@‘ ATL-DAQ-PROC-2017-021
X |28 July 2017

Proceedings of the 2017 Winter Simulation Conference
W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer, and E. Page, eds.

TOPOGEN: A NETWORK TOPOLOGY GENERATION ARCHITECTURE WITH
APPLICATION TO AUTOMATING SIMULATIONS OF SOFTWARE DEFINED NETWORKS

Andrés Laurito Matias Bonaventura
Departamento de Computacién Departamento de Computacién
Facultad de Ciencias Exactas y Naturales (FCEyN) FCEyN, UBA and ICC, CONICET
Universidad de Buenos Aires (UBA) Pab. 1, C1428EGA, Buenos Aires, ARGENTINA

Pab. 1, C1428EGA, Buenos Aires, ARGENTINA

Mikel Eukeni Pozo Astigarraga Rodrigo Castro
European Laboratory for Particle Physics, CERN Departamento de Computacién
Geneva 23, CH-1211 FCEyN, UBA and ICC, CONICET
SWITZERLAND Pab. 1, C1428EGA, Buenos Aires, ARGENTINA
ABSTRACT

Simulation is an important tool to validate the performance impact of control decisions in Software Defined
Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design
process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and
tool for systematic translation and generation of network topologies. TopoGen can be used to generate
network simulation models automatically by querying information available at diverse sources, notably SDN
controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured
knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or
new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers
and generators to grow its scope of applicability. This allows to design arbitrary workflows of topology
transformations. We tested TopoGen in a network engineering project for the ATLAS detector at CERN.

1 INTRODUCTION

Operational computer networks are subjected to frequent reconfigurations in an effort to maintain their quality
of service under uncertain conditions (produced by hardware, software or human failures). Meanwhile,
the rapidly emerging Software Defined Networks (SDNs) technology offers an unprecedented capability
to automatically and programmatically reconfigure large network topologies without the intervention of
human operators. This new flexibility comes at the price of error proneness: the point of failure gets now
shifted to the software that decides on network reconfiguration actions. The verification and validation of
SDN-based design options becomes key to minimize the risk of deploying a faulty system.

Network simulation has long been an efficient tool to gain confidence with networks at design time.
When network simulation models are built based on real, changing topologies, each modification implies
the need for updating the simulation model accordingly.

The standard practice is to upgrade topology descriptions manually for a given modeling and simulation
tool of choice. Such manual changes can get considerably time-consuming and error-prone, in particular
for medium- to large-sized networks.

Laurito, Bonaventura, Pozo Astigarraga, and Castro

In this paper we introduce TopoGen, an SDN-oriented topology generator tool and reference architecture
designed to create network simulation models automatically based on parseable network descriptions. Such
descriptions rely on an intermediate topology abstraction that can be generated automatically, programmed
manually from scratch or a mix of both (translated automatically first, tailored via programming later).

When dealing with the simulation of existing networks, TopoGen allows simulation models to keep up
with frequent topology changes thanks to a Topology Intermediate Format (TIF) that can be automatically
generated by querying real SDN controllers. For design phases where the real network does not exist yet,
the network can also be prototyped using a Network Topology Model (NTM), an object-oriented network
topology description language (based on Ruby). Thus, network designers do not need to be acquainted
with the specifics of any particular network simulator.

NTM and TIF are two different pieces of the architecture, and none is intended to replace existing
network description languages (in fact, such existing languages can take the role of input/output formats
consumed/produced by TopoGen). We opted for defining our custom TIF to act as an in-memory relay
format, independent of any third party existing language to describe networks. Regarding NTM, it belongs
to the category of network specification languages, but has the salient feature that multi-hop flows can
be described explicitly. Besides, NTM is native to TIF making the NTM Builder a trivial one-to-one
object mapper. This sets an operational baseline that is agnostic of any third party language. Yet, the
architecture leaves the door open for new Builders to be developed to accommodate known network
description languages.

TopoGen can retrieve network topologies from different sources, in particular from SDN controllers
such as the widely deployed ONOS (Berde et al. 2014) and OpenDayLight (Medved et al. 2014)
implementations, and can generate simulation models for different outputs, notably DEVS-based simulators
such as PowerDEVS (Bergero and Kofman 2011).

We show an application of TopoGen to a real-world network design project in the context of the Trigger
and Data Acquisition (TDAQ) network of the ATLAS Experiment at CERN (ATLAS Collaboration 2008).
A new network layer is added to a preexisting infrastructure, comprising approximately 120 nodes and 240
high speed links. TopoGen is first used to retrieve a candidate network topology prototyped by network
engineers in Mininet (de Oliveira et al. 2014) connected to an ONOS SDN controller. Then, the topology is
augmented with additional nodes to provide a more exhaustive representation of the future network whose
performance is studied.

2 BACKGROUND
2.1 Software Defined Networking

Software Defined Networking (SDN) is an emerging architectural approach for computer networks where
control logic is taken away from switching devices and moved up to centralized software running in
controller devices (Kreutz et al. 2015).

