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ABSTRACT

Dispatching rules are often used for scheduling in semiconductor manufacturing due to the complexity and
stochasticity of the problem. In the past, simulation-based Genetic Programming has been shown to be a
powerful tool to automate the time-consuming and expensive process of designing such rules. However,
the scheduling problems considered were usually only constrained by the capacity of the machines. In
this paper, we extend this idea to dual-constrained flow shop scheduling, with machines and operators
for loading and unloading to be scheduled simultaneously. We show empirically on a small test problem
with parallel workstations, re-entrant flows and dynamic stochastic job arrival that the approach is able to
generate dispatching rules that perform significantly better than benchmark rules from the literature.

1 INTRODUCTION

Scheduling is concerned with the allocation of resources to tasks over a period of time. It is an area of
considerable importance to the semiconductor production industry, where manufacturers seek to allocate
jobs to machines as efficiently as possible, e.g. to maximise their throughput, or to minimise lateness. In the
real world, these problems can be highly complex, (in general they are NP-hard Garey, Johnson, and Sethi
1976) and so the calculation of optimal solutions is impractical, except in small examples. Furthermore,
these problems are often stochastic and dynamically changing, e.g. due to random job arrivals, machine
breakdowns, stochastic processing times or stochastic rework. To cope with these events, schedulers in
practice often resort to dispatching rules. These are simple heuristics that assign a priority to jobs available
for processing at a machine, and select the one of highest priority to be processed next whenever a machine
becomes idle. Typical examples include First In System First Served (FSFS) or Shortest Processing Time
(SPT). Dispatching rules benefit from being decentralised, and make decisions based on local information
at the last possible time. That way, they always take into account the latest information, and can naturally
cope with stochastic and dynamic environments. However, they are unlikely to provide an optimal solution
and may lack the specificity to address the particular intricacies of a problem.

The challenge is therefore to develop dispatching rules customised to a particular scheduling environment.
Traditionally, this would have to be done through trial and error (Geiger, Uzsoy, and Aytuǧ 2006), whereby
a rule would be repeatedly adjusted by an expert and tested through simulation. However, this is obviously
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extremely time-consuming. Various approaches, known as hyper-heuristics (Burke et al. 2010), have been
proposed to automate this process. These are usually metaheuristics such as Evolutionary Algorithms (EAs)
that search over a space of heuristics. Various papers have shown that in particular Genetic Programming
(GP) can be successfully used to generate dispatching rules for scheduling scenarios that significantly
out-perform manually developed benchmark rules (Branke and Hildebrandt 2015, Pickardt et al. 2010,
Pickardt et al. 2013, Geiger et al. 2006).

Most of this research has so far been concerned with investigating problems where the only constraint
is machine capacity. In those cases, it is natural to associate a dispatching rule with each machine, and
each machine can then independently ”select” the next operation using its dispatching rule. In this paper,
we extend the scope to scheduling scenarios where production is constrained not only by the availability
of machines, but also by operators responsible for loading and unloading jobs. In this case, machine and
operator actions need to be coordinated. We propose a way to use dispatching rules in such a scenario, and
empirically show that with this approach, again GP is able to generate dispatching rules that outperform
benchmark rules from the literature.

The paper proceeds as follows: Section 2 gives a short literature review of the use of hyper heuristics
in scheduling and of job scheduling of dual-constrained problems. In Section 3, we provide a description
of the flow shop problem. In Section 4, we detail our methodology and the algorithm design of the GP.
Empirical results are reported in Section 5 and the paper concludes in Section 6 with a summary and some
ideas for future work.

2 RELATED WORK

Production scheduling and the design and testing of dispatching rules has been an active area of research for
many years. Haupt (1989) provides definitions of many of the standard heuristics along with some comparison
of rules and discussion of various simulation scenarios. The use of hyper-heuristics to automatically generate
dispatching rules is more recent, and a comprehensive review has been compiled by Branke et al. (2015),
describing various different learning methods, attributes and representations that can be incorporated into a
hyper-heuristic. In particular, it highlights the ability of hyper-heuristics to tackle dynamic and stochastic
scheduling problems.

