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Abstract

Gaussian process fitting, or kriging, is often used to create a model from a set of
data. Many available software packages do this, but we show that very different results
can be obtained from different packages even when using the same data and model. We
describe the parameterization, features, and optimization used by eight different fitting
packages that run on four different platforms. We then compare these eight packages
using various data functions and data sets, revealing that there are stark differences
between the packages. In addition to comparing the prediction accuracy, the predictive
variance—which is important for evaluating precision of predictions and is often used in
stopping criteria—is also evaluated.

Keywords: Simulation, Gaussian processes, stochastic kriging, metamodels, computer
experiments

1. Introduction

When computer simulation models are used to study complex systems, it is often useful
to fit an empirical mathematical model to quickly approximate the time-consuming
computer simulation at input values that have not yet been evaluated. If fit to sufficient
accuracy, these metamodels can replace the original computer models in optimization
or “what if” analyses. Gaussian process (GP) modeling is commonly used for fitting
metamodels in simulation experiments since it provides a flexible model and model-
based estimate of prediction error even if the simulation itself is deterministic. Gaussian
process models can also be used when the simulation is stochastic, although this requires
an extension of the model. Gaussian process models have become a large part in the
expanding machine learning toolbox (Rasmussen and Williams, 2006).

In this paper we are concerned with how GP models are used by practitioners, so we
compare the performance of some commonly used software packages. Many practitioners
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are not familiar with the particulars of GP fitting, so we investigate packages that are
relatively easy to use and do not require extensive knowledge of all the options and
parameters that can be specified. GP fitting is unlike linear regression where, for a
given data set, all software packages will produce exactly the same parameter estimates
and fitted surface (up to round-off error). Most GP fitting packages use essentially
the same equations, but there is variability in how parameters are defined and estimated
through numerical optimization. So, in practice, different packages can give substantially
different results. Since GP fitting is often used over other fitting techniques because of
its model-based estimate of prediction error, the quality of a software implementation
depends not only on the accuracy of the fitted surface, but also the accuracy of the error
predictions. In many applications, random noise or computational limitations do not
allow for extrinsic measures of prediction accuracy, and thus an easily obtained estimate
of the uncertainty of prediction is valuable if it is at least reasonably accurate.

1.1. Motivation

Our major interest in GP fitting is its use to sequentially build an accurate metamodel
of a computer simulation over a broad range of input values. This global metamodel
could be built automatically using excess computing capacity and then when the need
for real-time decision making arises, the quickly-evaluated metamodel can be used in
place of the time-consuming computer simulation model.

Sequential algorithms require a stopping criterion. For building an accurate global
metamodel, a stopping criterion that is a function of the estimated prediction error
makes sense. Many fitting methods, such as splines and neural networks, provide no
estimate of prediction error apart from extrinsic methods like cross validation which are
not related to the fitted model itself. This is where the model-based estimate of GP
fitting is very attractive. In addition to its use as a stopping criterion, prediction error
estimates can be used by a sequential algorithm to determine the location of the next
set of design points to run with the actual computer simulation model. We think of the
sequential selection of these design points as a sequential experiment design. A sequential
experiment design is called non-adaptive if the location of each additional design point is
related only to the location of the previous design points in the input space. An adaptive
sequential experiment design uses not only the location of the previous design points,
but also the observed value of the response at those design points. If the objective is to
find the location of an optimum, adaptive designs are vastly more efficient because they
can select locations where the response is likely to be desirable. However, for building
an accurate global metamodel, the response information can be used to select design
points where the prediction error is estimated to be large or locations that would help
estimate the metamodel parameters more accurately. Our goal is to determine which
software packages have the capability of effectively and reliably estimating locations for
new design points by estimating the metamodel and its prediction error.

GP metamodels are well suited for fitting an accurate global metamodel since they
can fit complicated surfaces, however they are computationally slow for large data sets.
On the other hand, if the goal is to find a optimum, then a GP can also be used as a
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surrogate model to search for extrema (e.g., Jones et al., 1998).

1.2. Emerging/growing usage of GP in the simulation community

Many practitioners in the simulation community use Gaussian processes as a simple
fitting model approach and often are not familiar with the intricacies of the model.
These scientists often use the basic kriging model and do not delve into the advanced
parameter settings, optimization routines, and alternative correlation models that are
available.

For example, in aerospace design, Christen et al. (2014) use GPs to model the acous-
tic transmission on launchers in an effort to reduce damage to the payload. The GP
model allows them to perform global sensitivity analysis to see which parameters in their
acoustic model affect the transmission. Yin et al. (2014) use these models in materials
science for modeling functionally graded foam-filled tapered tubes to see which designs
have the best energy absorption characteristics. Du et al. (2014) model the current
density of lithium-ion batteries as a function of eight input parameters. GPs are used
for metamodeling in simulations for corn crops by Villa-Vialaneix et al. (2012); their
metamodels predict the “nitrogen dioxide (N2O) fluxes and nitrogen leaching from Eu-
ropean farmlands.” Gidaris and Taflanidis (2015) use kriging for earthquake engineering
to see how the configuration of fluid viscous dampers affects costs. GPs are used as
metamodels in sensitivity analysis for traffic simulation models by Ciuffo et al. (2013).

These examples highlight the need for Gaussian process software to be stable and
reliable, in the same way that regression modeling is trusted for fitting linear models. Of
particular importance for these applications are reliable predictions and accurate error
estimates. The error predictions are especially useful in determining whether more data
is needed.

1.3. Software discrepancies

This study is inspired by our previous research where we found discrepancies between
two software packages that were using the same GP model but were giving different
results, particularly in the estimation of the prediction error. We believe that others
may also encounter similar issues with GP fitting and would benefit from an in-depth
study of the various software options. Knowledgeable users may know how to improve
the results by setting advanced options or tuning parameters. However, we are trying
to find what works best for practitioners who may not have this specific knowledge.
Thus, we select packages that are easy to use, and we have left as many options to
the default setting as possible. For our comparisons we use packages from a mixture of
platforms: the R (R Core Team, 2014) packages DiceKriging, GPfit, laGP, and mlegp;
JMP, produced by SAS; the MATLAB toolbox DACE; and the Python modules GPy
and sklearn (scikit-learn); These are described in more detail in Section 3. JMP is a
commercial package, the rest are free and publicly available.

Figure 1 is a simple example that demonstrates problems that can arise. It displays
a sample of size six (black points) in one dimension fit using common options for three
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different software packages, which then give predictions of the output for x between 0
and 1. The details of the packages will be explained later in this paper. The predictions
given by laGPE smoothly interpolate between the observations. We can see that mlegpE
exhibits mean reversion, where it predicts the observed points correctly, but then quickly
reverts to the mean away from those points. At the other extreme, Dice2 oversmooths,
causing its predictions to be far from the observed points. Furthermore, the predictions
of the standard error across the range of x values will also be significantly different.
Thus, even for a simple data set, we can obtain very different results.

Figure 1: Comparison of Gaussian process fits from three software packages, laGPE, mlegpE, and Dice2,
on one-dimensional data. The black points are the input/output data given to each package to fit a GP
model. The lines are the predicted mean over the interval [0,1] for each package, showing significant
differences.

2. GP fitting

2.1. Model

A Gaussian process is characterized such that the output from any set of input points
has a multivariate normal distribution. If we have n inputs in d dimensions, then the
ith input is xi = (xi1, ..., xid)T . These are stored in the rows of the n by d input matrix
X. The output is one dimensional y = (y1, ..., yn)T .
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Following Sacks et al. (1989) the surface is modeled as a mean, µ, plus a Gaussian
process, z, which is a function of x as follows:

y = f(x) = µ+ z(x).

In general, a linear combination of functions can be used in place of µ, which is called
universal kriging (e.g., Bastos and O’Hagan (2009)). Many authors use only a constant
term for µ, since the Gaussian process is flexible enough to model any linear behavior
in addition to many other more interesting features of the surface. In this paper we
also use a mean-only model, following the suggestion of Chen et al. (2016), who claim
that “there is little to be gained (and maybe even something to lose) by using other
than a constant term for µ.” One explanation is that replacing this constant by a more
complicated function f(x) (e.g., a polynomial of an order higher than zero) requires the
estimation of additional (often extraneous) parameters (e.g., polynomial coefficients).