In this new architecture, switching devices are lumped into much simpler packet forwarding elements
operating at the so-called Data Plane. Controllers decide on and set up forwarding rules for each connected
switching device, in an effort to comply with the overall quality of service requirements for the entire
network. Controllers operate at the so-called Control Plane and concentrate most of the network service
logic (e.g. monitoring, packet forwarding decisions -in case no rules are set up-, network topology discovery,
etc.) Popular centralized SDN controller implementations (ONOS, OpenDayLight, Nox, Floodlight) provide
different functionalities through APIs.

While the SDN approach promises boosted network flexibility, reconfigurability and scalability, the
overall performance of the SDN main elements (the controller and its software components) is not yet
clearly understood (Fernandes 2017). SDN performance is the motivation for active research to assess
system limits (e.g. maximum forwarding rate and latency) recognizing that each controller implementation
can perform very differently in different settings (Zhao et al. 2015). Moreover, even when correct at the

Laurito, Bonaventura, Pozo Astigarraga, and Castro

functional level, the control actions decided by an efficient controller may provoke undesired inefficiencies
at the performance level in the underlying controlled network.

In this context, modeling and simulation-driven network engineering (Bonaventura et al. 2016) stands
as a promising strategy: system verification with dynamic simulations can mitigate the risks of deploying
functional SDN controllers that may cause poor quality of performance. Among the services implemented
by SDN controllers, topology discovery keeps the topology information updated. Another service is the
exposure of the known information about the network, usually by means of APIs (providing e.g. number of
nodes, hosts, links, etc., and network metrics such as number of bytes forwarded per link, packet loss rates
per port, etc.). TopoGen harnesses SDN services to systematically create up-to-date simulation models.

2.2 DEVS-Based Network Simulation With PowerDEVS

PowerDEVS (Bergero and Kofman 2011) is a discrete event simulator that implements the DEVS mathemat-
ical formalism (Zeigler et al. 2000) capable of representing any type of discrete system and approximating
continuous systems with controlled accuracy. PowerDEVS provides a graphical interface to compose DEVS
models via hierarchical block diagrams. While PowerDEVS can represent any kind of discrete-event system,
it provides a model library specific to computer network simulation (Castro and Kofman 2015).

In PowerDEVS systems can be built by composing graphically pre-developed units of behaviour (atomic
models) and structures (coupled models) from a model library (e.g. routers, switches, links, generators,
etc.) and interconnecting them through input/output ports. In DEVS, structure and behaviour are kept
under strict separation. The interconnection of several atomic and/or coupled models creates the coupling
information and in our case matches the network topologies directly.

As with other simulators, defining large topologies graphically can be a tedious task. Vectorial DEVS
(Bergero and Kofman 2014) makes it possible to graphically represent multiple instances, but only for
regular topologies. Also, there is a possibility to program the network topology in C++ at the cost of higher
code complexity and a detachment between code and graphical layouts.

We adopt the DEVS formalism and the PowerDEVS tool in our case study as they currently support the
TDAQ network engineering team of the ATLAS experiment at CERN (Bonaventura et al. 2016, Foguelman
et al. 2016), introduced below. Yet, the TopoGen architecture could be directly applied to produce network
topologies for any other DEVS-based toolkits (Van Tendeloo and Vangheluwe 2017) that accepts a file-based
structured specification of models (e.g. CD++ (Bonaventura et al. 2013) or VLE (Quesnel et al. 2009)).

3 RELATED WORK

There are several network simulators available both for commercial and academic use (Wehrle et al. 2010).
They vary in several aspects: the discrete-event techniques and principles (sequential or parallel, replication-
or decomposition-based, CPU- or GPU-based) (Ngangue Ndih and Cherkaoui 2015); the library of reusable
models, and the software interfaces to assist the modeling activity (e.g. to define a network topology).

In some simulation packages network model behaviour and model topology are defined intermingled
in the code (e.g. NS-3 (Carneiro 2010)). While this allows for great flexibility, the code can soon become
too complex to understand, debug and maintain. A number of simulation tools (e.g. OPNET (Chang 1999),
OMNET++ (Varga and Hornig 2008)) provide graphical editors which allow for an easy and compact
understanding of the network topology, separating topology from model behaviour.

Nevertheless, defining a topology graphically can soon become inflexible for mid- to large-sized
topologies (adding thousands of nodes with drag and drop methods can be very tedious and time-consuming).
To address this issue some tools combine graphical editors with domain-specific languages (e.g. OMNET++)
making it possible to parametrize the number of nodes and use programming-like structures to describe
regular interconnect structures. This approach is efficient to describe large, mostly regular, topologies, but
presents some limitations: 1) the modeler learns a description language that is specific to a single simulation

Laurito, Bonaventura, Pozo Astigarraga, and Castro

tool, 2) a new topology always needs to be created from scratch, and 3) when dealing with an existing
network, there is no guarantee that a network description accurately represents the real system.

