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ABSTRACT

We develop a framework for warm-starting Bayesian optimization, that reduces the solution
time required to solve an optimization problem that is one in a sequence of related problems.
This is useful when optimizing the output of a stochastic simulator that fails to provide
derivative information, for which Bayesian optimization methods are well-suited. Solving
sequences of related optimization problems arises when making several business decisions
using one optimization model and input data collected over different time periods or markets.
While many gradient-based methods can be warm started by initiating optimization at the
solution to the previous problem, this warm start approach does not apply to Bayesian
optimization methods, which carry a full metamodel of the objective function from iteration
to iteration. Our approach builds a joint statistical model of the entire collection of related
objective functions, and uses a value of information calculation to recommend points to
evaluate.
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11S-1247696, AFOSR FA9550-12-1-0200, AFOSR FA9550-15-1-0038, and AFOSR FA9550-16-1-0046.



1. INTRODUCTION

Businesses that use optimization to make operational decisions often solve collections of
related optimization problems. Consider three examples:

e First, consider a ride-sharing company, such as Uber or Lyft, that makes real-time
decisions about how to assign requests for rides to drivers that may fulfill those
requests. Such a company might have a single algorithm for making these decisions: its
performance depends crucially on tunable parameters. Given a particular distributional
forecast of demand patterns, tuned to the particular next time period, and a simulator
to estimate the performance of the algorithm using this forecast, this company might
wish to optimize the parameters every few hours to find a configuration that would
best achieve their goals in that time interval. Such distributional forecasts would
be likely to change across hours within a day and across days within a week due to
seasonality, and would also vary from week to week as distributional forecasts include
more recent historical data due to changing weather, sporting events, etc.

e Second, consider a company managing inventory: to avoid overstocking or outages, an
inventory management system has to decide what quantity of each item to hold in
stock and how to set the threshold levels to order supplies. To maximize the profit,
not only the current market prices have to be taken into account but also holding
costs, delivery times affecting the lead times, and patterns in the demand. Thus, the
company would re-optimize the parameters of its inventory management system on a
regular schedule and whenever any of the key factors change.

e Third, consider a business that relies on machine learning models to predict the
behavior of their clients. Suppose that such a model is used to predict “click-rates’
for ads displayed on a collection of webpages. These predictions are subsequently
used to decide which ad is to be displayed to each visitor, based on the user’s profile
but also on the targets agreed on in the advertising campaigns. To obtain the most
accurate predictions, the company would want to retrain the parameters of their model
frequently based on the latest historical data, some of which typically have to be fit
by a derivative-free method.
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The common characteristic of all these problems is that we are to solve very similar
problems over and over again. To squeeze the most out of the real time availability of
data, we would wish to “shortcut” the optimization process, thereby saving time and money
and most importantly gaining an edge over competitors, without negatively affecting the
quality of solutions. One way to avoid a “cold start”, i.e. starting from scratch each time, is
to exploit knowledge obtained while previously tackling related problems. This comprises
not only the final solutions that were actually used in the application, but also all those
evaluated in the respective optimization processes.

The idea of using previous solutions to speed up the optimization process is ubiquitous
for applications in mathematical programming: in particular, the number of iterations that



interior points methods for linear programming require to obtain an almost optimal solution
can be reduced by a warm start, e.g., see [YW02, GW04, JY08|. Typically this is achieved
simply by using the solution to a previous optimization problem as the starting point
when solving the current problem. This same technique can be used when using stochastic
gradient ascent to solve optimization via simulation problems whose objective function
evaluations provide stochastic gradients. However, when evaluations of the objective function
are derivative-free, as they commonly are when optimizing complex simulators, many of
the optimization methods that are most effective for solving a single optimization problem
instance lack the structure that would permit warm starting them using this technique.

In this article, we create the ability to warm start Bayesian optimization methods. Bayesian
optimization methods are effective for solving optimization via simulation problems in which
the objective does not provide gradients, is expensive to evaluate, and takes a small number
(< 20) of real- or integer-valued inputs. For an overview, see Bayesian optimization tutorials
and surveys [FW16, BCd09, Klel4]. Bayesian optimization methods belong to a wider
set of optimization via simulation methods that leverage Bayesian statistics and value of
information calculations. See, e.g., the surveys of [Chi00, Frall].