Under this model, the distribution of the outputs, y, is multivariate normal with
mean µ1n, where 1n is the n-length vector of ones. The covariance matrix of this
multivariate normal distribution is proportional to a correlation matrix, which has a
special structure such that the points will create a smooth surface. The constant of
proportionality between the covariance matrix and the correlation matrix is a variance
that is denoted σ2. The correlation matrix is constructed such that the correlation of
the outputs from any two distinct points in the input domain is inversely related to
the distance between those two points. In particular, the correlation goes to one as the
distance between the two input points goes to zero, and the correlation goes to zero as
the distance goes to infinity. This allows the output points to form a surface, but also
places few constraints on the shapes and features of that surface. Thus the model is

y ∼MVN
(
µ1n, σ

2R
)
, (1)

where R is the correlation matrix of y. Rij denotes the element in the ith row and the
jth column of R, and is the correlation between yi and yj .

The covariance matrix is determined by the correlation function, for which there
are many options. The most common covariance function, which we use here, is the
Gaussian correlation that defines the correlation between the outputs at xi and xj as

Rij =

d∏
k=1

exp
(
−θk (xik − xjk)2

)
. (2)

The estimator for the mean is

µ̂ =
(
1nR

−11n

)−1 (
1nR

−1y
)
.

Then the best linear unbiased predictor (BLUP) of y at x is given by Sacks et al. (1989).
Using our notation and following the derivations in MacDonald et al. (2015), we find

ŷ = f̂(x) = µ̂+ rTR−1 (y − µ̂1n) =

[
(1− rTR−11n)

1T
nR

−11n
1T
n + rT

]
R−1y = CTy, (3)

5



where rT = (r1(x), . . . , rn(x)), ri(x) is the covariance between xi and x, and C is a
vector of length n defined as shown. The associated mean squared error of ŷ at x is

ϕ(x) = σ2
[
1− 2CTr + CTRC

]
= σ2

[
1− rTR−1r +

(1− 1T
nR

−1r)2

1nR−11n

]
. (4)

These parameters can be estimated, and then used in equations 3 and 4 to get the
predictions. The error added from parameter estimation is generally not included in the
predictive equations, but can be estimated through bootstrap techniques, see Kleijnen
(2015).

2.2. Nugget effect

The model of equation 1 does not account for random noise. This can be done by adding
a nugget parameter. To account for random homoscedastic (constant variance) noise,
the model above must be augmented as follows:

y ∼MVN
(
µ1n, σ

2(R+ δI)
)
.

If a nugget, δ, is included in the model, then the correlation matrix is increased along
the diagonal by δ:

Rδ = R+ δI.

Then the predictive equations 3 and 4 can be used with Rδ in place of R. Note that
Rδ is no longer a correlation matrix since the diagonal values are greater than one.

The nugget has the effect of smoothing the function and allowing for noise. Another
reason for using a nugget is to provide computational stability. The calculations above
all require inverting R, which can be near singular. Adding a nugget will improve this
stability. When the noise is heteroscedastic (i.e. the noise variance varies across the
input domain) then stochastic kriging methods must be used as explained in Section
6.1.

2.3. Parameters

When fitting a model to data, at least d + 2 parameters must be estimated: the mean
µ, the d correlation parameters θ, and the σ2 parameter. One additional parameter,
δ, must also be estimated if the nugget is used. Given the same parameters and the
same data, different software should give the same predictions since they are using
the same equations. Thus, the differences that we have observed in predicted values
between software packages are likely caused by different parameter estimates. Each
software package uses some type of numerical optimization method to seek estimators
for these parameters that maximize the likelihood function, see Section 3.3. Practitioners
typically trust these optimization methods to work without intervention. Later in this
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paper, empirical studies essentially demonstrate the performance of the optimization
methods for various software packages.

The mean for the Gaussian process is µ. Predictions far away from design points
will revert to the mean since they will have low correlation with the observed data, but
µ has a much smaller effect on predictions near design points. As previously discussed,
the mean term can be replaced with a linear model-type function βTf , but we do not
consider such an expanded model in this paper. Some analysts prefer to not use a mean
term at all.

The vector of hyperparameters, θ = (θ1, ..., θd)T , contains the correlation parameters
of the covariance function. There is one parameter for each dimension that determines
how strong the correlation is between points in corresponding dimension. Sometimes a
different parameterization is used (see Section 3.1), which can lead to changes in the
ease and stability of numerical optimization.

The parameters in θ help determine the correlation, but the parameter σ2 also affects
the fitting since the covariance between any two points is cov(yi, yj) = σ2Rij . Note that
this variance parameter is not the variance of a sample from the output surface. By itself
it can be interpreted as the variance of a point “infinitely far” from all other points.

The nugget allows for measurement error or stochasticity of the response. If the
nugget is not used (i.e., set to zero), then the model will interpolate exactly, so the
prediction error at a design point will be zero. This is often useful for deterministic
computer experiments, but if the data is stochastic then a nugget should be estimated
and used. Using a nugget improves the numerical stability by making the correlation
matrices easier to invert; this inversion can be a problem when there is a large number
of sample points. Ranjan et al. (2011) provide a method to use the smallest nugget
value that makes the computations stable, which can help balance the benefits of having
stability and a small nugget. Gramacy and Lee (2012) argue that the nugget provides
protection when the assumption of stationarity is violated or the data is sparse, and
they claim this protection is more important than stability.

3. Gaussian process fitting in various software packages

Table 1 lists the primary sources for our comparison of packages. Most of the packages
provide users with options. We try to leave most options at their default settings,
since that is what most practitioners are likely to use. However, in order to have fair
comparisons, we make some simple selections so all packages use comparable models.
This section provides overviews of the packages and describes the selections we use in
our study.

DiceKriging is an R package for kriging created by the DICE Consortium, which
has also released the R packages DiceOptim, DiceDesign, and DiceEval (Roustant et al.,
2012). DiceOptim does the optimization performed when fitting DiceKriging models.
DiceKriging provides many options for fitting and is very thorough, so it may be a good
choice for many R users.

GPfit, another R package, was created by MacDonald, Ranjan, and Chipman. GP-
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Table 1: Packages we are using

Package Version Platform Primary source

DiceKriging 1.5.5 R Roustant et al. (2012)

GPfit 1.0-0 R MacDonald et al. (2015)

laGP 1.3-2 R Gramacy (2015)

mlegp 3.1.4 R Dancik and Dorman (2008)

JMP Pro 13.0.0 JMP JMP: Gaussian Process (2016)

DACE 2.5 Matlab Lophaven et al. (2002a)

GPy 1.5.6 Python The GPy authors (2015a)

sklearn 0.18.1 Python Pedregosa et al. (2011)

fit does the most extensive search in optimizing the maximum likelihood parameters,
as detailed in MacDonald et al. (2015). Even when the control parameters for the op-
timization were set to reduced values, GPfit was still slower than the other packages
by orders of magnitude. With more than a hundred design points GPfit becomes pro-
hibitively slow, while the other packages still run quickly. One advantage of GPfit is
that it focuses on computational stability, using the ideas put forth in Ranjan et al.
(2011). It sets the nugget to be the smallest value that will avoid singularity, meaning
that the nugget is never estimated. Thus GPfit is best suited for noiseless data. Since
the default exponential power is 1.95 (instead of 2; see Equation 2), we include it as a
separate model in some of the testing below. However, we change the power to 2 for
most of the testing to be comparable with the other packages.

laGP is an R package created by Robert Gramacy that provides an entirely new
method for fitting using GPs (Gramacy, 2015). The “la” stands for “local approximate”
since the model is designed for large data sets. In the laGP model, sparsity is exploited
so the kriging is done on a small number of design points that are most important for
prediction at a given point (Gramacy and Apley, 2015). Thus, it can be run when
there are a million design points, since it uses only a small number of points to make
predictions and leverages parallelism. For the purpose of this research, we only use the
basic GP fitting functions provided by the package. Although it is an R package, the
heart of it is a C implementation wrapped in R, meaning it should be faster than a
basic R implementation. In its current state it is a rather minimal package with a focus
on speed, so it has fewer additional options and may require more fine-tuning—but is
extremely fast.

The R package mlegp (Maximum Likelihood Estimates of Gaussian Processes) was
created by Garrett Dancik (see Dancik, 2013). It provides full GP modeling capabilities.
A distinctive feature of mlegp is that the user can specify the nugget matrix up to a
multiplicative constant, which can be useful when the response is heteroscedastic as
in Dancik and Dorman (2008). Another feature is the ability to perform sensitivity
analysis, letting the user quantify how the response is affected by parameters and how
much variability in the output can be attributed to changes in the design matrix.

We also use the Gaussian Process capability of JMP, a data analysis software tool
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provided by SAS (SAS Products: JMP, 2016). This program is commonly used by
practitioners since it provides a clean interface, makes data analysis simple, and provides
useful output displays.

DACE is a Matlab toolbox for fitting data from deterministic computer experiments,
so it does not allow for noisy data (see Lophaven et al., 2002a). Thus it is only suitable
when there is no random error at any given design point. DACE was created and last
updated in 2002, so while it is commonly used, it lacks many of the additional features
that other packages include.