The alternative presented in this paper tends to mitigate these problems by accommodating all the
aforementioned methods under a common architecture to define/transform network topologies: either using
a graphical editor (when available), programming code (when desired), or using automatic data retrieval
(e.g. from SDN controllers, if needed).

Meanwhile, network description languages exist beyond the simulation domain. For example, YANG
(Bjorklund 2010) relies on an XML oriented approach. VXDL (Koslovski et al. 2008) allows to specify
virtual resources, interconnections, topology, etc. in great detail. NDL (Van der Ham et al. 2007) can
describe optical networks and is used by applications to query network capabilities to perform requests.
The Internet Topology Zoo (ITZ) (Knight et al. 2011) provides a wide range of real Internet topologies in
GML format (Himsolt 2010). Different software toolkits (including simulators) can find some languages
more suitable than others to retrieve network information. For example in (GroBmann and Schuberth 2013)
a GML parser was implemented to generate Mininet models out of I'TZ topologies.

Parsers and generators typically serve for a specific application and are usually coupled together. A
parser can not be reused to generate other formats and a generator can not be used with other input formats.

In this work we introduce an intermediate network format (a core piece of the architecture) to act as a
bridge between network definition languages and software tools willing to consume those descriptions. To
the best of our knowledge there exist no equivalent solutions that permit flexible and extensible translation
of various sources into various targets.

4 MOTIVATING CASE STUDY: DESIGNING THE FELIX NETWORK AT CERN

Detector front-end electronics

/ FELIX e FELIX \

system

COTS network
Lo) g
))/ =

R DCS Control/Config
A
S = Ny /=

High Level Trigger farm

Figure 1: FELIX system components.

L

The ATLAS experiment at CERN hosts one of the four detectors at the Large Hadron Collider (LHC)
where bunches of particles collide every 25 ns. Currently, the ATLAS detector generates information at
about 80 TB/s which needs to be filtered before it can be permanently stored for offline analysis. The TDAQ
layered system reduces a 40 MHz collision event rate down to 1 kHz by analyzing events in real time.
A first-level trigger (L1) uses custom electronics, filtering events down to roughly 100 kHz. L1-accepted
events are temporarily transfered over custom optical point-to-point fibers to 100 Read-Out System (ROS)
server nodes. The High Level Trigger (HLT) accesses events stored in the ROS to further filter the data
by running selection algorithms on approximately 2000 server nodes interconnected with 1 Gbps and 10
Gbps Ethernet links.

For 2025, the ATLAS experiment is planning full deployment of the new Front-End LInk eXchange
(FELIX) system (Anderson et al. 2015), shown in Figure 1, that aims at interfacing between detector
electronics and the TDAQ system. FELIX is meant to replace the custom point-to-point connections with

Laurito, Bonaventura, Pozo Astigarraga, and Castro

a Commercial-Off-The-Shelf (COTS) network technology (e.g. Ethernet, Infiniband, Omnipath). FELIX
servers will act as a routers between 24-48 detector serial links and 2-4 standard 40Gbps/100Gbps links.
FELIX servers will communicate with a smaller set of commercial servers, known as Software ReadOut
Drivers (SW ROD), used for data collection and processing of physics data. In addition, different components
need to connect to the FELIX servers. For example, the Detector Control System (DCS) monitors and
controls the detector front-end electronics while the Control & Configuration system sets up and manages
data acquisition applications.

The FELIX project is planned to be implemented in two phases. In 2018-2019 some detector hardware
will be moved to this new schema (approx. 68 FELIX and 44 SW ROD servers will be installed). A
complete migration of the remaining hardware is planned for 2025. Part of this effort consists of designing
and implementing a network that can meet the demands of the system (high-availability, high-throughput,
low-latency, redundancy, etc.)

Dataflow modeling and simulation methodology supports the design of the network and aids in the
decision process (e.g. for selecting technologies, topologies, node distributions, etc.). Yet, the generation of
many possible simulation scenarios to be evaluated is currently a manual process which is time-consuming,
error-prone and does not provide an automated update procedure.

5 TOPOGEN: A TOPOLOGY GENERATION AND TRANSFORMATION ARCHITECTURE

TopoGen is a flexible architecture for network topology description, generation and translation. Yet, its
conception was motivated by technology-specific needs, namely, to obtain a graph model representation
of a network topology by querying SDN controllers (such as ONOS and OpenDayLight) and to generate
DEVS simulation models for the PowerDEVS tool (according to the goals described in section 4). In
this section we describe the overall architecture of TopoGen and some illustrative implementation-related
details using the ONOS SDN controller as a sample source for topology information, and PowerDEVS as
a sample destination for simulation.