The success of Genetic Programming to generate dispatching rules better than human experts is confirmed
by a number of studies. Geiger, Uzsoy, and Aytuǧ (2006) compare a GP hyper-heuristic approach to well-
established dispatching rules for a variety of single machine problems. In another paper Geiger and Uzsoy
(2008), also apply a GP hyper-heuristic to a single machine batch processor model, whereby the scheduling
procedure must perform two steps, both grouping the waiting jobs into batches and ordering the batches for
processing. Yin, Liu, and Wu (2003), also apply GP to a single machine scheduling problem, but include
stochastic machine breakdowns. They show empirically that GP can develop high quality heuristics in a
range of uncertain environments. Nguyen et al. (2013) compare the performance of evolved rules from three
different GP algorithms to well known dispatching rules for a static scenario, finding that the evolved rules
behave well on the static problem, but don’t deal well with dynamic scenarios. In another paper Nguyen
et al. (2012), use a multi-objective GP algorithm to evolve scheduling rules for a dynamic scenario that
incorporates due-date assignments, showing that these rules outperform non-evolved scheduling policies that
combine dispatching rules with due-date assignment rules. Park, Nguyen, Zhang, and Johnson (2013), also
apply a GP framework with embedded heuristic search mechanisms to an order acceptance and sequencing
(OAS) problem. This problem considers both acceptance and scheduling decisions simultaneously for a
given set of jobs on a single machine. They show experimentally that their GP algorithm can produce
competitive heuristics in the field of OAS problems. On more complex manufacturing systems, Pickardt et al.
(2010) apply a GP algorithm to generate different rules for different machines simultaneously. Recently,
Hildebrandt and Branke (2015), considered methods to accelerate evolutionary algorithms, proposing a
new way to combine GP with surrogate models for fitness evaluations. They demonstrate improvements
in the convergence speed and solution quality of a simulation-based GP on a dynamic job shop scenario.
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Most scheduling research to date has been on the single-constraint problem, where machines are the
only limiting factor for production. The dual-constrained problem, where an operator is needed to load or
unload an operation at a machine is less well studied, although being a more accurate representation for
many real-world problems. For dual-constrained problems, the challenge is how to integrate the operator
into the dispatching rule based framework. Clearly, the operator can not just be considered as an additional
”machine” type, as operators need to attend to machines, not jobs.

ElMaraghy, Vishvas, and Abdullah (2000) propose an EA and compared its performance in conjunction
with various dispatching rules in both dual-constrained and single-constrained static scenarios. They
incorporate machine operators by individually assigning a machine and worker to each required operation
prior to simulating each scenario. The list of operations with corresponding machines and workers constitute
chromosomes in their genetic population. Chaudhry and Drake (2009) also apply an EA to a static dual-
constrained problem with parallel machines. However, their scenario includes only jobs consisting of
a single operation. In their problem, operation processing times at a machine are dependent on the
number of operators assigned to that machine, which is fixed and determined during initialization. They
therefore attempt to optimise allocation of both jobs and operators to machines. (Scholz-Reiter, Heger, and
Hildebrandt 2009) analyse the performance of different dispatching rules on the dual-constrained “MiniFab”
flow-shop scenario that we also use and which includes parallel machine groups and re-entrant flows. In
their experiments, the machines and operators decide independently in a two-stage process: Whenever a
machine is idle, it decides on the next job to be loaded or unloaded, and sends a corresponding request to
the operator. Then, the operator selects from the requests it has received.

3 GENETIC PROGRAMMING FOR DUAL-CONSTRAINED PROBLEMS

3.1 Integrating machine and operator decisions

We propose a new way to integrate machine and operator decisions. In this approach, operators have
information on the state of every machine and of every job waiting in the system, both in machine queues
and completed jobs waiting to be unloaded from a particular machine. Whenever an operator becomes
available, they consider all jobs in the system and determine the job with the highest priority based on their
dispatching rule. If this job is ready to be loaded on or unloaded from a machine, the operator performs
this operation. In case where the highest priority job is waiting in a queue of a fully loaded workstation,
they perform the unloading operation required to clear the machine, before rechecking available jobs. The
machines do not have dispatching rules in this case, all the decisions are made by the operators.