Bayesian optimization methods iteratively construct a Gaussian process metamodel over
the objective function and use this metamodel to decide whether to sample next. Because
the information carried from iteration to iteration is not just a single point but the full
metamodel, simply carrying the solution from a previous problem as a starting point does
not provide a warm starting capability to Bayesian optimization, necessitating a more
sophisticated approach. While one can partially warm start Bayesian optimization by
performing function evaluations of the current problem at solutions to previous problems,
this fails to take full advantage of the set of previous evaluations at non-optimal points.

In this article, we propose a Bayesian framework that captures the observed relationship
of the current black-box function to previous ones. This enables us to perform a “warm
start” and hence to zoom in on an optimal solution faster. Our approach puts an emphasis
on conceptual simplicity and wide applicability. In particular, we will model the tasks and
their relationships by a Gaussian Process, whose covariance structure is tailored to capture
the differences of the current task and the previous ones.

To optimize the current objective, we iteratively sample the search space, using the
Knowledge Gradient acquisition criterion proposed by Frazier, Powell, and Dayanik [FPDO09];
besides its one-step Bayes optimality, this criterion has the advantage that it has a simple
form and can be computed efficiently. However, our statistical model is independent of
the acquisition function and can be combined with others if that seems beneficial for the
application under consideration.

Related Literature. The previous work most directly relevant to warm starting Bayesian
optimization and optimization of expensive functions more generally comes from the machine
learning literature, where hyper-parameters in machine learning models are fit by solving
optimization problems with expensive derivative-free evaluations.



Within this literature, the most relevant previous work is due to Swersky, Snoek, and
Adams [SSA13], who developed a warm start algorithm to tune hyper-parameters of machine
learning models using Bayesian Optimization. They demonstrate that their algorithm can
speed up the fine-tuning process for hyper-parameters of convolutional neural networks
and logistic regression for image classification. Their approach is similar to ours, as they
also construct a Gaussian Process model to quantify the relationships between all previous
instances and then use an acquisition function, in their case Entropy Search, to optimize
the hyper-parameters for the new instance.

We believe that our covariance kernel has the following advantages. Their model assumes
the covariance of each pair of tasks to be uniform over the whole domain. Moreover, they
require that all tasks are positively correlated. Our covariance function does not impose
these restrictions and in particular allows for the relationship of tasks to vary over the
domain. Additionally, we quantify biases between the objective functions of different tasks.
Finally, the inference of the parameters of their kernel requires an expensive sampling-based
step, involving slice sampling, whereas our approach performs inference in closed form.

In other related work from machine learning, Feurer, Springenberg, and Hutter [FSH14|
proposed a meta-learning procedure that improves the performance of a machine learning
algorithm by selecting a small set of start-up configurations. The selection procedure
explores the new task and then ranks previous tasks (and their corresponding optimal
solutions) based on a metric that relies on an evaluation of the “metafeatures” that grasp
the characteristics of each dataset. The authors demonstrate that their approach can speed
up the process of optimizing hyper-parameters for Support Vector Machines and Algorithm
Selection models. This approach differs from ours in three ways: first, the metafeatures and
distance functions it develops are specific to machine learning, and extending this approach
in a generic way to optimization via simulation problems encountered in operations research
would require substantial effort; second, it uses only the final solution from each previous
problem, while our approach uses the full set of function evaluations; third, it requires
that solutions from previous problems be evaluated under the current objective before they
provide useful information, while our approach utilitizes this information directly without
requiring additional expensive evaluations.

Finally, in the aerospace engineering literature, Gano, Renaud, and Sanders [GRS04] stud-
ied the optimization of expensive-to-evaluate functions in a multi-fidelity setting and showed
that warm starting optimization of an expensive high-fidelity objective using inexpensive
evaluations of a low-fidelity model can reduce the number of high fidelity queries required.
This previous work is focused on engineering design problems in which computational codes
of various expense and fidelities all model the same objective, while we focus on a sequence
of optimization problems with different objectives, that are not ordered by fidelity, and do
not necessarily have different computational costs.

