sample system (1,1). So the same policy would encourage exploration
of uncertainty rather than discourage it, thereby being convergent.

This example highlights the relative importance of the prior in our robust setting, since NKG may be
convergent for some priors whereas not for others. Technically, the reason why NKG fails to converge
in general is as follows. In Frazier, Powell, and Dayanik (2009), a critical step towards establishing the
convergence of the KG policy is to show the monotonicity of the value function V n(s) in n. In particular,
with K = 1 it can be shown that V n+1(s) ≥ V n(s) for any s ∈ S, which essentially stems from Jensen’s
inequality E[mini µN

i ]≤miniE[µN
i ]. However, with K ≥ 2 we lose such monotonicity of V n(s) in n since

E[mini max j µN
i j ]can be either greater or smaller than mini max j E[µN

i j ].

3.1 Modified Objective

We now consider a different optimization problem that is somewhat related to (5)

max
π∈Π

Eπ

[ M

∑
i=1

max
1≤ j≤K

µ
N
i, j

]
. (9)

Define the value function Un : S 7→ R

Un(s) := max
π∈Π

Eπ

[ M

∑
i=1

max
1≤ j≤K

µ
N
i, j

∣∣Sn = s
]
, s ∈ S.

Applying the same telescoping decomposition as (6) to UN(SN), we may construct a stationary myopically
optimal policy for the problem (9), which we refer to as maximum knowledge gradient (MKG) policy. Its
decision function is defined by

AπMKG
(s) = argmax

1≤x≤M,1≤y≤K
En

[
UN(Sn+1)−UN(Sn)

∣∣Sn = s,(xn,yn) = (x,y)
]
, s ∈ S.
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Since we assume that θx: and θx′: are independent in the prior distribution of θ , a sampling decision (x,y)
has no impact on system (x′,y′) if x′ 6= x. In particular, by (4),

En

[
UN(Sn+1)−UN(Sn)

∣∣Sn = s,(xn,yn) = (x,y)
]

= En

[
∑

1≤i≤M
max

1≤ j≤K
µ

n+1
i, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− ∑

1≤i≤M
max

1≤ j≤K
µ

n
i, j

= En

[
max

1≤ j≤K
µ

n+1
x, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
x, j

+∑
i6=x

En

[
max

1≤ j≤K
µ

n+1
i, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
i, j

= En

[
max

1≤ j≤K
µ

n+1
x, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
x, j, (10)

where the last equality holds because µ
n+1
i, j = µn

i, j if i 6= x. Hence, the MKG policy satisfies

AπMKG
(s) = argmax

1≤x≤M,1≤y≤K

{
En

[
max

1≤ j≤K
µ

n+1
x, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
x, j

}
, s ∈ S. (11)

Note that the above maximization problem can be rewritten as

max
1≤x≤M

{
max

1≤y≤K

{
En

[
max

1≤ j≤K
µ

n+1
x, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
x, j

}}
.

For each x= 1, . . . ,K, the quantity inside the outer curly braces in the above display represents the knowledge
gradient for alternative x. So the MKG policy chooses largest among the M knowledge gradients, thereby
leading to its name.

Most of the effort for computing (11) resides in computing the expectation

En

[
max

1≤ j≤K
µ

n+1
x, j

∣∣Sn = s,(xn,yn) = (x,y)
]
= En

[
max

1≤ j≤K

(
µ

n
x, j + σ̃ j(Σ

n,x,y)Zn+1)∣∣Sn = s,(xn,yn) = (x,y)
]

thanks to (4), where Zn+1 is a standard normal random variable. This is the same as the computation of
the KG policy, so we omit the details and refer to Section 3.1 of Frazier, Powell, and Dayanik (2009).

3.2 Maximum Weighted Knowledge Gradient

The MKG policy can be generalized to solve the following optimization problem

max
π∈Π

Eπ

[ M

∑
i=1

wi max
1≤ j≤K

µ
N
i, j

]
, (12)

where w1, . . . ,wM are positive constants. In particular, we compute the stationary policy that maximizes

En

[
∑

1≤i≤M
wi max

1≤ j≤K
µ

n+1
i, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− ∑

1≤i≤M
wi max

1≤ j≤K
µ

n
i, j,

and name it maximum weighted knowledge gradient (MWKG) policy. In the same vein as the derivation
leading to (10), the decision function of the MWKG policy is

AπMWKG
(s) = argmax

1≤x≤M,1≤y≤K
wx

{
En

[
max

1≤ j≤K
µ

n+1
x, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
x, j

}
, s ∈ S.
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Its computation is similar as that of the MKG policy. We here solve

max
1≤x≤M

wx

{
max

1≤y≤K

{
En

[
max

1≤ j≤K

(
µ

n
x, j + σ̃ j(Σ

n,x,y)Zn+1)∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
x, j

}}
.