3.2 Genetic Programming

The process followed by the GP is outlined in Figure 1. At the start of simulation, an initial population
of dispatching rules is randomly generated and evaluated. Individuals are then selected by a tournament
process, whereby a fixed number of individuals are randomly selected and their fitness values compared
to choose the best. Crossover and mutation operations are then performed to produce a new generation.
This process is repeated for a set number of generations before the best individual heuristic is selected as
the final output. The parameters used by the GP algorithm can be seen in Table 1.

Individuals in our GP population take the form of trees (see Figure 2), with leaf nodes, or terminals,
containing attributes of the job or scenario that can be used to determine scheduling priority, and non-leaf
nodes containing functions for combining terminals. As discussed by Branke et al. (2015), it is important
to select terminals that are as relevant to the scenario as possible, in order to allow the GP to evolve
well-performing rules. For example, common terminals such as Due Date or Slack (time until due date
minus remaining processing time) are unlikely to be helpful for minimising flowtime, whereas terminals
measuring how long the worker will have to spend performing a loading or unloading task could be very
important in allocating the worker’s time effectively. It is also important to keep the terminal set compact
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Figure 1: Schematic of the GP algorithm used.
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Figure 2: A sample GP tree produced using our
function and terminal set.

so that the search space of the GP does not grow too large. We performed an initial series of trial simulation
runs, with different terminal set configurations in order to maximise evolved rule performance.

The finalized terminal set consisted of:

• Number Of Operations Remaining. Contains the number of operations remaining in a job before
completion.

• PT. The Processing Time of a job’s next operation. This was calculated as the total time required
for the current operation to be completed, including loading and unloading times.

• WINQ. Work In Next Queue. Used to estimate the amount of time a job will wait in its next
queue, based on the sum of the processing times of all jobs in that queue. Lower estimated waits
are assigned higher priority.

• L/U. Specifies whether the job requires a Loading or Unloading operation. It will return 1 if the
job requires loading and 0 otherwise.

• L/U Time. Specifies the length of time that the operator will have to spend either loading or
unloading the job.

• F/E. Full/Empty, whether the workstation that the operation will interact currently has an available
machine to be used. It returns 1 if there is an available machine and 0 otherwise.

• WIQ. Work In (current) Queue. Contains the total processing times of all the jobs currently waiting
in the same queue.

• TIS. Time In System contains the time that a job arrived at the job shop.
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Table 1: Parameter settings for the GP hyper-heuristic.

Parameter Value
Generations 30
Population size 500
Initial Population Randomly generated trees,

min depth 2, max depth 6.
Selection Tournament (size 7)
Max. depth 17
Mutation Probability 10%
Elitism 1%
Terminal set Number of Remaining Ops (nro),

Processing Time (pt),
Work In Next Queue (winq),
Loading/Unloading (lu),
Work In Queue (wiq)
Load/Unload Time (lut)
Machine status (full)
Time In System (tis)
Constant value (1)

Function set +,−,×,÷,max,min, i f te

We used a fairly typical non-terminal function set (as in Hildebrandt, Heger, and Scholz-Reiter 2010)
consisting of the basic arithmetic operations of addition, subtraction, multiplication and division along with
maximum and minimum functions and a ternary if-then-else function (if a≥ 0 then b, else c).

Hildebrandt, Heger, and Scholz-Reiter (2010) consider the best methods for balancing the cost of
simulation runs with the quality of heuristic produced when running GP simulations of job-scheduling
problems. They suggest that, provided the GP is allowed to run for enough generations, it is more efficient
to allocate resources to simulations with a single training evaluation for each individual dispatching rule in
each generation, with the random seed used for evaluations changed each generation to reduce over-fitting.
We also follow this approach in the current work. We used a population size of 500 and 30 generations to
produce our output heuristics, with training evaluations replicating a 5 year time period of the Mini-Fab
scenario.

Our GP was implemented in Java and using the ECJ library.

4 PROBLEM DESCRIPTION AND BENCHMARK RULES

4.1 Problem description

The problem we use for empirical evaluation has been taken from Scholz-Reiter, Heger, and Hildebrandt
(2009) and is an implementation of the MiniFab scenario, a simplified semiconductor production line with
5 machines and 2 operators. The machines are arranged in groups as shown in Figure 3, with grouped
machines sharing a common job queue. Every job follows a single, fixed, 6-step production process, and
each step requires an operator to load the job into a machine before starting and to unload the completed
job before it joins the queue of the next step. Jobs arrive dynamically over time according to a Poisson
process. We assume that grouped machines (Ma/Mb, Mc/Md) are identical, as well as that all workers are
identical and able to operate all machines. Machines can only process one job at a time, and pre-emption
is not allowed. We do not consider sequence-dependent set up times for machines, instead assuming that
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Figure 3: Flow-Shop layout

Table 2: (Un)loading and processing times.