Outline of the Paper. The problem is stated formally in Sect. 2. The warm start
algorithm is described in Sect. 3. The results of an experimental evaluation of the algorithm
are presented in Sect. 4.



2. PROBLEM DEFINITION

We give a formal exposition of the setup. We indicate the current problem to be solved
by Ty, and tasks that have been solved previously by Ty, for £ > 0. We also refer to these
optimization problems as “instances” or “tasks” in the sequel. Let M be the number of
previously solved problems, and define [M] := {1,2,..., M} and [M], := [M] U {0}.

We suppose that evaluating Ty, £ > 0, at input parameter x yields independently and
normally distributed observations with mean f(¢,z) and variance A\s(z), i.e. f(¢,x) denotes
the objective value of x for the current task. We also suppose that accompanying this evalu-
ation is an estimate of Ag(x). This assumption of normally distributed noise accompanied by
an estimate of the noise’s variance is approximately valid when each evaluation is actually
an average of many independent and identically distribution observations, whose sample
variance provides an estimate of A\g(z).

We indicate the current optimization problem’s feasible set by ). This feasible set may
be shared with previous problems, or previous problems may have different feasible sets.
We assume that I is a compact subset of R? and that membership in this set can be
determined simply without evaluating an expensive function. For example, D might be a
hyper-rectangle or a simplex.

Our goal is to optimize the current task, i.e., to find argmax,cp f(0,z). To support
us in this task we have evaluations of previous tasks, in the form of a collection of tuples
(0, z,ye(x), Ae(x)), where yg(x) is the sum of f(¢,z) and independent normally distributed
noise with variance Ag(z). Typically these would be obtained from runs of the optimization
algorithm we propose, or some other optimization algorithm, when solving these previous
tasks. Evaluations obtained for other simulation studies can also be included.

During optimization for the current task, we assume that previous tasks cannot be
evaluated. We make this assumption because maintaining the ability to evaluate previous
tasks may present greater practical engineering challenges than simply storing previous
evaluations, if previous tasks used different versions of the simulation software, or required
access to large historical datasets. In contrast, under the assumptions made below, previous
evaluations do not consume a great deal of memory, and can be stored simply in a flat file
or database.

We make a few additional assumptions that should be met for our proposed methodology
to be useful in comparison to other methods.

1. First, we suppose that evaluations of Ty do not provide first- or second-order derivative
information. If derivative information is available, it would be more productive to
instead use a gradient-based method.

2. Second, we suppose that evaluations are expensive to obtain, limiting the number of
evaluations that can be performed to at most a few hundred evaluations per problem.
When the number of evaluations possible grows substantially larger, the computational
expense incurred by our method grows, decreasing its utility.



3. Third, we will model both the current problem’s objective  — f(0,z) and the
collection of all objectives (¢, ) — f(¢,z) with Gaussian processes, and so we assume
that these objectives are amenable to Gaussian process modeling. While Gaussian
processes are flexible, and can handle a wide variety of objective functions, they require
continuity of z — f(¢, x) for each ¢ to work well.

4. Fourth, while our mathematical approach does not make restrictions on d, our numerical
experiments all assume that d < 8. Other work on Bayesian optimization suggests
that performance degrades on high-dimensional problem, suggesting that the method
we develop will provide value only for problems with d < 20.

3. WARM START ALGORITHM

The key idea of our approach is to use samples of the objectives from previous optimization
problems to learn about the current optimization problem’s objective. To accomplish this,
we use a Bayesian prior probability distribution that models the relationship between past
objectives x — f(¢,x) and the current objective f(0,z). Thereby we begin our optimization
of Ty with substantial information obtained from previous tasks, allowing us to find one of
its optima faster.