GPy is a Python Gaussian process implementation created by the Sheffield machine
learning group (The GPy authors, 2015a). GPy has a tremendous amount of function-
ality available for many different cases. During our preliminary tests, GPy gave poor
results due to computation problems when it was version 0.6. These problems were fixed
after GPy version 1.0 was released in April 2016, and we report results for version 1.5.6
in this paper.

Another open source library for Python is scikit-learn, which we call sklearn since
that is the name of the Python module (Pedregosa et al., 2011). It is targeted for
machine learning, not just kriging, so there are many other modeling options available
in the module. Up through version 0.17, the kriging implementation was based on
DACE. However, the Gaussian process functionality was vastly upgraded with version
0.18, released in September 2016 (scikit-learn developers, 2016a). The update added
options for the correlation function, called the kernel, including the Gaussian, Matérn,
rational quadratic kernel, and others, as well as sum or product combinations of kernels.

Since they all use nearly the same equations, the real challenge in model fitting
is estimating the parameters. Whereas the predictions are calculated using formulas,
parameters must be estimated by solving an optimization problem. Generally, the pa-
rameters are chosen to be those that maximize the likelihood. However, the solution
found to this depends on starting values, bounds, the algorithm used, and the parame-
terization. There is additional ambiguity since real data is typically not truly samples
from an actual Gaussian process. The Gaussian process model is just a useful approxi-
mation technique, and thus there are no true parameter values. The rest of this section
examines the differences between the package parameterizations, the options available,
and the estimation methods.

3.1. Correlation functions and parameterizations

The commonly used Gaussian correlation function is shown in Equation 2 above, but
there are many variations on it and many other correlation functions that can be used.
DACE and JMP use this standard formulation. The mlegp package uses a different
notation for the correlation parameters, β = θ, but this does not affect the calculations
at all. GPfit uses β = log10 θ in order to focus the optimization search near the center
of the search space.

The Gaussian correlation can be generalized by allowing the exponent to be changed
to any value in the range [1, 2], which allows for different smoothness in the surface. The
default correlation function for GPfit uses 1.95 in the exponent. Ranjan et al. (2011)
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justifies this change by explaining that it helps to reduce the computational problems
caused by a near-singular correlation matrix when a space-filling design is used. In our
tests, we evaluate two versions of GPfit: one using the Gaussian correlation function,
which we call GPfit2, and one using 1.95 as the exponent, which we call GPfit1.95.

The package laGP moves θ to the denominator, and calls it the length-scale param-
eter, as shown in Equation 5. This change is simply a reparameterization and does not
affect the model at all. However, it will affect the optimization routine used to estimate
d, the p-length vector where the kth element is dk. This formulation is used by other
authors such as Rasmussen and Williams (2006). The correlation function is

Rij =

p∏
k=1

exp
(
− (xik − xjk)2 /dk

)
, (5)

where p is used to denote the number of dimensions. The notation used for the param-
eters is also slightly different in the laGP code and vignette (a guide for the R package)
than the others. The nugget is referred to as g in the code and η in the vignette, while
the lengthscale parameters are denoted by d in the code and θ in the vignette (Gramacy,
2014).

Another parameterization adjusts the correlation function so that the lengthscale
parameters, denoted as `, appear squared in the denominator. This puts ` on the same
scale as x. In addition a factor of two is added in the denominator so that the correlation
function closely resembles the Gaussian probability distribution function, as shown in
Equation 6. This is used by DiceKriging, sklearn and GPy (The GPy authors,
2015b).

Rij =

p∏
k=1

exp

(
−1

2
(xik − xjk)2 /`2k

)
. (6)

Another popular correlation function is the Matérn function. It takes a parameter
ν that determines the smoothness. Commonly used values for ν are 3/2 and 5/2. The
Matérn correlation function can be seen as a generalization of the Gaussian correlation
function since they are equivalent for ν = ∞. According to Roustant et al. (2012), the
default correlation function for DiceKriging is the Matérn with ν = 5/2, which is

g(h) =

(
1 +
√

5|h|+ 5

3
h2
)

exp
(
−
√

5|h|
)
,

where h =

√√√√ p∑
k=1

(xik − xjk)2 /`2k.

(7)

GPfit, GPy, and sklearn have the Matérn correlation as an option. We include two
versions of DiceKriging in our comparisons, one using the Gaussian correlation, which
we label Dice2, and another using the Matérn ν = 5/2 correlation function, since it is
the default for DiceKriging, which we label DiceM52.
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3.2. Nugget options

There are also options available for the nugget parameter.
DiceKriging defaults to having no nugget. There is also the option of setting the

nugget to a constant or estimating it. For both DiceKriging with the Gaussian (Dice2)
and the Matérn (DiceM52), we let it estimate the nugget. Preliminary tests involving
noiseless data did not reveal noticeable differences between fits based on no nuggest and
an estimated nugget. We chose to include the version that estimates the nugget since
DiceKriging is also useful for stochastic kriging. See more details in Section 6.1.

GPfit uses the smallest nugget value that keeps the computation stable, as explained
in Ranjan et al. (2011), in order to prevent over-smoothing. The nugget value they use
is

δlb = max

{
λn (κ (R)− ea)

κ (R) (ea − 1)
, 0

}
,

where λn is the largest eigenvalue of R, a is a parameter set to 25 for space-filling
designs, and κ(R) is the condition number of R. MacDonald et al. (2015) compare
GPfit to mlegp and state that “mlegp occasionally crashes due to near-singularity of the
spatial correlation matrix,” which agrees with what we have seen, so there is a benefit
to setting the nugget in this way.

In laGP the user must either set the nugget to a fixed value or tell laGP to estimate
it, since there is no default option. We tried several values for the nugget in preliminary
tests, and found that 1×10−6 worked best. Thus, in our tests we run laGP both with the
nugget set to 1×10−6, called laGP6, and with the nugget being estimated, called laGPE.
laGP is also different from the other packages we use since it performs the calculations
from a Bayesian perspective. In practice this makes little difference for users, since the
default priors are very general. In addition, laGP is the only package we use that does
not estimate a mean term.

By default, mlegp will not use a nugget unless there are repeated design points, but
it can be estimated or set to a constant or a vector (Dancik, 2011). For our tests we
run both with nugget fixed to 0, and with a nugget estimated using a starting value of
1×10−6. We call these mlegp0 and mlegpE, respectively. As shown below, we find there
is little difference.

JMP provides an option to fit the model with no nugget or with an estimated nugget.
We run JMP using the Gaussian correlation both with estimating a nugget and without
a nugget, and we refer to these two as JMPE and JMP0, respectively.

Since it is designed for noiseless computer experiments, DACE does not let the user
set or estimate the nugget. Instead it uses a small value equal to 2.22(10 + n) × 10−16

for computationally stability.
The nugget can be set or estimated in GPy by setting the noise variance parameter

when using the GPRegression function. We set this parameter to a small value, 1×10−8,
which forces the model to estimate a nugget parameter.

The nugget is called alpha by sklearn, and defaults to 1 × 10−10. Alternatively,
the nugget can be specified by using a WhiteKernel, and this method allows it to be
estimated. We use the default value in our investigation.
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Table 2 shows the packages we use in our study, along with the differences in the
parameterization of θ and the options and defaults for the nugget. The last column
shows how we set the nugget for our study.

Table 2: Settings for each software version used in the study. DiceM52 uses the Matérn correlation
function with ν = 5/2, GPfit1.95 uses the power exponential correlation with power 1.95, and all other
use the Gaussian correlation function.

Package θ
Nugget

Can Can Setting
set? estimate? Default used

DiceM52
Dice2

θ2 = 1/(2θ) X X 0 Est

GPfit1.95
GPfit2

β = log10 θ - - δlb δlb

laGP6
laGPE

d = 1/θ X X NA
1e-6
Est

mlegp0
mlegpE

β = θ X X 0
0

Est

JMP0
JMPE

θ = θ X X NA
0

Est

DACE θ = θ - - (10+n)2.2e-16 (10+n)2.2e-16

GPy `2 = 1/(2θ) X X Est Est

sklearn `2 = 1/(2θ) X X 1e-10 1e-10

3.3. Optimization techniques

There also many options in most packages for setting up the optimization routine that
estimates the parameters. There are different algorithms, choices of starting points and
number of restarts, and stopping criteria. We use the default settings for all packages
unless specified otherwise.

By default, DiceKriging uses the L-BFGS-B algorithm for parameter optimization.
The other option available, but not used in our study, is the genoud algorithm from the
rgenoud R package (Mebane Jr et al., 2011), that combines genetic (evolutionary search)
algorithms with derivative-based algorithms.