Machine Load Processing Unload
Step 1 Ma/ Mb 15 55 25
Step 2 Mc/Md 20 25 15
Step 3 Me 15 45 15
Step 4 Mc/Md 20 35 25
Step 5 Ma/Mb 15 65 25
Step 6 Me 10 10 10

the time spent by workers moving between machines is negligible. We also do not consider any batch
processing or machine breakdowns in this scenario. The processing times, loading and unloading times
for each operation are summarised in Table 2.

As our scenario has only one fixed route and one type of product, we exclude due dates and weights
from our simulation. As all finished products are identical, the most urgent order can be fulfilled directly
by the next product to leave the production line. As such, the optimal solution to our problem is one that
minimizes flow time, which we use as a performance measure for all simulations. This is calculated as the
average (mean) difference between starting time and completion time for completed jobs, i.e:

MeanFlowTime f =
1
|J|∑j∈J

(C j− r j)

Where J is the set of completed jobs and r j, C j the respective arrival and completion times of a job j. As
the simulation takes a while to fill with jobs to the desired utilization level, we excluded jobs completed
in the first 10% of each simulation run as a warm-up phase.

We use Jasima as a fast simulator of our flow shop scenario to evaluate the fitness of each candidate
dispatching rule. Jasima was also used to perform long-term test simulations on final outputs from the GP
and to compare against benchmark rules.

4.2 Benchmark rules

We compare our approach to the following six benchmark rules in a long term simulation of the flow shop
for a series of different scenarios with different utilization levels and random seeds.

The first four benchmark rules are standard rules from the literature:

• SPT - Shortest Processing Time. At each stage the operator selects whichever operation takes least
time to complete.

• FCFS - First Come First Served. At each stage, the operator selects whichever job has been waiting
longest, either in one of the machine queue buffers or on the machine itself.

• FSFS - First (in) System First Served. At each stage, the operator selects whichever job has been
present in the system longest.

• WIQ - Work In Queue. Assigns higher priority to jobs in whichever machine queue contains the
most total work-time.

In addition to these four standard benchmarks, we compare our evolved rules against the best per-
forming 2-step heuristics from (Scholz-Reiter, Heger, and Hildebrandt 2009). Because our approach uses
a different decision framework (single step rather than 2-step), we had to convert the 2-step approach to
fit our framework, while still matching the behaviour of the original rules as closely as possible. In the
low (70%) and medium (80%) utilization cases, the best performing heuristic reported by (Scholz-Reiter,
Heger, and Hildebrandt 2009) used FSFS for the machine rule and SPT for the operator rule. With this rule
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set, the operator would be presented with a choice of several options, namely the oldest job at each idle
machine, and would choose whichever has shortest processing time. To replicate this in our framework, we
implemented a rule where the operator simply chooses to perform the operation with shortest processing
time from the set containing the oldest jobs at each workstation. This should perform similarly or perhaps
even better, due to the operator being able to decide between the current oldest jobs in the workstation
queues, rather than the oldest job when the workstation became idle and picked a job. Similarly, in the
high (90%) utilization case, the best performing heuristic also used FSFS for the machine rule, with WIQ
for the operator rule. In our reproduction of this rule, the operator assigns highest priority to the oldest job
present in the queue with highest total work-time. We denote our implementations of these rules by S-R
Low/Med and S-R High respectively. Again, we would predict a slightly better performance compared to
the original 2-step heuristics as decisions are based on the latest information available when the operator be-
comes available, rather than the machine making an operator request at the time the machine became available.

5 EMPIRICAL EVALUATION

GP-generated rules were then tested against the benchmark rules in long-term simulations, (replicating a
time period of 10 years), for 30 different random seeds and 3 different distributions of job inter-arrival
times, as used by Scholz-Reiter, Heger, and Hildebrandt (2009), designed to replicate utilization levels of
70,80 and 90%, for a total of 90 tests per rule.