More specifically, we place a Gaussian process prior on f, which models the relationships
between the tasks. We emphasize that the Gaussian process prior is not just over x — f (¢, x)
for a single /¢, as is typical in Bayesian optimization, but instead is over (¢, x) — f(¢,x).
Modeling the objective jointly across tasks allows our approach to learn about the current
task from previous ones. This is described in Sect. 3.1.

The Gaussian process prior utilizes a parametrized class of covariance functions: we
describe in Sect. 3.2 how the parameters for the covariance function can be obtained in our
problem setting. These parameters describe the fundamental characteristics of the instances,
and therefore are typically robust. We suggest to optimize them periodically rather than for
every new task.

Then, using this Gaussian process prior over the collection of tasks, we apply Gaussian
process regression to update our belief on f(0,-) based on samples obtained from previously
tasks. Although this application of Gaussian process regression is relatively straightforward,
we provide a detailed description for completeness in Sect. A showing how to calculate
posterior probability distribution on f(0,-) given the prior from Sect. 3.1 and samples from
previous tasks.

Finally, starting from this Gaussian process posterior over the current task’s objective
£(0,-), we use samples of f(0, ) to localize the optimum. Points are chosen by our algorithm
to sample by iteratively solving a sub-optimization problem, in which we find the point to
evaluate that maximizes some acquisition function, sample this point, use it to update the
posterior, and repeat until our budget of samples is exhausted. We choose as our acquisition
function the Knowledge Gradient (KG) proposed by Frazier, Powell, and Dayanik [FPD09];
a succinct exposition is given in Sect. 3.3.



The Algorithm wsKG. The proposed algorithm for warm starting Bayesian optimization
proceeds as follows:

1. Using samples of previous tasks, and the prior distribution described in Sect. 3.1:
a) Estimate hyper-parameters of the Gaussian process prior as described in Sect. 3.2.

b) Use the prior with the estimated hyper-parameters and the samples on previous
tasks to calculate a posterior on f(0, ), as described in Sect. A.

2. Until the budget of samples on the current task is exhausted:

a) Choose the point = at which to sample f(0, z) next by maximizing the KG factor,
as described in Sect. 3.3.

b) Update the posterior distribution to include the new sample of f(0, -), as described
in Sect. A, so that it includes all previous samples on the current and previous
tasks.

3. Choose as our solution the point with the largest estimated value according to the
current posterior.

3.1. Construction of the Prior

We begin by describing the construction of the Gaussian Process prior, which models the
relationship between previous tasks and the current one. Let dy(z) denote the difference in
objective value of any design x between Ty and T):

d¢(x) = f(£,x) = f(0, ). (1)

We construct our Bayesian prior probability distribution over f by supposing that each d,(+)
with ¢ > 0 is drawn from an independent Gaussian Process prior with mean function g
and covariance kernel ¥y, where p(+) and (-, -) belong to some pre-specified parametrized
class of functions. For example, we assume in our numerical experiments that p,(-) = 0, and
that (-, ) belongs to the Matérn covariance functions, a popular class of stationary kernels
(see chapter 4.2 in Rasmussen and Williams [RW06]| for details). It would also be possible to
set the prior mean py(-) to a constant. Hyper-parameters determining the specific choices
for e and ¥y from their respective parameterized class can be fit from data in an automated
process, as we describe in more detail in Sect. 3.2.

This dy(x) models the difference between previous tasks and the current task. By using
knowledge of the typical values of dy(z), inferred from the hyper-parameters and from
evaluations of f(¢,2) and f(0,2") for 2/ and 2" nearby to z, we can learn about f(0,x)
from knowledge of f(¢,-).

We also suppose that f(0,z) is drawn from another independent Gaussian process
with mean function pg and covariance kernel g, which also belong to some pre-specified
parameterized class of functions. As with uy and Xy for £ > 0, these parameters may also
be chosen automatically as described in Sect. 3.2.



This specification of the (joint) distribution of (¢,z) — d;(z) and z — f(0,x), together
with the specification of f(¢,z) in terms of these quantities, defines a joint Gaussian process
probability distribution over f. This is because each f(¢,z) is a linear function of quantities
that are themselves jointly Gaussian. By specifying the mean function and covariance kernel
of this Gaussian process, which we call u© and ¥ respectively, we may leverage standard
software for Gaussian process regression.