5.1 Architecture

In Figure 2 (a) the architectural module viewtype of TopoGen is outlined. Its main components are:

TopologyGenerator
Y NTM Output

NTI
NTMLink | |NTMHost | | _WF0 NTM

Retrleves, ONOS | Creates Builder | | Builder | | [OMEr e
onos / from Provider Topol A 7
Intermediate BEIISVES o
TopologyGenerator Format) from = Creates
s NTM
a3 pen Builder
Network———————>Provider Builder ——————* Output RGN % DayLight —Creates PowerDEVS Output
Retrieves Creates om Provider
from | PowerDEVS Croaths r-luw,deﬁniliun TR
Retrjeves from B"'lde'
— U T o links_definition | | hosts_definiti
Creates N se-~Use Use U inks_definition | | hosts_definition
Topology o ooteves, N . 2 S B scilabParams | | scilabParams
Intermediate. nstance _/ from Provider P L N
Fm PowerDEvs | |PORCDEVS| I powerEvs | |PowerDEVS it
Flow Builder oute Host Builder | | Link Builder T CLETTE
Builder scilabParams
(a) TopoGen high-level architectural view (b) Providers and Builders currently implemented

Figure 2: TopoGen architectural views.

e Network: A network description to be loaded, modified or translated. It can be either a real network
(e.g. one described by an SDN controller) or a virtual one described by some description language.

e Provider: A component that handles the interaction with the Network component. A Provider retrieves
(parses) network information (such as nodes, resources, connections) and translates it into a common
Topology Intermediate Format. A Provider component is specialized to the Network component to
be accessed. Built-in providers are discussed in section 5.2.

Laurito, Bonaventura, Pozo Astigarraga, and Castro

o Topology Intermediate Format (TIF): The internal in-memory representation of a network topology,
written by any Provider and read by any Builder. The main goal of a TIF is to serve as an internal
abstraction layer that permits orchestration of different Builders and Providers in a flexible way.

e Builder: A component that parses a TIF and serializes it according to a desired output. A Builder
component is specialized to the Output component to be generated. Built-in builders are discussed
in section 5.2.

e Output: An output format that some Builder must comply with in order to perform a translation
from the TIF format. The Output can consist of a single file or a set of files, depending on the
requirements of the software tool that will ultimately consume them.

5.2 Built-in Providers and Builders

Figure 2 (b) shows a more detailed component diagram of TopoGen as developed for this work. It shows
different Builder implementations according to the requirements of the expected Output. The implemented
components are:

e Providers. Network Topology Model (NTM): The NTM provider serializes topologies described
with NTM, an object-oriented network topology description language (NTM is based on Ruby, and
is detailed in section 5.3). NTM can be used to model existing networks or to draft new designs.
ONOS and OpenDayLight: Providers for the ONOS and OpenDayLight SDN Controllers retrieve
topology information by accessing their exposed APIs. These are examples of parsing existing
operative networks.

e Builders. NTM: This builder serializes a network described in the TIF format, creating a new NTM
instance. This instance is typically used to programmatically customize a topology retrieved from
different sources before generating a final target Output. An example of topology augmentation
is presented in section 6. PowerDEVS: This builder creates a PowerDEVS model simulation
structure. It relies on parameterizable DEVS atomic models that provide basic behavioural building
blocks. The builder hierarchically composes DEVS atomic models to create DEVS coupled models
with more complex behaviours. Typical DEVS atomic models are queues, links, etc. For instance,
to compose a switch, several atomic models of input/output queues are composed together and
parameterized as Prioritized Queues with the Quality of Service (QoS) flag activated. Meanwhile, in
order to compose a regular host, only one input/output queue is needed parameterized as a standard
non-prioritized NIC queue.

Providers and Builders are decoupled by means of the Topology Intermediate Format. Any provider
implementation can be used with any builder implementation. TopoGen can be extended by defining new
providers and builders at will. Provider and Builder classes implement a Strategy Pattern, where each
strategy is implemented outside TopoGen. This allows TopoGen to be adapted to different scenarios while
implementing each provider and builder only once.

5.2.1 Class Diagram

Figure 3 presents a class diagram for the TopoGen implementation in the Ruby language.

When TopoGen is used, an instance of TopologyGenerator class is created and the initialize method is
invoked with parameters denoting a provider, a builder (the directory where the output will be stored) and a
URI (from where to retrieve the topology from). The TopologyGenerator class has one TopologyProvider and
one OutputBuilder instance. The TopologyProvider class can be mapped to the Provider component showed
in Figure 2 (a). This class has four children: OnosTopologyProvider and OpenDaylightProvider classes
encapsulate the logic for retrieving information from SDN controllers’ APIs. The ObjectTopologyProvider
class retrieves a topology from a Topology instance. Finally, the CustomTopologyProvider class retrieves
information from a NTM instance.

Laurito, Bonaventura, Pozo Astigarraga, and Castro

OutputBuilder Topology Elements

Path Flow Distributions

Use Use

Flow

TopologyGenerator Topology Use Implements
Use

SerializeBehaviour -

Use.._. | TopologyProvider chid Host

s parent
parent T . Implements

paren o . ParetoDistribution

it
child child child child NetworkElement ~ P2e™

child Link

ONOSProvider | OpenDayLi

Figure 3: TopoGen class diagram.