We now connect the problem (12) to our original problem (5). Suppose that we can find a set of
positive weights (wi : 1≤ i≤M) for which

min
i

max
j

µ
N
i, j ≈−∑

i
wi max

j
µ

N
i, j,

then we may solve problem (12) in lieu of problem (5). Since more information about θ is produced as
more measurements are made, we do not keep the weights wi’s fixed. Instead, we update their values at
each time n in order that the approximation adapt to the updated distribution of θ . Specifically, at each
time n we generate L i.i.d. copies of θ according to its posterior distribution conditionally on F n, i.e.
N(µn,Σn). Given these i.i.d. copies, we fit (wn

i : i = 1, . . . ,M) using constrained least squares

min
cn,wn

1,...,w
n
M

L

∑
l=1

[
c+

M

∑
i=1

wn
i max

1≤ j≤K
θ

n,l
i, j + min

1≤i≤M
max

1≤ j≤K
θ

n,l
i, j

]2

s.t. wn
i > 0, i = 1, . . . ,M

(13)

where θ
n,l
i, j denotes the lth copy of θi, j|F n. We then define the maximum adaptively weighted knowledge

gradient (MAWKG) policy as follows. At each time n = 0,1, . . . ,N− 1, first compute the weights (wn
i :

i = 1, . . . ,M) via (13), and then compute the decision

AπMAWKG
(s) = argmax

1≤x≤M,1≤y≤K
wn

x

{
En

[
max

1≤ j≤K
µ

n+1
x, j

∣∣Sn = s,(xn,yn) = (x,y)
]
− max

1≤ j≤K
µ

n
x, j

}
, s ∈ S.

4 NUMERICAL EXPERIMENTS

We have proposed four stationary policies for sequential sampling of the Bayesian robust R&S problem,
i.e. NKG, MKG, MWKG, and MAWKG. The difference between MWKG and MAWKG in terms of
implementation is that the weights wi’s are fitted at time 0 and kept fixed afterwards for the former, whereas
adaptively fitted at each time n = 0,1, . . . ,N−1 for the latter. When implementing both policies, we use
L = 1000 i.i.d. copies of θ |F n for the constrained least squares (13). We will also include two additional
polices as follows into the numerical experiments.

• Equal allocation (EA). The sampling decisions are determined in a round-robin fashion: the sequence
of decisions are (1,1),(2,1), . . . ,(M,1),(1,2),(2,2), . . . ,(M,2), . . . ,(1,K),(2,K), . . . ,(M,K) and
repeat the sequence if necessary.

• Maximum variance (MV). The sampling decision at each time n is to choose system (i, j) that has
the maximum variance Σn

(i, j),(i, j).

The comparison is based on 1000 randomly generated problems, each of which is parameterized by a
number of sampling opportunities N, a number of systems M×K, an initial mean µ0 ∈ RM×K , an initial
covariance matrix Σ0 ∈ RMN×MN , and sampling variance δ 2

i, j, i = 1, . . . ,M, j = 1, . . . ,K. Specifically, we
set M = K = 10 and δi, j = 1 for each (i, j), and choose Σ0 from the class of power exponential covariance
functions, particularly

Σ
0
(i, j),(i′, j′) =

{
100e−| j− j′|2 , if i = i′,
0, if i 6= i′.

Each µ0
i, j is generated independently according to the uniform distribution on [−1,1].
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For each randomly generated problem, the true value θ is generated according to the prior belief of
the problem, i.e. N(µ0,Σ0). In the motivational robust R&S problem (1), we interpret M as the number of
possible decisions or alternatives si of a simulation model, and K as the number of possible input distributions
Pj. We argue that a decision-maker relying on the simulation model is more concerned of the decision si
than of the distribution Pi. Suppose that we select system (xN ,yN) at time N, i.e. µN

xN ,yN = mini max j µN
i, j.

Let system (i∗, j∗) be the true optimal system, i.e. θi∗, j∗ = mini max j θi, j. Then, we consider it as a correct
selection if xN = i∗, regardless of the value of l. In other words, it really matters to select the correct
alternative and not so much with the correct input distribution. In addition to the probability of correct
selection in the above sense, we also compare policies based on normalized opportunity cost (NOC) of
incorrect selection ∣∣θi∗, j∗−max

j
θxN , j

∣∣√
1

MK ∑i, j |θi∗, j∗−θi, j|2
. (14)

We apply the six completing policies to the 1000 randomly generated problem for different values of
N to observe how each policy converges. For a fixed N, we record for each problem whether a policy
selects the correct alternative after N sampling decisions as well as the realized NOC (14). By doing so,
we estimate probability of selecting the correct alternative and NOC for each policy given N.