We calculate the functions p and ¥ as follows. For the ease of notation let dg(x) = 0 for
all z € D, then we can write f as f({,x) = f(0,z) + d¢(z). Then, for £ € [M]y, we calculate
the mean function as,

p(l,x) = E[f(¢,2)] = E[f(0,2) 4 6¢(x)] = po(z) + E[0¢(2)] = po(z),

since E [6¢(x)] = 0. For £,m € [M]p and z,2’ € D, the covariance kernel is given by

by ((E, x), (m, x/)) = Cov(f(¢,z), f(m,a"))
= Cov(f(0,2) + de(z), £(0,2) + o ('),
= Cov(f(0,2), £(0,2)) + Cov(¢(x), 6 (z"))

and since the Gaussian processes dy and d,, are independent iff ¢ # m holds,

= Yo(z, x') + Lo, - Zg(a:,:c'),

where we use the indicator variable 1y ,, that is one if £ = m and £ > 1, and zero otherwise.

3.2. Estimation of the Hyper-Parameters

When designing the method, we aimed for a wide applicability, and therefore do not assume
that further information on the current optimization task Ty and its relationship with
previous tasks is given explicitly. Rather we will estimate the important quantities from
historical data in an automated fashion as follows.

Let 6 denote the parameters of the covariance function ¥,: for instance, in case of
the Squared Exponential Kernel K (x,y) = ay exp(Zf:1 Bei(w; — yi)?) for x,y € RY there
are d + 1 parameters. Since we believe that  changes little from instance to instance, we
formulate a prior distribution based on previously optimal choices for : let p(#) be the
probability under that prior. Moreover, our statistical model provides the likelihood of
observations Y conditioned on the samples X and 6, denoted by p(Y | X, #). Thinking of ¢
as a random variable, the probability of an outcome for 8 conditioned on the observations
equals the product p(Y | X,0) - p(f). Thus, the method of maximum a posteriori (MAP)
estimation the chooses the hyper-parameters that maximize this product, or equivalently
as argmaxy In(p(Y | X,0)) + In(p(0)), where In(-) is the natural logarithm. The optimal
parameters can be computed efficiently via gradient methods. We refer to Sect. 5.4.1
in [RW06] for details.



3.3. Acquisition Function

The proposed algorithm takes as input the historical data, i.e. samples obtained in the
optimization on previous tasks, and an “oracle access” to the current task Ty; that is, we
consider the objective function a black-box. The actual optimization process is conducted
in an iterative manner, where in each iteration a so-called acquisition function selects a
point = to sample. A wide range of these functions has been proposed in the literature.
We suggest using the Knowledge Gradient [FPDO09]: this greedy strategy is known to be
one-step (Bayes) optimal and moreover converges to an optimal solution in settings where a
finite number of alternatives is given with a multivariate normal prior.

From the practical point of view, the main advantage of the Knowledge Gradient is that
has been shown to produce good results, but nonetheless can be computed very efficiently (see
their paper for details on the implementation). For the sake of a self-contained presentation,
we give a brief description of the method.

We assume that we have already observed n points for Ty and are now to decide the next
sample. Let (™ (z) = E,[f(0, z)], where E,, denotes the expected value under the posterior
distribution. Thus, based on our current knowledge, the best x € D for task Ty has an
expected objective value of maxgep p(™ (x). Note that this value can be computed with our
information after observing the n-th sample. Then the Knowledge Gradient (KG) selects a
design (") € D that maximizes E, [max,cp "+ () | 2TV = 2] — maxyep p™ (2).
We obtain an approximation by replacing D by a discrete set of points, denoted by A:

z'eA

E, [max p ) ()
/€A

2t = iL':| — max u(™ (). (2)

Set A can either be obtained by randomly sampling from D, for example using a Latin
Hypercube design to ensure an even coverage. If certain regions of D seem particularly
relevant, then A can represent it with higher resolution. Note that the first summand
of Eq. (2), the conditional expectation for fixed x, can be calculated from the posterior
distribution: recall that £(™ is mean vector and let £(™) denote the covariance matrix of the

e ) . () (n)
posterior distribution after observing n samples. Define 7,/(x) = E(O,x’),(O,x)/(Z(O,m),( T

)\Q(ﬂj))%. It is well-known (e.g., see [Kai68, FPDO09]|) that the random variables p(**1)(z/)
and (™ (2') + 6, (x) - Z have the same distributions conditioned on the previous samples.