The Topology class in Figure 3 plays the role of the TIF in the architecture (Figure 2 (a)). It
uses TopologyElements classes to represent the elements in the network. A Topology can have multiple
TopologyElements, however every TopologyElement belongs to a unique Topology. The TopologyElements
box contains all the classes that can be used to create elements in a Topology instance. The NetworkElements
class represents an abstraction of the physical elements of the network (in this case Host, Link and Router).
The Flow and NetworkElement classes implement a SerializeBehaviour, which is a module for serializing
classes. The Flow class represents a flow of packets between hosts. When creating a Flow instance, a
packet rate distribution and a packet size distribution are needed. Distribution classes are shown in the
Flow Distribution box. Finally, the OutputBuilder class represents the component Builder in Figure 2 (a).

5.3 The Network Topology Model

The Network Topology Model (NTM) is an object oriented approach to represent data networks in Ruby.
NTM makes it possible to describe all the elements in a network: physical elements (e.g. hosts, routers,
links, etc.), and logical elements (e.g. data flows, routing paths, etc). NTM is currently dependent on
TopoGen as it was designed to be used by the CustomTopologyProvider class (see Figure 3).

Router1

.-
Host3
L5

Figure 4: Simple network topology to be described with NTM.

The following NTM Ruby code describes the network shown in Figure 4 including the communication
flow between Hostl and Host3:

1 module NetworkTopology

2 def get_topology

3 return @topology.topology_elements unless (@topology.topology_elements.size ==
4 hosts = []

5 router = @topology.add_router "Routerl"

6 for i in 0..2

7 host = @topology.add_host "Host#{i}"

8 hosts.push host

9 end

10 bwidth = 500+x1000«1000 # 500 Mbps

11 @topology.add_full_duplex_link "Link1l",hosts[0],0,router,0,bwidth
12 @topology.add_full_duplex_link "Link2",hosts[1],0,router,1,bwidth

Laurito, Bonaventura, Pozo Astigarraga, and Castro

13 @topology.add_full_duplex_link "Link3",hosts[2],0, router,2,bwidth

14 linkl = Qtopology.get_element_by_id "Linkl_up"

15 link2 = @topology.get_element_by_id "Link3_down"

16 flow_1_path = Path.new hosts[0], hosts[2]

17 flow_1_path.add_link linkl

18 flow_1_path.add_link 1link2

19 @topology.add_flow "Flowl",10, [flow_1_path], (ExpDistrib.new 1.0/6875), (
ConstDistrib.new 1000%8)

20 @topology.topology_elements

21 end

22 end

Each NTM instance must define a NetworkTopology module (line 1) and a get_topology method (line 2)
which returns the elements added in the Topology instance (variable @topology). To create the topology,
the router is first added in line 5 (add_router method). The hosts are defined in lines 6-9 (add_host method)
with a unique identifier for each host. In lines 11-13 links are added using add_full_duplex_link. This
method expects an ID, a source element (an instance of Router or Host), a source port number, a destination
element, a destination port number and the bandwidth (in bps), and creates two source/destination links.

The first link goes from source to destination (its ID is the concatenation of strings up and the ID
receives). The second link goes from destination to source (its ID is the concatenation of strings down and
the ID received). The method returns the second link only. In lines 14 and 15 the links that define a path
between Hostl and Host3 are retrieved. In lines 16 to 18 a new path is created between Hostl and Host3
using the retrieved links. In lines 19 to 20 a new flow is added with the add_flow method (it expects an
ID, a flow priority, an array of possible paths for the flow, and stochastic distributions for packet rate and
size). The NTM description ends by returning the new elements with the fopology_elements method.

6 SUPPORT FOR DESIGNING THE FELIX NETWORK AT THE ATLAS DATA ACQUISITION
SYSTEM

In this section we describe TopoGen as applied in a real world scenario. The case study builds upon a
modeling and simulation-driven engineering process (Bonaventura et al. 2016) developed for the ATLAS
TDAQ network at CERN (Pozo Astigarraga et al. 2015). We show how TopoGen can assist the design
phase for the network to be implemented 2019-2020 in the ATLAS FELIX project (Anderson et al. 2015).

6.1 The FELIX Network Requirements

The FELIX network will provide connectivity between different components of the FELIX system (see
Figure 1) and will handle various types of traffic which differ in their throughput, latency, priority and
availability requirements. For example, the Detector Control System (DCS) that monitors and controls the
detector’s front-end electronics requires the highest priority and low latency to react fast, but is expected to
require low throughput. Meanwhile, the detector’s data will use most of the network bandwidth so it can
have less priority to avoid saturation. Table 1 summarizes the different traffic types and their requirements.