GPfit uses the most in-depth optimization algorithm. As detailed in MacDonald
et al. (2015), GPfit uses L-BFGS-B (Byrd et al., 1995) with multiple starts to esti-
mate the correlation parameters which they have transformed to be β = log10 θ. This
transformation focuses the optimization search more to the middle of the search space
than to the edges. In Section 2.3 of MacDonald et al. (2015), they describe how GPfit
adds bounds for each βk to create a domain where the optimum is likely to be found.
The function that is minimized is the negative profile log-likelihood (which they call the
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deviance),

−2 logLθ ∝ log |R|+ n log
[
(y − 1nµ̂(θ))T R−1 ((y − 1nµ̂(θ))

]
.

GPfit begins its search with a space-filling LHD in the space of all the βi’s, then selects
a number of parameter sets that have low deviance. These points are clustered using the
k-means algorithm. Then the L-BFGS-B algorithm is run using these cluster centers as
the starting point in each restart.

laGP requires an initial value for the correlation parameters and nugget (if esti-
mated) with no default provided. However laGP provides the functions darg and garg

which provide good initial starting values for θ and δ using Empirical Bayes (Gramacy,
2015). We use these two functions in our tests to find starting values.

The package mlegp estimates the parameters using L-BFGS (Liu and Nocedal, 1989)
in a gradient method (Dancik, 2013). The starting points are found using multiple
Nelder-Mead simplexes.

JMP is proprietary software and provides no details on the optimization or other
details beneath the surface. There are no options that can be set for the optimization.

DACE uses a pattern search that iterates through the steps of exploring, moving,
and rotating, after finding a suitable starting point as in Lophaven et al. (2002b). By
default, DACE uses a single correlation parameter for all dimensions and initializes it
to 0.1. In order to be comparable to the other methods, we retain the 0.1 value, but
make it into a d-length vector so that these packages fit a correlation parameter for each
dimension. In DACE, upper and lower bounds for each θi must be provided. We set
these to be generous, with the lower bounds to 1×10−4 and the upper bounds to 1×103.

GPy begins with initial correlation parameters set to 1. However, by default GPy
uses the same correlation parameter in every direction, so to get a separate parameter
for each dimension, we had to set ARD=True. We also had to set the likelihood variance
to a small value of 1× 10−8, instead of its default of 1, to get good results. GPy allows
a choice of optimization routines: TNS, L-BFGS-B, and BFGS from Scipy (Jones et al.,
2001); Adadelta and RProp from the Python module climin; as well as Nelder-Mead
simplex routine and Scaled Conjugate Gradients. The optimization is run through the
Python module “paramz.” We use the default of L-BFGS-B. We also use five optimization
restarts to ensure the optimization results are favorable, although this increases the run
time.

By default, sklearn uses the “fmin l bfgs b” optimization algorithm from
scipy.optimize (scikit-learn developers, 2016b; Jones et al., 2001). This algorithm is
an implementation of the L-BFGS-B algorithm (Byrd et al., 1995). There is an option
to use multiple restarts to help the optimization avoid getting stuck in a local minima.
By default the number of restarts is zero, which is what we use in our tests. However,
trying more restarts may improve performance. In our initial testing with sklearn, we
observed poor results when the data was not scaled. In our comparison tests in this
paper, we scaled all our data to have mean 0 and range 1, as discussed in Section 5.
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4. Empirical study methodology

In this section, we discuss the criterion on which we will compare different GP fitting
software packages. When constructing a global metamodel, two properties of GP mod-
eling are of primary importance: (1) the accuracy of prediction, and (2) the accuracy of
the estimate of prediction error. The first is important for obvious reasons. The second
is important to allow the practitioner to assess whether the metamodel is fit for use or
whether additional data is needed to improve its fit The differences between parame-
terizations mentioned in Section 3.1 do not matter here because our interest is on the
accuracy of the predictions. We focus on global fitting, not on optimization where the
comparison criterion would be the accuracy of the estimation of the optimal input vector
and the estimated output scalar.

4.1. Model accuracy

When we evaluate model accuracy, we use a known surface and compare the actual
surface and the model’s predicted values at a large number of points, called prediction
points. The prediction points are distributed throughout the area of interest for the input
values. We use the square root of the mean of the squared errors at the prediction points
as an estimate of the model’s RMSE; for ease of discussion we will call this estimate the
“empirical model RMSE” or “EMRMSE.” Thus, using m prediction points x∗

1, · · · , x∗
m,

EMRMSE =

√√√√ 1

m

m∑
i=1

(ŷ(x∗
i )− y(x∗

i ))
2.

Santner et al. (2003, p. 108) call this the empirical root mean squared prediction error.
Although this metric does not account for the distribution of the prediction errors, it
is a commonly-used single number that summarizes the quality of the fit of the model
across the entire surface.

We use EMRMSE to assess the quality of the fit for a model. This measure is
primarily useful when comparing two models fitting the same surface since the model
with the lower EMRMSE fits the surface better. Also, in our empirical studies in Section
5, the value of EMRMSE can be very roughly thought of as an average relative error for
the model. This is because EMRMSE estimates the standard deviation of the prediction
errors, and, as discussed in Section 5, we scale the responses (at prediction and design
points) to have a range of 1.

4.2. Accuracy of estimated prediction error

To evaluate the accuracy of the model’s estimated prediction error, we estimate the
model’s mean squared error ϕ(x), defined in Equation 4, by ϕ̂(x), obtained by substi-
tuting the fitted model’s parameter estimates for the unknown parameters in equation
(4). The square root of the average of the estimated mean squared errors over all predic-
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tion points is used as the summary measure for the predicted model RMSE and called
the “PMRMSE.”

PMRMSE =

√√√√ 1

m

m∑
i=1

ϕ̂(x∗
i )

Since EMRMSE and PMRMSE both measure the model’s RMSE, we expect them
to be approximately equal. If we observe EMRMSE ≈ PMRMSE, that confirms the
accuracy of the model’s prediction error. If EMRMSE is much larger than PMRMSE,
then the model is overconfident in its fit, since its estimated prediction errors will be
smaller than the empirical errors. Conversely, if EMRMSE is much less than PMRMSE,
then the model’s estimated prediction errors are conservative.

Note that Bastos and O’Hagan (2009) suggest a different way to compare predictive
errors by using the predictive covariance matrix. For a single prediction point, we could
calculate the standardized prediction error, which should follow a t-distribution. For
the entire set of prediction points, these will be correlated. Intuitively this makes sense
because the prediction functions are continuous and the true surface is usually also
continuous, so points near each other will necessarily have related errors. This error
analysis requires the predictive covariance matrix so that the standardized errors can be
decorrelated. This method places equal importance on all parts of the surface. However,
in practice, one usually focuses on areas where the predicted error is large. Moreover,
most software packages do not provide the predictive covariance matrix, and the errors
can differ by orders of magnitude depending on how close they are to sample points. For
these reasons, we use EMRMSE and PMRMSE as the basis for assessing the accuracy
of the estimated prediction error for a given model.

4.3. Comparison to Linear Model

Fitting GPs can be computationally intensive when the number of points is large. Thus
we only want to make the computational investment when we will see a significant
improvement over simpler models. In preliminary investigations, we found that when
the surface is too trivial or the sample size is too small that fitting a linear model—or
even just the mean—can give predictions similar to the fitted GP model. Thus, in our
empirical study, whenever we fit a GP model in d dimensions, we also fit a d-dimensional
hyperplane, which we call the linear model (LM). Using the same prediction points, we
then calculate the EMRMSE for the LM. Use of the complicated GP model is only
beneficial if the EMRMSE of the GP model is substantially less than that of the LM.
When the EMRMSE of the GP model is greater than or equal to that of the LM, it
indicates that the GP model is unsuitable for the situation. In either case, comparisons
of GP model fitting are not of interest. Thus throughout the empirical study we will
define ξ(M) as the ratio of the EMRMSE of the fitted GP model M, and the EMRMSE
of the LM, as shown in Equation 8:
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ξ(M) =
EMRMSE(M)

EMRMSE(LM)
. (8)

This is similar to the normalized RMSE measure, ermse,ho, used by Chen et al. (2016),
which is the ratio of the RMSE of the GP model to the RMSE of the model that only fits
the mean. We believe ξ is more useful because practitioners are more likely to consider
a linear model as an alternative to the Gaussian process.