Here Z is a standard normal random variable. Thus we have that p("*1(z') 4 w™ (') +
G, () - Z holds for every o’ € A.

Based on that observation, we can either enumerate all x € A and pick a point that
maximizes Eq. (2), which may be useful if the cost of evaluating the task is very expensive
(compared to the computational cost of the enumeration). Or we utilize that the gradient
of the KG can be computed efficiently (e.g., see [FXC11, SFP11, PWF16|) and perform a
local search over D, for instance using a multi-start gradient ascent method. In this case we
would require that the noise functions () are differentiable.



4. EXPERIMENTAL EVALUATION

We have evaluated the warm start algorithm on two benchmark suites. The first set comprises
variants of the two-dimensional Rosenbrock function that is a standard test problem in
Bayesian optimization.

The second family of testbed instances in this evaluation are taken from the Assemble-
To-Order (ATO) problem that was introduced by Hong and Nelson [HNO6|. In this eight-
dimensional simulation optimization scenario the task is to optimize the target of each item
under a continuous-review base stock policy that manages the inventory of a production
facility. In order to evaluate the objective value of a specific choice of the parameters, we
run the simulator of Xie, Frazier, and Chick [XFC12]| available on the SimOpt website.

The performance of the warm start algorithm (wsKG) is compared to two traditional
methods that do not benefit from previous optimizations of related tasks.

EGO. The first baseline method is the well-known EGO algorithm of Jones, Schonlau, and
Welch [JSW9S8]. EGO is also a myopic algorithm that iteratively selects one point to sample.
EGO’s acquisition criterion is to optimize the expected improvement (EI): for this exposition
suppose that the case that observations are noiseless and that y* is the best objective value
that was sampled so far. Let Y, be the random variable that is distributed (normally)
according to the posterior distribution of the objective value of some design x, then we
call EI (x) := E [max {Y; — y*, 0}] the expected improvement for x. In each iteration EGO
greedily samples an z that maximizes this expectation.

KG. In order to assess the benefit of taking data on previous tasks into account, we also
compare the new method to the “vanilla version” of the Knowledge Gradient (KG) [FPDO09];
see Sect. 3.3.

Experimental Setup. In our evaluation all algorithms are given the same initial data
points drawn randomly for each instance and each run. The warm start algorithm is
additionally provided with one data set for the Rosenbrock instances and two for ATO: each
set contains the samples collected during a single run on a related instance. A single run
consists of 25 steps (also referred to as iterations) for each of the Rosenbrock instances
and 50 steps for the Assemble-to-Order suite.

The hyper-parameters of the Gaussian Process affect how accurate the posterior distribu-
tion predicts the objective function of the current task. In accordance with our scenario,
we optimized the hyper-parameters once for a single instance of each suite and then in-
voked wsKG with this fixed setting for all instances. For the baseline methods EGO and KG
we optimized these parameters for each instance in advance, thereby possibly giving them
an edge over wsKG in this respect.

The plots below provide the mean of the gain over the initial solution for each iteration.
Error bars are shown at the mean plus and minus two standard errors, averaged over at
least 100 replications.
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4.1. The Rosenbrock Family

The basis of these instances is the 2D Rosenbrock function
RBy(z1,22) = (1 — x1)? +100 - (z2 — 27)?,
which subject to the following modifications:

RBQ(LEl,Ig) = RBl(l‘l, 1‘2) +.01- Sin(lo -T1+95- Ig)
RBg(ml,xg) = RB1(1‘1 + .01, 29 — .005)
RB4(:L’1,.T2) = RBQ(JIl, .CEQ) + .01- T

Moreover, each function evaluation is subject to i.i.d. noise with mean zero and variance .25.
The task is to optimize the respective function on the domain [—2,2]%.