Table 1 presents various statistics of the realized NOC for representative values of N. Note that each
problem consists of MK = 100 systems. Hence, N = 100 represents a scenario where one has sufficient
computational budget, since each system is sampled once if the EA policy is applied, whereas N = 50 and
N = 20 represent normal and low budgets, respectively.

Our numerical experiments show that the relative performance of the six competing policies changes
considerably for different levels of computational budget. The best policy is different depending on if
the budget is low, normal, or sufficient. First, if the computational budget is low, MKG outperforms the
other policies by a clear margin despite of its simplicity; surprisingly, although it is the most sophisticated
policy, MAWKG has the worst performance under the same circumstance, even worse than the naive EA
policy. We believe that this is because at the beginning stage of sequential sampling, the state of θ are
significantly different from the true value of θ , so the weights, despite being updated adaptively at each
time, are too noisy and thus our effort of exploration is severely misled. In other words, MAWKG needs
certain “warm-up” stage for its performance to improve. In particular, if the prior is very different from
the truth, then the weights estimated in the first few rounds of sampling are so wrong that the sampling
decisions may be terrible. This makes learning knowledge of the systems very inefficient in terms of
reducing the overall uncertainty, which in return causes subsequent bad sampling decisions. Such a vicious
cycle makes MAWKG perform poorly when the computational budget is small.

As more computational budget is available, the performance of MAWKG improves dramatically. In
particular, with normal computational budget, MAWKG produces the smallest NOC and it is significantly
better than the second best policy MKG; the worst performance is delivered by EA, which is not surprising
since it utilizes no information of the systems at all.

At last, if the computational budget is sufficiently high, then all the policies except NKG produce small
NOC, which implies that they are able to identify the optimal system, or at least the optimal row of θ ,
with sufficiently many sampling opportunities. The only exception, NKG, fails to do so and its NOC is at
least one order of magnitude larger than the others.

Figure 1, on the other hand, illustrates the asymptotic behavior of the six competing policies in terms
of the probability of correct selection (PCS) and the mean NOC as the computational budget increases.
The conclusions we draw from Figure 1 are consistent with those from Table 1. First, all the policies
except NKG are convergent. Second, the performance of the three proposed convergent policies, i.e. MKG,
MWKG, and MAWKG, are comparable in most scenarios. They are all considerably better than the other
three, EA, MV, and NKG. Only in the low budget scenario, the rate of selecting the correct alternative is
lower with MAWKG than with MKG or MWKG.
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Table 1: NOC based on 1000 randomly generated problems. The boxed numbers indicate the smallest
means among all the policies, whereas the bold numbers the largest. Q1 and Q3 denote the first and third
quartiles, respectively.

Budget Stat. Sampling Policy

EA MV NKG MKG MWKG MAWKG

N = 20

Q1 0.2145 0.1535 0.1778 0.0000 0.0000 0.1795
Median 0.6276 0.5569 0.4137 0.3193 0.3502 0.6874

Q3 1.0273 0.9421 0.8306 0.7530 0.8157 1.1145
Max 2.6338 2.6750 3.3601 2.6319 2.4955 2.2792
Mean 0.6842 0.6020 0.5693 0.4544 0.4778 0.7092

N = 50

Q1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Median 0.3384 0.0407 0.0088 0.0000 0.0000 0.0000

Q3 0.8074 0.4849 0.3788 0.0000 0.0000 0.0000
Max 2.1869 2.1459 2.4811 1.7174 1.6749 1.7004
Mean 0.4755 0.3022 0.2669 0.0607 0.0612 0.0316

N = 100

Q1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Q3 0.0000 0.0000 0.3476 0.0000 0.0000 0.0000
Max 2.0913 0.4792 2.9566 0.6214 0.7567 0.4949
Mean 0.0325 0.0149 0.2598 0.0128 0.0124 0.0114

To summarize, based on our numerical experiments we recommend MKG as the first choice due
to its relative simplicity and good performance regardless of the computational budget. However, if
the computational budget is not low and if correct selection is valued much more than simplicity of
implementation, then MAWKG is the best choice.

5 CONCLUSIONS

We have proposed four extensions of the knowledge gradient policy to deal with Bayesian R&S in the
presence of input distribution uncertainty. NKG, as a naive extension, is not convergent in general. The
numerical experiments show that MKG, MWKG, and MAWKG are all convergent. Their performance are
comparable in most scenarios except for the low budget case in which the performance of MAWKG is
not satisfying. Theoretical analysis of the asymptotic behavior of these policies and their efficiency in the
finite sample case are left to future research.
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Figure 1: PCS (up) and NOC (down) estimated based on 1000 randomly generated problems.
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