To keep PMRMSE on the same scale, we also define π(M) as the ratio of the PM-
RMSE of M to the EMRMSE of the LM, as shown in equation 9:

π(M) =
PMRMSE(M)

EMRMSE(LM)
. (9)

5. Empirical study results

In this section we compare the aforementioned software packages on four test functions:
the borehole function, the output transformer-less (OTL) circuit function, the Dette
and Pepelyshev 8-dimensional model, and the Morris function. For all the functions,
we created independent maximin Latin hypercube samples (LHSs) using the R package
MaxPro (Ba and Joseph, 2015) for the design matrices, and a much larger (2,000 point)
maximin LHS for the prediction points. Using a maximin LHS helps ensure that the
data represents the input space well. We use xi ∈ [0, 1]d, which is commonly done to
avoid numerical issues and make sure the data scale is reasonable for the correlation
function. When calculating function values, the input values, xi, are scaled to be in the
appropriate domain of each function. The output, y, can also be standardized before
fitting the model to it since the range can affect how much of the variation in the data
is seen as noise. Many software packages do this standardization automatically or have
the option to do so. For all of our comparisons shown in Section 5, the output data is
scaled to have mean 0 and range 1, as recommended by Gramacy (2007).

A common recommendation in computer experiments is to use a sample size of ten
times the number of input dimensions, i.e., choose n = 10d (Loeppky et al., 2009). We
find that this sample size is often too small, giving predictions only slightly better than
a linear model. Thus we use input samples of size n = 10d and n = 20d taken from
space-filling designs in our comparisons that follow. The amount of data needed to get a
good fit depends on the curvature of the data, the quality of the design, and the desired
accuracy of the model.

On each sub-plot of the following figures, we generate five surfaces, called macrorepli-
cates, and fit them using thirteen software package versions. Different shaped icons rep-
resent the results for different macroreplicates. The five macroreplicates are generated
by five different sets of design and prediction points. Thus, we have 65 fitted metamodels
on each plot—thirteen packages fitting five macroreplicates each. The x-axis plots ξ(Mi)
and π(Mi) for each macroreplicate, as defined in equations 8 and 9, where Mi represents
one of the 65 metamodels. ξ(Mi) is plotted on the solid line for each package with solid
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icons, while the gray icons slightly above each solid line are π(Mi). Lines connecting the
π value to the ξ value for each macroreplicate make it easy to see whether the packages
are underestimating or overestimating the actual error. A positive slope for the line
indicates overestimation of the error, while a negative slope indicates underestimation
of the error. Thus, a good metamodel Mi will have a ξ(Mi) near zero and will also
have π(Mi) roughly equal to ξ(Mi). Each macroreplicate uses the same icon shape for
ξ(Mi) and π(Mi) so they can be compared to each other and across the different software
packages.

The range of the plots are selected to allow the reader to see the relationships between
the ξ and π values across all packages. Several of the problematic values appear to the
left of the plots, indicating that their values are too small to fit on the plot. Values that
are too large are shown to the right of the plots. All of the data values in the examples
in this paper, including those that appear outside of the plot ranges, are available in the
data in brief article associated with this paper (Erickson et al., 2017).

5.1. The Borehole Function

The borehole function described by Worley (1987) is commonly used for testing emulators
(Morris et al., 1993). The input is 8-dimensional and each variable is confined to specified
ranges. The borehole function, f(x), is

f(x) =
2πTu(Hu −Hl)

log(r/rw)[1 + 2LTu
log(r/rw)r2wKw

+ Tu/Tl]
.

We used an R implementation based on the one provided by Surjanovic and Bingham
(2016), where they recommend selecting sample points following a normal distribution for
rw, a lognormal distribution for r, and uniform distributions for the other six variables in
their respective ranges. We followed these recommendations for choosing sample points
in each dimension, transforming them to be uniform in [0, 1].

We ran the full 8-dimensional function, and then projected that surface on the 4-
dimensional subspace of rw, Tu, Tl, and L, with the other values set to the middle value
of their range. Figure 2 shows the results in plots of our comparisons. The top row has
the 4-dimensional function, the bottom row has the full 8-dimensional function, and we
use two different sample sizes for each dimension. The left column of plots in Figure
2 has results for the smaller sample sizes (n = 40 for 4 dimensions and n = 80 for 8
dimensions). The right column has results for the larger sample sizes (n = 80 for 4
dimensions and n = 160 for 8 dimensions).

When the input sample size is increased by a factor of 2, the ξ and π values are
typically reduced by about 30%. All four plots in Figure 2 have been put on the same
scale for easier comparison of this effect. The GP metamodels clearly fit the borehole
surface better than the linear model since almost all of the ξ values are less than one.
The exceptions are one macroreplicate of sklearn in Figure 2b and some of the JMP0
macroreplicates in Figures 2c and 2d; these have been cut from the plot and placed to
the right to indicate that they could not fit on the plot without skewing the axes.
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We can see that there is a problem in the error estimates for all of the packages. For
almost every macroreplicate, π is less than ξ, often by a factor of two or more. Users
should be aware of the possibility of systematic underestimation of model error as seen
in the borehole example. These discrepancies between predicted errors and actual errors
are likely due to the data not actually coming from a Gaussian process, so the surface
does not match the model assumptions. Methods such as cross-validation can be used
to check for this problem.

Overall, GPfit, mlegp, JMPE, and GPy have the best performances on all four
examples shown. sklearn has trouble on some of the macroreplicates in four dimensions,
but does better in eight dimensions. DiceKriging, laGP, and DACE generally perform a
little worse than the others, while JMP0 has some serious problems on the 8-dimensional
surfaces.

Figure 3 shows how long (in seconds on a log scale) it took to fit each macroreplicate
and make m = 2000 predictions for the 8-dimensional borehole surface with n = 80 and
n = 160 design points. All macroreplicates for all packages were run on the same node
of a Linux cluster, except for JMP which was run on a personal Dell laptop running
Windows. The relative run times for each package are the same for both sample sizes,
and the same pattern is found on other test functions as well. GPfit is by far the slowest,
taking over 15 minutes per macroreplicate for n = 160. JMP is the next slowest, taking
two minutes per macroreplicate, but this data is unreliable since it was run on a different
computer. The next slowest is mlegp, taking about eight minutes, with GPy only slightly
faster. The fastest packages were DiceKriging, laGP, sklearn, and DACE, which only
took a handful of seconds. Thus we see that there is a massive difference in the run times,
with a factor of over 1000 between the fastest and the slowest packages performing the
same task. The times shown in this plot are for the borehole function, but the relative
times are similar for the other functions. In particular, GPfit and JMP are extremely
slow, mlegp is also very slow, and the rest are much faster. Therefore when one is
choosing a package, it may be necessary to consider not only the model options and
capability, but also how quickly it runs. Run times must also be considered in the
context of the data being used. If the data comes from a simulation model that takes
hours per observation, then the difference of a minute may be negligible.

5.2. The OTL Circuit Function

Ben-Ari and Steinberg (2007) use a test function that describes an output transformer-
less (OTL) push-pull circuit. There are six input parameters, five for resistors (Rb1, Rb2,
Rf , Rc1, Rc2) and one for circuit gain (β). The equation is given by

Vm =
(Rb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf
+

11.35Rf

β(Rc2 + 9) +Rf
+

0.74Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf )Rc1

with

Vb1 =
12Rb2

Rb1 +Rb2
.
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(a) d = 4, n = 40 (b) d = 4, n = 80

(c) d = 8, n = 80 (d) d = 8, n = 160

Figure 2: Borehole 4-D and 8-D comparison. All four plots are on the same scale.
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(a) n = 80 (b) n = 160

Figure 3: Run times (seconds) for Borehole 8-D with n = 80 and n = 160, both with m = 2000. There
are enormous differences among the packages, but the relative speeds of the packages are similar.

We used an R implementation provided by Surjanovic and Bingham (2016). Figure 4
shows our results, based on five macroreplicates of n = 60 and n = 120 observations.

On this function, most of the fits are much better than the linear model since most
of the ξ values are below 0.1. Some of the laGPE and JMP0 points are placed to the
right of the plot to indicate that their values are off the scale. The problems exhibited
by some of these packages, such as DiceKriging and laGPE, may be reduced by tuning
the optimization parameters, but we did not attempt this as not all practitioners may
have this insight. For both sample sizes, the best ξ values come from GPfit2, mlegp,
JMPE, GPy, and sklearn, with GPfit1.95, laGP6, and DACE performing only slightly
worse. DiceKriging, laGPE, and JMP0 perform poorly compared to the best packages.

The prediction errors, π values, are fairly accurate on this data. Most of the π values
are less than the corresponding ξ values by a small margin, but not by as much as in
the borehole results of Figure 2. Doubling the sample size reduced the ξ and π by about
a factor of two, showing that increasing the sample size beyond 10d can have a large
impact.