The results are summarized in Fig. 1: the warm start algorithm is able to exploit the
knowledge from a single run on a related instance and samples better solutions than the
other methods from the first iteration on. In particular, wsKG obtains a near-optimal solution
already after only one or two samples. KG and EGO are distanced, with KG showing a superior
performance to EGO.

4.2. The Assemble-To-Order Benchmark

In the Assemble-To-Order problem we consider a production facility that sells m different
products that are assembled on demand whenever a customer request comes in. Products
are manufactured from a selection of n different items, where we distinguish for each product
between key items and non-key items: when a product is ordered whose key items are all
stocked, then it is assembled and sold. Otherwise the customer is lost. Non-key items are
optional and used if available; they increase the revenue. On the other hand, items kept in
the inventory inflict holding cost, therefore the facility would like to avoid overstocking.

The inventory is managed by a continuous-review base stock policy that sets a target
stock base for each item and triggers a replenishment order if an item is requested. The
delivery time for supplies is normally distributed and varies over the items. Moreover, the
orders for products vary, too, and are modeled by m Poisson arrival processes. The goal
is to choose the target stock base used by the inventory management system so that the
expected daily profit is maximized.

Hong and Nelson [HNO06]| proposed a setting (referred to as ATO 1) for n = 8 items, m =5
products, and search domain [0, 20]%. We have created three additional instances based on
ATO 1:

In the first time period ATO 2 the forecast sees a change in the customer behavior: the
expected demand for the two products that had been most popular before drops by 3 — 5%.
On the other hand, the popularity of two other products grows by up to 5%. Additionally,
the profit of some of the items increases by 1 — 2% on average.
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Figure 1: (ul) The basic Rosenbrock function RBj. (ur) The Rosenbrock function RBy with
an additive sine. (bl) The shifted Rosenbrock function RB3. (br) The Rosenbrock
function RB4 with an additive sine and a bias depending on x7.
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Figure 2: (1) ATO 1 (r) ATO 2: All algorithms have the same initial data for the current
problem. wsKG has also access to samples of two runs on related instances, but its
hyper-parameters are not optimized for the current instance.

In the next period ATO 3 the delivery of some of the items is delayed; the expected waiting
time increases by about 3%. Moreover, all products see a higher demand and the profits for
several items increase.

In the final period ATO 4 the production facility experiences holding costs rising by 5%.
Moreover, the profits of several items drop slightly.

When comparing the performance of the three algorithms given in Fig 2 and Fig 3 for
the task of selecting the inventory levels used by the stocking policy, we see that wskKG
consistently performs significantly better than its competitors, achieving about 95% of the
optimum after only ten samples. Among the two distanced methods, the KG policy achieves
better solutions than EGO for the Assemble-To-Order problem. Looking closer, KG’s solution
is typically about 25% away of the optimum after 10 steps, about 15% after 20 steps, and
still about 4% after 50 steps, depending on the instance. EGO achieves less than half of the
optimum after 20 iterations, and only about 50 — 60% after 50 steps. Notably, EGO shows a
large discrepancy between the performance of single runs; the error bar displays the mean
averaged over 100 runs.

5. CONCLUSION

We have proposed an algorithm to warm start Bayesian optimization and demonstrated
its usefulness for an application in simulation optimization. The design of the algorithm is
conceptually simple and computationally efficient.

A typical drawback of such Bayesian optimization methods is their ability to scale to
larger input sizes. For the chosen acquisition function, Poloczek, Wang, and Frazier [PWF16]
recently suggested a novel parallelization that efficiently utilizes several multi-core CPUs.
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Figure 3: (1) ATO 3 (r) ATO 4: wskKG has received the samples of two runs on related instances.

Thus, the acquisition function poses no longer the bottleneck of the approach if access to a
computing cluster is provided. However, in order to obtain the predictive distribution of the
Gaussian Process model involves calculating the Cholesky decomposition to compute the
inverse of a matrix, whose running time dependency on the number of previous observations
is cubic.