The communication patterns are also different for each type of traffic. While DCS traffic follows a
many-to-one pattern (all FELIX servers communicate with a single DCS server), Control and Monitoring
traffic require a many-to-few pattern. Detector data, on the other hand, uses a simple one-to-one or
two-to-one pattern from a FELIX server to SW RODs.

To provide confidence about the coexistence of these traffic types while meeting performance re-
quirements we adopt a modeling and simulation approach to study expected throughput and latency for
each traffic type, and anticipate possible bottlenecks. Although the high level requirements are defined,
each subsystem’s specification is updated often during the design process. Specific subsystem parameters
(throughput, processing times, etc.) will not be known until the final system is in place. Yet, simulation
can provide guidelines for realistic ranges of candidate parameter values (parameter sweeping).

Laurito, Bonaventura, Pozo Astigarraga, and Castro

FELIX
system

Table 1: FELIX traffic types and requirements.

FELIX Read-Out ity
ser\l;ers 2E8 Drivers ’"”] .. Comm.
Traffic type Throughput | Latency | Priority

Pattern
‘ == Custom Many
\ T DCS Low Low High to
Read-Out
I one
s == Man
Control and . y
Med. - High to
Config.
few
One
) Detector Data High - Med. to
High Level
Trigger Farm Processing one
Traffic type per link Units Many
— Monitoring High - Low to
— few

Figure 5: Topology of the FELIX system.

Technologies rely on different protocols, congestion control algorithms, and routing schemes which also
need to be considered in simulation studies. In particular, different restrictions are imposed over candidate
topologies depending on selected technologies (e.g. Ethernet allows for heterogenous link speeds, Infiniband
does not. Infiniband efficiently supports mesh and leaf-spine topologies, Ethernet supports topologies with
cycles but using algorithms that perform poorly). The simulation platform needs to be able to define all
these types of topologies in a flexible way to support agile design iterations.

6.2 Using TopoGen to Support the Modeling and Simulation Process

Figure 6 shows the workflow used while applying TopoGen to aid the modeling and simulation process
for the FELIX network. The workflow consists of three phases: first, the topology under design by the
networking team is automatically retrieved and serialized into an NTM instance; second, the NTM topology
is augmented programmatically with extra resources (nodes and data flows), and third the new topology is
serialized into a PowerDEVS simulation model. Hence a simulation model is automatically created from
an existing specification originally meant for other purposes. This workflow deals with topology changes
at design-time. Run-time adaptation of simulations to topology changes remains a subject of future work.

NTM

Topology onos Instances Augmented Structure
Discovery R

— REST ~NTM Topology & params o, results
Mininet g APl | Topology | nstances Topology =] 3

[simulated,:-
T L Generator
real Generator real real topolog

» topol topol
. "topology Jtofology tofology]

with)
1st use e 2nd use g

Figure 6: Modeling and simulation workflow using TopoGen.

simulation

B

NTM with
flows

In the first phase, the networking team provided a Mininet emulated environment used to test the
connectivity of a topology, including nodes only from the FELIX network. The ONOS SDN controller
was installed within the emulated environment to provide network discovery services. Then, the TopoGen
ONOS Provider was configured to connect with the REST API exposed by ONOS to query the topology.

Laurito, Bonaventura, Pozo Astigarraga, and Castro

Monitoring Traffic Latency Monitoring Traffic Latency
0.15 0.15

0.10

0.10

0.05 0.05

0.00 / 0.00 /

Monitoring Traffic Latency (s)
Monitoring Traffic Latency (s)

400 500 600 700 800 0 2500 5000 7500 10000
Total Monitoring Traffic Throughput per FELIX Server (Mbps) Total Monitoring Traffic Throughput per FELIX Server (Mbps)

(a) (b)

Figure 7: Simulated mean packet latency seen by the Traffic Monitoring servers. Link capacity allocated
to monitoring traffic: (a) 1 Gbps (b) 10 Gbps. Blue area: standard deviation. Red lines: min-max range.

Once the topology is retrieved, the TopoGen NTM Builder serialized it into an NTM instance for later
use. Each time the networking team updates their emulated topology, it can be retrieved again to keep the
NTM and simulation models up-to-date. The fact that the original topology was specified in an emulated
environment is transparent for TopoGen. In the second phase, additional nodes are added to the NTM
topology to also represent the HLT network (see Figure 5). To generate a meaningful simulation model
extra information is needed about the traffic generated by different servers. Nodes and data flows, along
their respective parameters, were added programmatically into the original NTM instance guided by the
network engineers. For this case study, only the Detector Data traffic type and the Monitoring traffic type
were considered (see Table 1). In the third phase, the augmented NTM instance is loaded by the TopoGen
NTM Provider and used by the PowerDEVS Builder to generate all necessary files for simulation.

The network actually simulated with PowerDEVS is the one presented in Figure 5. It includes the FELIX
network nodes (automatically retrieved from the SDN controller) and the HLT network nodes, the Detector
Data and Monitoring traffic flows (added programmatically with NTM). This case study focused on network
behaviour under different intensities of Monitoring traffic rates, matching an engineering requirement.