5.3. Dette and Pepelyshev

Dette and Pepelyshev (2010) present an 8-dimensional model “which is highly curved in
some variables and has less curvature in another variables.” The input is in [0, 1]8, and
the output is given by the equation below:
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(a) n = 60 (b) n = 120

Figure 4: OTL Circuit comparison

η(x) = 4(x1−2+8x2−8x22)
2+(3−4x2)

2+16
√

(x3 + 1)(2x3−1)2+
8∑

k=4

k log (1 +
k∑

i=3

xi).

This function and its R implementation were also taken from Surjanovic and Bingham
(2016).

Figure 5 shows the results when we test this function with n = 80 and n = 160 design
points in 8 dimensions. There are clear differences between the packages in these plots.
GPy has the smallest ξ values for both plots, with GPfit2 not far behind. There is a
large difference in the ξ values between GPy and the worst performers, so again we see
that the software used makes a difference. JMP0 is consistently bad on these examples,
while JMPE is very inconsistent, with a mixture of good and bad fits. laGP6 is generally
very good, while laGPE, despite being consistent, is one of the worst performers. GPfit,
mlegp, GPy, and sklearn perform the best on this function. The error predictions for all
packages except JMP are generally good, being within 25% of the actual error. We can
also see that the performance ordering of the packages on this problem is similar to those
for the OTL circuit example in Figure 4. Again increasing the number of observations
beyond 10d had a decidedly beneficial effect, roughly halving the ξ and π values.

5.4. Morris function

The Morris function is a 20-dimensional function created by Morris (1991), and we use
the version presented by Le Gratiet et al. (2016):
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(a) n = 80 (b) n = 160

Figure 5: Dette-Pepelyshev comparison

f(x) =

20∑
i=1

βiwi +

20∑
i<j

βi,jwiwj +

20∑
i<j<l

βi,j,lwiwjwl + 5w1w2w3w4.

Here, x ∈ [0, 1], wi = 2(1.1xi/(xi + 0.1)− 1/2) for i = 3, 5, 7, and wi = 2(xi − 1/2)
for all other values of i. The coefficients are βi = 20 for i = 1, ..., 10, βi,j = −15 for
i, j = 1, ..., 6, βi,j,l = 10 for i, j, l = 1, ..., 5. All other coefficients are set to βi = (−1)i,
βi,j = (−1)i+j and βi,j,l = 0. The results from using the Morris function are shown in
Figure 6 using input samples of size n = 200 and n = 400.

DACE has fitting problems, especially for n = 200, but the rest are fairly consistent.
The ξ values are all fairly large, many around 0.4. This demonstrates that in higher
dimensions it is more difficult to get a fit that is substantially better than the linear
model, especially when the function is relatively linear. GPfit, laGP6, JMPE, GPy, and
sklearn perform the best, but they all underestimate the error by a significant amount.

6. Recent literature / Advanced models

In this paper, we have focused on an ordinary GP model. However, there are many
variations of this model that can be used in situations where there is domain knowledge
about the data or where the basic model is inadequate. If the data is noisy then a
nugget should always be used and estimated. There are also many different correlation
functions beyond the Gaussian and Matérn that may perform better with certain types
of data. If the data set is large then there are approximation models that should be
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(a) n = 200 (b) n = 400

Figure 6: Morris comparison

used instead, since they will run much faster with a small loss of accuracy. If there are
n design points, then the computation complexity for kriging is O(n3), which is far too
slow for modern problems with millions of data points.

6.1. Stochastic Kriging

While computer experiments often assume that there is no variability in the data, this
is not the case in stochastic simulations. When the noise is similar across the entire
response surface, then the basic model should suffice by using the nugget term. However,
when the noise level varies across the surface, called heteroscedasticity, stochastic kriging
should be used. Stochastic kriging, by Ankenman et al. (2010), accommodates for noise
in data collected by assuming that the variance in the data is different at each design
point. In order to estimate the noise at each point, replicates must be collected at every
point in the design. This is equivalent to having a different nugget at each design point.
Thus instead of adding δI to the diagonal of the correlation matrix, diag(δ) is added,
where δi ∝ Var(xi). This requires Var(xi) to be estimated by replicates at each unique
design point.

Stochastic kriging has been used for modeling simulation data from many fields, such
as in game theory simulations (Pousi et al., 2010) and finance for measuring portfolio
risk (Liu and Staum, 2010). Stochastic kriging models are often run in two stages. In
the first stage, a small number of samples are taken for all design points. For the second
stage, the number of samples for each point is allocated according to Equation (29) in
Ankenman et al. (2010), which puts more replicates at points that have large sample

23



variances and are centrally located.
Of the software packages discussed above, only mlegp and DiceKriging are able to

perform stochastic kriging. For each package a variance estimate at each point must be
provided. In mlegp, this vector is passed as the “nugget” parameter, and the diagonal
of the nugget matrix is set to be proportional to these values (Dancik, 2011). The
nugget scaling parameter is estimated along with the other parameters. In DiceKriging,
this same vector as passed as the “noise.var” parameter (Roustant et al., 2012). The
prototype software developed for the paper Ankenman et al. (2010) used off-the-shelf
optimization algorithms that do not scale to larger problems and often have convergence
issues. It will not be considered in this comparison.

To demonstrate the use of mlegp and DiceKriging for stochastic kriging, we use data
taken from the standard M/M/1 queue model.

6.1.1. M/M/1 Queue

The M/M/1 queue is a service model that represents a system with one server and
interarrival and service times that are independently exponentially distributed. We set
the service rate λ = 1 and the arrival rate 0 ≤ x < 1. We model the number of
customers waiting in the queue as a function of the arrival rate, which is known to
have mean y(x) = x/(1 − x) and variance x/(1 − x)2. For design points we use seven
equally-spaced points at (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). In the first stage, we take
n1 = 5 samples at each point. Then the second stage is run with a total of n2 = 100 and
n2 = 200 points allotted to the individual design points according to the square root of
the variance of the output for the first stage samples. The results are shown in Figure
7, where there is no distinguishable difference between the two packages. Even with
n2 = 100 observations the ξ values are relatively large, showing that stochastic kriging
typically needs more observations to fit a surface. Both packages tend to underestimate
the error when the sample size is small.

6.2. Other models

Many advances in Gaussian process fitting have been adapting the method to be suit-
able for large amounts of data, such as by exploiting sparsity. Snelson and Ghahramani
(2005) present a sparse GP method that reduces the size of the covariance matrix by
using pseudo-input points. Hensman et al. (2013) produce a method that works for
data sets with millions of data points, which would be prohibitively slow for the stan-
dard model. Sparsity can be induced into the correlation matrix by having a correlation
function with compact support, meaning that it is zero for points that are sufficiently
far away (Rasmussen and Williams, 2006, p. 87-8). These functions usually are piece-
wise polynomials that resemble the Gaussian correlation function. Gramacy and Apley
(2015) provides a way to fit GPs to large experiments quickly. Their model induces
sparsity by only selecting the points that provide the greatest reduction in predictive
variance when calculating the metamodel function at a given point. They also allow for
quick sequential updating and trivial parallelization, making their method very practi-
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(a) n2 = 100 (b) n2 = 200

Figure 7: M/M/1 stochastic kriging comparison using mlegp and DiceKriging. Both use 5 samples at
each point in the first stage, and then the total number of points allocated in the second stage is n2 = 100
for Figure 7a and n2 = 200 for Figure 7b.

cal. Gramacy (2015) has provided the R package laGP that implements most of these
methods, in addition to the basic model that we explore in this paper. Further work in
Sung et al. (2016) makes the search for the best sub-design much faster.

The recent paper by Binois et al. (2016) provides a significant improvement to
stochastic kriging. They provide a more favorable framework by putting the problem
in an inferential scheme with a single objective and explicit derivatives. They introduce
some smoothing techniques that allow design points without replicates to be used in the
model, which is a shortcoming of previous versions of stochastic kriging. Also, they use
the Woodbury identity (Woodbury, 1950) to ensure that the computational complexity
is similar to other stochastic kriging methods.

Advances have also come by combining the Gaussian process with other models.
Neural networks inspired the work of Damianou and Lawrence (2013), who present a deep
Gaussian process model that uses hierarchical Gaussian process mappings. Gramacy and
Lee (2008) add GPs to the Bayesian partition tree model of Chipman et al. (1998) so
that a GP is fit to each partition. Williams and Barber (1998) create a model that uses
GPs for Bayesian classification. There have also been advances by allowing the model
to take categorical input. Platt et al. (2001) use GPs with categorical input to generate
music playlists. Chen et al. (2013) address the use of stochastic kriging with categorical
input.