There are several approaches to address this and we believe it is worthwhile to combine
one of them with the proposed method. On the one hand, a possible direction is to replace
the Gaussian Process by a scalable approximation. Several such techniques have been
proposed lately, e.g., see [FWNT15 WN15| and the references therein.

A complementary approach to speed up the computations is to reduce the number of
data points: instead of the whole data set, a “sketch” reduces the number of data points
significantly, while the predictions made based on the sketch are nearly indistinguishable from
the full dataset. Geppert et al. [GIM™15] proposed such an approximation and demonstrated
its usefulness for applications in Bayesian linear regression. Another approach also based
on a linear projection of the dataset to a subspace was given by Banerjee, Dunson, and
Tokdar [BDT12].

Another interesting direction is to extend our statistical model. We sketch two ideas.
Recall that the statistical model in Sect. 3.1 describes the previous tasks as deviations from
the current objective g(x), where each deviation is given by a Gaussian processes d;. In
particular, §y and &y are supposed to be independent for £ # ¢'. Alternatively, we could apply
the formulation described in Sect. 2.2 of [PWF16] to additionally incorporate correlations
among previous tasks.

A second approach is to suppose that all tasks are derived from an “ideal” problem.
Then f(1,z) = g(x) = f(0,z) + §1(z) gives the current task that we want to optimize,
and f(¢,z) = f(0,x) + §; for £ > 2 are the previous tasks. Note that f(0,z) is not
observable in this case and obtained via Gaussian process regression. Both approaches can
be implemented with little additional effort. Therefore, we have a collection of flexible
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models to choose from, depending on the characteristics of the optimization problem at
hand.

A. PRIOR AND POSTERIOR DISTRIBUTION OF THE
GAUSSIAN PROCESS

For the sake of a self-contained exposition, we give the prior and the posterior of the Gaussian
process. Both follow canonically (see [RW06] for an in-depth treatment).

Let X = ((E(l),a:(l)), (02, @), ) x(”)))T be a column vector of sample locations
(for generality, assume that each pair belongs to [M]p x D). Then the prior distribution of f
at X is given by

(0, 20), (0, 20)) "~ N (ol(X), K(X, X)), 9

i.e. the prior distribution is multivariate normal. Here we utilized that p (¢, x) = po(x)
for any ¢ € [M]o and z € D as shown above; po(X) is a shorthand for the n-dimensional
column vector with 1uo(X); = po(z®), and K (X, X) is the n x n matrix with K (X, X)ij =
by ((E(i),a:(i)) , (E(j), :z:(j))) for i,j € [n].

Next we describe the Gaussian Process regression to predict the latent function f(0, )
that serves as our estimator for T¢(+). Upon sampling the points X, we have observed Y :=

(y(l), y(z), ... ,y(”))T € R™ with
y(i) = Yp(i) (fﬁ(i)) =f (ﬁ(i),x(i)) + 5(i),

where () ~ N (O, Apti) (x(i))) for 7 € [n]. Recall that X\« (a:(i)) is the noise function that
gives the variance when evaluating task T, for design 2@ and observe that ¢ and ()
are independent (for i # ') conditioned on 2@ x(i/), and the respective noise functions.

Then the posterior (or predictive) distribution of the latent function value f (0, ) is still
multivariate normal (e.g., see Eq. (A.6) on pp. 200 in [RW06]) with

f£0,2) | 2, X,Y ~ N (u"(z),0>"(x)) where
@) = 1o (&) + K (2, X) [ (X, X) + D) (¥ = pag (X)

) (4)
¥ (x) = Bo(z,x) — K (2, X) [K (X, X)+ D(X)] ' K (z, X)",

where K (z, X) is defined as the row vector of length n with K (z, X);, = £ ((0, z), (E(i), x(i)))
for i € [n], and D(X) is the n x n diagonal matrix with D(X);; = A\, (l'(i)). As usual, Q7!
denotes the inverse of some n x n matrix Q under matrix multiplication, i.e. QQ~ ' = I,
holds where I, is the n X n identity matrix.
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