6.3 Simulation Results

We studied the potential effects on the average latency of FELIX Monitoring traffic in the case of an
upgrade of the bottleneck links from 1 Gbps to 10 Gbps. Figure 7 (a) shows the average packet latency for
FELIX Monitoring flows in different scenarios with increasing monitoring throughput for all servers. As
monitoring traffic grows the latency slightly increases until a transition is observed at the point when each
server generates 650 Mbps of monitoring data. After that point the latency increases rapidly denoting the
presence of congestion. The buffer sizes and link utilization at the switches (not included in this report)
indicate that the source of congestion are the 1 Gbps links of monitoring servers. We then updated the
topology in the NTM instance, now with a link capacity of 10 Gbps for monitoring nodes. The PowerDEVS
simulation model was regenerated with TopoGen, and new experiments were run. Figure 7 (b) shows how
the saturation point moves up to 6500 Mbps of monitoring traffic. The congestion point in the topology
remains at the links directly connecting the monitoring servers.

7 CONCLUSIONS

We presented TopoGen, a reference architecture and tool for systematic translation and generation of network
topologies. We also introduced NTM, a network topology model to describe networks programmatically

Laurito, Bonaventura, Pozo Astigarraga, and Castro

using the Ruby language. Decoupled Providers, Builders, and a Topology Intermediate Format allow the
creation of flexible topology transformation workflows that can suit diverse needs. We focused on the
generation of DEVS simulation models starting from network information available at SDN Controllers.

We applied TopoGen successfully in the context of a real-world network design process: the FELIX
system of the ATLAS TDAQ network at CERN. TopoGen proved effective to retrieve a large topology from
an ONOS controller, export it to a programmable network model, augment the model manually according
to particular simulation needs, and generate a fully operational DEVS simulation for the PowerDEVS tool.

When compared with previous experiences in our team achieving the same results and in the same
context, TopoGen strongly reduced the time to completion, complexity and error-proneness. Future steps
for TopoGen include increasing the number of available Providers to include more SDN controllers and
network description formats, as well as new Builders for other DEVS and also non-DEVS based simulators.

REFERENCES

Anderson, J., A. Borga, H. Boterenbrood, H. Chen, K. Chen, G. Drake, D. Francis, B. Gorini, F. Lanni,
G. L. Miotto et al. 2015. “FELIX: a high-throughput network approach for interfacing to front end
electronics for ATLAS upgrades”. In Journal of Physics: Conf. Series, Volume 664, 082050. IOP.

ATLAS Collaboration 2008. “The ATLAS Experiment at the CERN Large Hadron Collider”. Journal of
Instrumentation 3 (08): S08003.

Berde, P., M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov,
W. Snow et al. 2014. “ONOS: towards an open, distributed SDN OS”. In Proceedings of the third
workshop on Hot topics in software defined networking, 1-6. ACM.

Bergero, F., and E. Kofman. 2011. “PowerDEVS: a tool for hybrid system modeling and real-time simulation”.
Simulation 87 (1-2): 113-132.

Bergero, F., and E. Kofman. 2014. “A vectorial DEVS extension for large scale system modeling and
parallel simulation”. Simulation 90 (5): 522-546.

Bjorklund, M. 2010, October. “YANG-A data modeling language for the Network Configuration Protocol”.
RFC 6020, IETF.

Bonaventura, M., D. Foguelman, and R. Castro. 2016. “Discrete event modeling and simulation-driven
engineering for the ATLAS data acquisition network”. Computing in Science & Engineering 18 (3):
70-83.

Bonaventura, M., G. Wainer, and R. Castro. 2013. “Graphical modeling and simulation of discrete-event
systems with CD++ Builder”. Simulation 89 (1): 4-27.

Carneiro, G. 2010. “NS-3: Network simulator 3”. In UTM Lab Meeting April, VYolume 20.

Castro, R., and E. Kofman. 2015. “An integrative approach for hybrid modeling, simulation and control
of data networks based on the DEVS formalism”. In Modeling and Simulation of Computer Networks
and Systems: Methodologies and Applications, Chapter 18. Morgan Kaufmann.

Chang, X. 1999. “Network simulations with OPNET”. In Simulationl EEE Conf. Proceedings, 1999 Winter,
Volume 1, 307-314. IEEE.

de Oliveira, R. L. S., C. M. Schweitzer, A. A. Shinoda, and L. R. Prete. 2014. “Using Mininet for emulation
and prototyping Software-Defined Networks”. In 2014 IEEE Colombian Conf. on Communications and
Computing (COLCOM), 1-6.

Fernandes, S. 2017. Performance Evaluation for Network Services, Systems and Protocols. Springer.

Foguelman, D., M. Bonaventura, and R. Castro. 2016. “MASADA: A Modeling and Simulation Automated
Data Analysis framework for continuous data-intensive validation of simulation models”. In 30th Annual
European Simulation and Modelling Conf., Volume 30, 34—42. Eurosis.