Some of the packages we investigate have advanced models available for users. GPy
has many models, including classification, sparse regression, latent variable models, and
more. In addition to providing GP classification models, scikit-learn also has other ma-
chine learning models such as clustering, neural networks, and support vector machines.
laGP provides the approximate GP model, as explained above, that is useful for massive
data sets. When choosing a software package, users should consider the depth of options
available on the platform, and what types of models they would potentially use beyond
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the basic GP model to get better results.

7. Discussion

7.1. Summary of packages

In this paper, we study various Gaussian process fitting software packages, see Table 1,
and compare their performance using the GP model with Gaussian correlation for global
fitting. We do not compare their performance for optimization, i.e., accurately locating
an optimal point. We assess them based on the quality of their response predictions and
their error estimates, each of which are averaged across the region of interest. Other
possible criteria that we do not consider include maximum error and relative error. In
many cases the different packages give similar, or even indistinguishable, results—which
is expected since they are using the same models on the same surfaces. However, due to
differences in the parameter estimation routines, the packages often give different results
on complicated surfaces.

DiceKriging, an R package, performed somewhat worse than many of the other
packages in our examples. However, DiceKriging runs faster than the R packages mlegp
and GPfit, and provides more customization options than laGP. It has multiple correla-
tion functions available and can estimate a nugget. By default the correlation function
is the Matérn with ν = 5/2, but we did not see a large difference between that and
the Gaussian correlation function. DiceKriging also provides functionality for stochastic
kriging, as demonstrated in Section 6.1.

Another R package, GPfit, uses the most extensive parameter optimization, which
makes it very dependable. In our tests we found GPfit to be reliable and give good
results. The cost of this is that it takes significantly longer to use on larger data sets,
taking noticeably longer on samples larger than even 50. On the borehole test, each
macroreplicate for GPfit for a sample size of 500 took over two hours, while all the other
packages finished in minutes or even seconds. For this reason we do not recommend using
GPfit when the data set is large and time is valuable. We ran GPfit with its default
exponent of 1.95 in the correlation function and also used the Gaussian process model
where that exponent is 2.00. In general we did not see a large difference between the
two in performance or run time. GPfit uses 1.95 as the default because it is supposed
to provide computational stability.

The R package laGP is the fastest package we tested. We used it with estimating
a nugget and with setting a small nugget, the latter of which gave better results. The
main benefit of laGP is that it runs very quickly, especially when repeatedly adding
data in a sequential manner. In addition, it provides some additional complex models
that are useful for large data sets. Thus we do not recommend laGP for kriging with
small sample sizes, but we do suggest looking into its advanced functionality if there are
thousands of sample points.

The final R package we evaluated, mlegp, performed well in our testing. We used it
with both setting the nugget to zero and estimating the nugget, and did not see a large
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difference. In addition, mlegp was a little slower than the other packages, though not as
slow as GPfit. One benefit of mlegp is that it also can do stochastic kriging, as shown
in Section 6.1.

JMP is a commercial software platform that makes data analysis easy for practi-
tioners. When the nugget was set to zero, JMP performed poorly on most of our test
functions. When the nugget was estimated, however, JMP performed substantially bet-
ter, often on par with the best packages. JMP seems to run relatively slow. For our
testing, JMP was run on a laptop and the other packages were run on a cluster. How-
ever in our experience, the other packages (except for GPfit) ran faster when also run on
the same laptop. Thus users should be careful when using JMP, particularly when the
nugget is not estimated, since the results may be spurious, and users might get better
and faster results using a different software option.

The Matlab toolbox DACE was fast but generally provided a slightly worse fit
than the best models. DACE is very basic and has not been updated in years, so we
recommend using other packages if there is a desire to progress to more advanced models.

GPy, a Python module, gave the best fitting results in most of our tests. It was
an order of magnitude slower than the fastest package, and was generally in the middle
in terms of speed. GPy also provides many options and advanced models that the
practitioner can explore once they have mastered the basic model.

Finally, the Python module scikit-learn contains GP fitting capability in addition
to many other machine learning algorithms. It was near the best on most examples, but
occasionally exhibited inconsistency. In preliminary tests, we found that it performed
better when the data is scaled and more optimization restarts are used. It was also one
of the fastest packages. Although we only included the results using scikit-learn with
the Gaussian correlation function in this paper, we have found in some of our tests that
using the Matérn correlation function gives better results. Although scikit-learn does
not provide advanced GP models, it does provide other machine learning models such
as support vector machines and random forests. Thus it would be a useful tool for those
who want to use a single platform for multiple machine learning methods.

7.2. Conclusion

This paper focuses on the traditional Gaussian process model with Gaussian correlation.
Despite specifying the same type of GP metamodel, we found that there are often signif-
icant differences between the metamodel predictions made by various software packages
on the same data. Practitioners should be aware of the quality of predictions, typical
run time, and model options when choosing a modeling software to use.

There are many modifications of the model and other correlation functions that will
often give better and faster results if there is prior knowledge about the structure of
the data or if there is a large number of observations. We focus on the simple model
because it is used by many practitioners who do not want to spend the time to learn the
intricacies of the model, but wish to use the power of GP fitting. However, if unstable
or nonsensical results are observed when fitting the simple GP model, we encourage
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modelers to consider using the packages with more advanced features that we allude to
in Section 7.1.

8. Acknowledgments

U.S. Department of Defense Distribution Statement: Approved for public release; dis-
tribution is unlimited. The views expressed in this document are those of the authors
and do not reflect the official policy or position of the Department of Defense or the
U.S. Government. This work was supported in part by the Office of Naval Research via
NPS’s CRUSER initiative, the NPS Naval Research Program NPS-17-N191-B, and the
Naval Supply Systems Command Fleet Logistics grant number N00244-15-2-0004.

Bibliography

B. E. Ankenman, B. L. Nelson, J. Staum, Stochastic kriging for simulation metamodel-
ing, Operations Research 58 (2) (2010) 371–382.

S. Ba, V. R. Joseph, MaxPro: Maximum Projection Designs, URL https://CRAN.

R-project.org/package=MaxPro, r package version 3.1-2, 2015.

L. S. Bastos, A. O’Hagan, Diagnostics for Gaussian process emulators, Technometrics
51 (4) (2009) 425–438.

E. N. Ben-Ari, D. M. Steinberg, Modeling data from computer experiments: an em-
pirical comparison of kriging with MARS and projection pursuit regression, Quality
Engineering 19 (4) (2007) 327–338.

M. Binois, R. B. Gramacy, M. Ludkovski, Practical heteroskedastic Gaussian process
modeling for large simulation experiments, arXiv preprint arXiv:1611.05902 .

R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound con-
strained optimization, SIAM Journal on Scientific Computing 16 (5) (1995) 1190–
1208.

H. Chen, J. L. Loeppky, J. Sacks, W. J. Welch, et al., Analysis Methods for Computer
Experiments: How to Assess and What Counts?, Statistical Science 31 (1) (2016)
40–60.

X. Chen, K. Wang, F. Yang, Stochastic kriging with qualitative factors, in: Proceedings
of the 2013 Winter Simulation Conference, IEEE Press, 790–801, 2013.

H. A. Chipman, E. I. George, R. E. McCulloch, Bayesian CART model search, Journal
of the American Statistical Association 93 (443) (1998) 935–948.

J. Christen, M. Ichchou, B. Troclet, M. Ouisse, Global sensitivity analysis of acoustic
transmission models through infinite plates, in: Proceedings of ISMA, 4177–4188,
2014.

28



B. Ciuffo, J. Casas, M. Montanino, J. Perarnau, V. Punzo, Gaussian process meta-
models for sensitivity analysis of traffic simulation models: Case study of AIMSUN
mesoscopic model, Transportation Research Record: Journal of the Transportation
Research Board 2390 (2013) 87–98.

A. Damianou, N. Lawrence, Deep Gaussian processes, Proceedings of the Sixteenth
International Workshop on Artificial Intelligence and Statistics (AISTATS) (2013)
207–215.

G. Dancik, mlegp: An R package for Gaussian process modeling and sensitivity analysis,
retrieved April 14, 2016, from http://download.nextag.com/cran/web/packages/

mlegp/vignettes/mlegp.pdf, 2011.

G. M. Dancik, mlegp: Maximum Likelihood Estimates of Gaussian Processes, URL
http://CRAN.R-project.org/package=mlegp, r package version 3.1.4, 2013.

G. M. Dancik, K. S. Dorman, mlegp: Statistical analysis for computer models of biolog-
ical systems using R, Bioinformatics 24 (17) (2008) 1966–1967.

H. Dette, A. Pepelyshev, Generalized Latin hypercube design for computer experiments,
Technometrics 52 (4) (2010) 421–429.