Each of the evolved heuristics was tested against each of the four benchmark rules as well as S-R
Low/Med and S-R High. The results of these tests are summarised in Table 3. We observe that at each
of the three utilization levels, the best performing heuristic was the rule evolved by GP for that scenario.
Of the simple benchmark rules, FSFS performed best at the low and medium utilization level, with WIQ
being by far the best benchmark at the high utilization level. This suggests that in a busy setting it becomes
important for the operator to focus on highly queued workstations in order to avoid system overflow. FSFS
and SPT, the two best performing benchmark heuristics in the 70 and 80% scenarios are substantially worse
than the WIQ and FCFS benchmarks in the 90% scenario. The GP algorithm seems to be able to correctly
identify these changing requirements when generating heuristics. In examining the terminal sets of our
evolved rules, we noted that the most common terminals present in the rule evolved for the high utilization
scenario are WIQ and WINQ, whilst the terminal NRO is absent. In contrast, the rule evolved for the
low utilization scenario does contain NRO, but excludes WIQ. These rules are displayed in tree format
in Figures 7 and 8. It is interesting to note that the rule evolved for the high utilisation case is relatively
robust and also performs reasonably well for lower utilisation levels. The opposite is not true, however,
and the rule evolved for the low utilisation case performs rather poorly in the high utilisation scenario.
This makes sense, as the high utilisation scenarios are more challenging, and rules that can cope with a
more challenging environment would be expected to also perform well in simpler scenarios, but not vice
versa. It means, however, that if a shop floor’s utilisation level is not precisely known, one should tend to
use higher utilisation levels in the simulation during optimisation.

Finally, we note that both S-R low/med and S-R High achieved better performances than their 2-step
implementations as reported by Scholz-Reiter, Heger, and Hildebrandt (2009), which we attribute to benefits
of using the latest information in the one-step decision making.

Figures 4, 5 and 6 show the pairwise performance of the evolved rules and the best performing benchmark
rule at each of the three utilization levels. The performances of the evolved rules are consistently good,
beating the best benchmark in 26 of the 30 instances at both the 70% and the 80% utilization level and
substantially outperforming the best competitor (S-R High) in all 30 instances at the 90% utilization level.
To ensure robustness in these results, we tested for statistical significance, with results shown in Table
4. P-values were calculated using Wilcoxon Rank-Sum, a suitable test as the distribution of a heuristic’s
mean flowtime for different random seeds is unlikely to be normally distributed, especially if values are
close to the optimum. As the table shows, in all three cases, the improvement is statistically significant,
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Table 3: Performance of the GP evolved rules and benchmarks at different test utilization levels. Std errors
given in brackets and best values in bold.

Test Utilization
70% 80% 90%

Rule Mean Flowtime Mean Flowtime Mean Flowtime

Tr
ai

ni
ng

U
til

.

70% 656.01 (1.22) 809.56 (4.26) 5322.50 (921.87)

80% 658.36 (1.23) 805.11 (3.15) 3522.94 (831.04)

90% 690.34 (1.32) 854.17 (2.70) 1304.34 (11.89)

SPT 695.71 (1.33) 912.16 (4.54) 6709.80 (808.82)
FCFS 779.33 (2.29) 1085.72 (6.66) 2926.99 (23.70)
FSFS 663.56 (1.09) 822.61 (2.64) 5241.85 (1015.27)
WIQ 731.03 (1.55) 958.11 (2.94) 1660.56 (16.14)
S-R low/med 665.03 (1.07) 827.75 (3.53) 6672.40 (843.20)
S-R high 731.51 (1.72) 958.52 (3.88) 1650.77 (17.88)

with the GP evolved rule for the high utilization scenario providing approximately 21% improvement in
mean flowtime compared to the best alternative.

Figure 4: Pairwise comparison of the evolved rule
against the best benchmark rule (FSFS) in the low
(70%) utilization scenario.

Figure 5: Pairwise comparison of the evolved rule
against best benchmark rule (FSFS) in the medium
(70%) utilization scenario.