GroBmann, M., and S. J. Schuberth. 2013. “Auto-Mininet: Assessing the Internet Topology Zoo in a Software-
Defined Network Emulator”. Messung, Mellierung un Bewertung von Rechensystemen (MMBnet) 7.

Himsolt, M. 2010. “GML: A portable graph file format”. Technical report, Universitit Passau.

Laurito, Bonaventura, Pozo Astigarraga, and Castro

Knight, S., H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. “The internet topology zoo”.
IEEE Journal on Selected Areas in Communications 29 (9): 1765-1775.

Koslovski, G. P, P. V.-B. Primet, and A. S. Charao. 2008. “VXDL: Virtual resources and interconnection
networks description language”. In Intl. Conf. on Networks for Grid Applications, 138—154. Springer.

Kreutz, D., F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. 2015.
“Software-defined networking: A comprehensive survey”. Proceedings of the IEEE 103 (1): 14-76.

Medved, J., R. Varga, A. Tkacik, and K. Gray. 2014. “Opendaylight: Towards a model-driven sdn controller
architecture”. In A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE 15th
International Symposium on, 1-6. IEEE.

Ngangue Ndih, E. D., and S. Cherkaoui. 2015. “Simulation methods, techniques and tools of computer
systems and networks”. In Modeling and Simulation of Computer Networks and Systems: Methodologies
and Applications, edited by M. S. Obaidat, F. Zarai, and P. Nicopolitidis, Chapter 17. Morgan Kaufmann.

Pozo Astigarraga, M., E. ATLAS Collaboration et al. 2015. “Evolution of the ATLAS trigger and data
acquisition system”. In Journal of Physics: Conf. Series, Volume 608, 012006. IOP.

Quesnel, G., R. Duboz, and E. Ramat. 2009. “The Virtual Laboratory Environment—An operational framework
for multi-modelling, simulation and analysis of complex dynamical systems”. Simulation Modelling
Practice and Theory 17 (4): 641-653.

Van der Ham, J., P. Grosso, R. Van der Pol, A. Toonk, and C. De Laat. 2007. “Using the network
description language in optical networks”. In Integrated Network Management, 2007. im’07. 10th
IFIP/IEEE International Symposium on, 199-205. IEEE.

Van Tendeloo, Y., and H. Vangheluwe. 2017. “An evaluation of DEVS simulation tools”. Simulation 93
(2): 103-121.

Varga, A., and R. Hornig. 2008. “An overview of the OMNeT++ simulation environment”. In Proceedings
of the Ist international conf. on Simulation tools and techniques for communications, networks and
systems, 60. ICST.

Wehrle, K., M. Giines, and J. Gross. 2010. Modeling and tools for network simulation. Springer.

Zeigler, B. P, H. Prachofer, and T. G. Kim. 2000. Theory of modeling and simulation: integrating discrete
event and continuous complex dynamic systems. Academic press.

Zhao, Y., L. Iannone, and M. Riguidel. 2015. “On the performance of SDN controllers: A reality check”.
In IEEE Conf. on Network Function Virtualization and Software Defined Networks, 79-85. IEEE.

AUTHOR BIOGRAPHIES

ANDRES LAURITO is an MASc student in Computer Science in the Departamento de Computacion,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. His thesis explores new intent
programming languages for SDN with semantic checking. His email address is alaurito@dc.uba.ar

MATAS BONAVENTURA is an MASc in Computer Science and a PhD student in the Departamento
de Computacin, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and a project
associate with the ATLAS TDAQ group (CERN). His research interests are hybrid continuous/discrete
modeling and simulation of networked computing systems. His email address is mbonaventura@dc.uba.ar.

MIKEL EUKENI POZO ASTIGARRAGA is a data acquisition engineer in the ATLAS TDAQ group
(CERN). He specializes in high throughput-high availability networks, with research interests include SDN
and data center protocols. His email address is mikel.eukeni.pozo.astigarraga@cern.ch.

RODRIGO CASTRO is a Professor in the Departamento de Computacion, Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, head of the Simulation Lab, and a researcher at CONICET. His
research interests include simulation and control of hybrid systems. His email address is rcastro@dc.uba.ar.

mailto://alaurito@dc.uba.ar
mailto://mbonaventura@dc.uba.ar
mailto://mikel.eukeni.pozo.astigarraga@cern.ch
mailto://rcastro@dc.uba.ar

	Introduction
	Background
	Software Defined Networking
	DEVS–Based Network Simulation With PowerDEVS

	RELATED WORK
	Motivating case study: Designing the FELIX network at CERN
	TopoGen: A Topology Generation and Transformation Architecture
	Architecture
	Built-in Providers and Builders
	 Class Diagram

	The Network Topology Model

	Support for designing the FELIX network at the ATLAS Data Acquisition System
	The FELIX Network Requirements
	Using TopoGen to Support the Modeling and Simulation Process
	Simulation Results

	Conclusions