W. Du, N. Xue, W. Shyy, J. R. Martins, A surrogate-based multi-scale model for mass
transport and electrochemical kinetics in lithium-ion battery electrodes, Journal of
the Electrochemical Society 161 (8) (2014) E3086–E3096.

C. B. Erickson, B. E. Ankenman, S. M. Sanchez, Data from fitting Gaussian process
models to various data sets using eight Gaussian process software packages, Data in
Brief, submitted .

I. Gidaris, A. A. Taflanidis, Performance assessment and optimization of fluid vis-
cous dampers through life-cycle cost criteria and comparison to alternative design
approaches, Bulletin of Earthquake Engineering 13 (4) (2015) 1003–1028.

R. Gramacy, tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlin-
ear Regression and Design by Treed Gaussian Process Models, Journal of Statistical
Software, Articles 19 (9) (2007) 1–46, ISSN 1548-7660, doi:\bibinfo{doi}{10.18637/
jss.v019.i09}, URL https://www.jstatsoft.org/v019/i09.

R. B. Gramacy, laGP: Large-scale spatial modeling via local approximate Gaussian
processes in R, Tech. Rep., The University of Chicago. Available as a vignette in the
laGP package, 2014.

R. B. Gramacy, laGP: Local Approximate Gaussian Process Regression, URL http:

//CRAN.R-project.org/package=laGP, r package version 1.2-1, 2015.

29



R. B. Gramacy, D. W. Apley, Local Gaussian process approximation for large computer
experiments, Journal of Computational and Graphical Statistics 24 (2) (2015) 561–
578, doi:\bibinfo{doi}{10.1080/10618600.2014.914442}, URL http://dx.doi.org/

10.1080/10618600.2014.914442.

R. B. Gramacy, H. K. Lee, Cases for the nugget in modeling computer experiments,
Statistics and Computing 22 (3) (2012) 713–722.

R. B. Gramacy, H. K. H. Lee, Bayesian Treed Gaussian Process Models With an Ap-
plication to Computer Modeling, Journal of the American Statistical Association
103 (483) (2008) 1119–1130, doi:\bibinfo{doi}{10.1198/016214508000000689}, URL
http://dx.doi.org/10.1198/016214508000000689.

J. Hensman, N. Fusi, N. D. Lawrence, Gaussian Processes for Big Data, CoRR
abs/1309.6835, URL http://arxiv.org/abs/1309.6835.

JMP: Gaussian Process, JMP: Gaussian Process, retrieved August 01, 2016, from http:

//www.jmp.com/support/help/Gaussian_Process.shtml, 2016.

D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimization of expensive black-
box functions, Journal of Global optimization 13 (4) (1998) 455–492.

E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python,
URL http://www.scipy.org/, [Online; accessed 2016-04-19], 2001.

J. P. C. Kleijnen, Design and Analysis of Simulation Experiments, vol. 230, Springer,
2015.

L. Le Gratiet, S. Marelli, B. Sudret, Metamodel-based sensitivity analysis: Polynomial
chaos expansions and Gaussian processes, arXiv preprint arXiv:1606.04273 .

D. C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization,
Mathematical programming 45 (1-3) (1989) 503–528.

M. Liu, J. Staum, Stochastic kriging for efficient nested simulation of expected shortfall,
The Journal of Risk 12 (3) (2010) 3.

J. L. Loeppky, J. Sacks, W. J. Welch, Choosing the Sample Size of a Computer Experi-
ment: A Practical Guide, Technometrics 51 (4) (2009) 366–376, doi:\bibinfo{doi}{10.
1198/TECH.2009.08040}, URL http://dx.doi.org/10.1198/TECH.2009.08040.

S. N. Lophaven, H. B. Nielsen, J. Søndergaard, Aspects of the MATLAB toolbox DACE,
Tech. Rep., Informatics and Mathematical Modelling, Technical University of Den-
mark, DTU, 2002b.

S. N. Lophaven, H. B. Nielsen, J. Søndergaard, DACE–A MATLAB Kriging toolbox,
version 2.0, Tech. Rep., 2002a.

30



B. MacDonald, P. Ranjan, H. Chipman, GPfit: An R package for fitting a Gaussian pro-
cess model to deterministic simulator outputs, Journal of Statistical Software 64 (12)
(2015) 1–23, URL http://www.jstatsoft.org/v64/i12/.

W. R. Mebane Jr, J. S. Sekhon, et al., Genetic optimization using derivatives: the
rgenoud package for R, Journal of Statistical Software 42 (11) (2011) 1–26.

M. D. Morris, Factorial sampling plans for preliminary computational experiments, Tech-
nometrics 33 (2) (1991) 161–174.

M. D. Morris, T. J. Mitchell, D. Ylvisaker, Bayesian design and analysis of computer
experiments: Use of derivatives in surface prediction, Technometrics 35 (3) (1993)
243–255.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine learning in
python, The Journal of Machine Learning Research 12 (2011) 2825–2830.

J. C. Platt, C. J. Burges, S. Swenson, C. Weare, A. Zheng, Learning a Gaussian process
prior for automatically generating music playlists., in: NIPS, 1425–1432, 2001.

J. Pousi, J. Poropudas, K. Virtanen, Game theoretic simulation metamodeling using
stochastic kriging, in: Proceedings of the 2010 Winter Simulation Conference, ISSN
0891-7736, 1456–1467, doi:\bibinfo{doi}{10.1109/WSC.2010.5679048}, 2010.

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation
for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/, 2014.

P. Ranjan, R. Haynes, R. Karsten, A computationally stable approach to Gaussian
process interpolation of deterministic computer simulation data, Technometrics 53 (4)
(2011) 366–378.

C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, The MIT
Press abs/1309.6835, URL http://www.gaussianprocess.org/gpml/chapters/RW.

pdf.

O. Roustant, D. Ginsbourger, Y. Deville, DiceKriging, DiceOptim: Two R Packages
for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Opti-
mization, Journal of Statistical Software, Articles 51 (1) (2012) 1–55, ISSN 1548-7660,
doi:\bibinfo{doi}{10.18637/jss.v051.i01}, URL https://www.jstatsoft.org/v051/

i01.

J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, Design and analysis of computer
experiments, Statistical Science (1989) 409–423.

T. J. Santner, B. J. Williams, W. Notz, The Design and Analysis of Computer Experi-
ments, Springer Science & Business Media, 2003.

31



SAS Products: JMP, SAS Products: JMP, retrieved August 01, 2016, from http://

support.sas.com/software/products/jmp/, 2016.

scikit-learn developers, scikit-learn Release history, Retrieved January 16, 2017, from
http://scikit-learn.org/stable/whats_new.html, 2016a.

scikit-learn developers, sklearn.gaussian process.GaussianProcessRegressor, retrieved
January 14, 2017, from http://scikit-learn.org/stable/modules/generated/

sklearn.gaussian_process.GaussianProcessRegressor.html, 2016b.

E. Snelson, Z. Ghahramani, Sparse Gaussian processes using pseudo-inputs, in: Ad-
vances in Neural Information Processing Systems, 1257–1264, 2005.

C.-L. Sung, R. B. Gramacy, B. Haaland, Potentially predictive variance reducing sub-
sample locations in local Gaussian process regression, ArXiv e-prints .

S. Surjanovic, D. Bingham, Virtual Library of Simulation Experiments: Test Functions
and Datasets, retrieved March 29, 2016, from http://www.sfu.ca/~ssurjano, 2016.

The GPy authors, GPy: A Gaussian process framework in python, URL http:

//github.com/SheffieldML/GPy, 2012–2015a.

The GPy authors, Welcome to GPy’s documentation!, retrieved Oct 03, 2016, from
https://pythonhosted.org/GPy/index.html, 2015b.

N. Villa-Vialaneix, M. Follador, M. Ratto, A. Leip, A comparison of eight metamod-
eling techniques for the simulation of N2O fluxes and N leaching from corn crops,
Environmental Modelling & Software 34 (2012) 51–66.

C. K. Williams, D. Barber, Bayesian classification with Gaussian processes, Pattern
Analysis and Machine Intelligence, IEEE Transactions on 20 (12) (1998) 1342–1351.

M. A. Woodbury, Inverting modified matrices, Memorandum report 42 (1950) 106.

B. Worley, Deterministic uncertainty analysis, Tech. Rep. ORN-0628, National Technical
Information Service 5285 Port Royal Road, Springfield, VA 22161, USA.

H. Yin, G. Wen, H. Fang, Q. Qing, X. Kong, J. Xiao, Z. Liu, Multiobjective crashwor-
thiness optimization design of functionally graded foam-filled tapered tube based on
dynamic ensemble metamodel, Materials & Design 55 (2014) 747–757.

32