6 CONCLUSION

With the work presented in this paper, we provide a novel framework to handle dual-constrained flow
shop scheduling problems where operators are needed to load/unload machines. We show that with this
framework, GP is able to automatically generate dispatching rules that performed considerably better than
standard benchmarks or rules proposed by Scholz-Reiter, Heger, and Hildebrandt (2009). It should be
straightforward to examine the performance of our current GP set-up with the inclusion of additional
scenario complications, such as sequence dependent load/unloading times to model, for example, time
spent by the operator moving between machines, or to consider objective functions other than flowtime.
It would also be interesting to apply a GP-based approach to different dual-constrained manufacturing
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Figure 6: Pairwise comparison of the evolved rule
against best benchmark rule (S-R High) for each seed
for the high (90%) utilization scenario.

Table 4: Test statistics for the evolved rules. Std error values given in brackets and best values in bold.

Rule Test Utilization Mean Flowtime Best Comparator P Value % Improvement
GP Low 70% 656.01 (4.26) 663.56 (1.09) 4.61×10−5 1.14 (0.24)
GP Med 80% 805.11 (3.15) 822.61 (2.64) 1.00×10−4 2.13 (0.46)
GP High 90% 1304.34 (11.89) 1650.77 (17.88) < 10−10 20.99 (0.51)

scenarios, including other features frequently found in modern semiconductor production processes, such
as batch processing, or perhaps to cases with more than two resource constraints. Currently little work has
been done developing advanced dispatching rules for such problems, so we would anticipate considerable
potential for improvement, especially if supported by methods such as hyper-heuristics.

-

+

-

+

/

-

/

wiq winq

lut

max

wiq pt

-

x

max

1 wiq

lu

+

+

pt winq

pt

/

wiq -

max

tis wiq

+

full lut

-

/

wiq -

max

tis wiq

full

+

+

/

-

lu lut

wiq

-

+

/

-

/

wiq winq

wiq

-

max

tis wiq

+

full lut

-

x

max

1 wiq

lu

full

+

+

pt winq

pt

-

+

/

-

1 wiq

winq

-

x

max

1 wiq

lu

+

pt pt

+

+

pt winq

ifte

-

max

tis wiq

+

full lut

pt 0

/

wiq -

max

tis wiq

+

full /

wiq winq

Figure 7: The GP High heuristic displayed in tree form.



Branke, Groves, and Hildebrandt

+

ifte

-

/

/

+

lu tis

x

x

nro lu

-

x

winq nro

lut

-

x

winq nro

ifte

-

/

-

x

nro lu

-

x

pt x

pt tis

+

lu tis

x

lu -

-

-

x

winq nro

pt

pt

lu

1

+

lu tis

1

1

+

full tis

1

x

tis ifte

full lu nro

Figure 8: The GP Low heuristic displayed in tree form.

REFERENCES

Branke, J., and T. Hildebrandt. 2015. “Hyper-heuristic evolution of dispatching rules – a comparison of
rule representations”. Evolutionary Computation 23 (2): 249–277.

Branke, J., S. Nguyen, C. Pickardt, and M. Zhang. 2015. “Automated design of production scheduling
heuristics: A review”. IEEE Transactions on Evolutionary Computation 20 (1): 110–124.

Burke, E. K., M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. Woodward. 2010. “A classification of
hyper-heuristics approaches”. Handbook of Metaheuristics 57:449–468.

Chaudhry, I. A., and P. R. Drake. 2009. “Minimizing total tardiness for the machine scheduling and worker
assignment problems in identical parallel machines using genetic algorithms”. International Journal
of Advanced Manufacturing Technology 42 (5-6): 581–594.

ECJ. “A Java-based Evolutionary Compuation Research System”. https://cs.gmu.edu/∼eclab/projects/ecj/.
ElMaraghy, H., P. Vishvas, and I. B. Abdullah. 2000. “Scheduling of manufacturing systems under dual-

resource constraints using genetic algorithms”. Journal of Manufacturing Systems 19 (3): 186–201.
Garey, M. R., D. S. Johnson, and R. Sethi. 1976. “The complexity of flowshop and jobshop scheduling”.

Mathematics of Operations Research 1 (2): 117–129.
Geiger, C. D., and R. Uzsoy. 2008. “Learning effective dispatching rules for batch processor scheduling”.

International Journal of Production Research 46 (6): 1431–1454.
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