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ABSTRACT

We develop a new unbiased estimation method for Lipschitz continuous functions of multi-dimensional
stochastic differential equations with Lipschitz continuous coefficients. This method provides a finite
variance estimator based on a probabilistic representation which is similar to the recent representations
obtained through the parametrix method and recursive application of the automatic differentiation formula.
Our approach relies on appropriate change of variables to carefully handle the singular integrands appearing in
the iterated integrals of the probabilistic representation. It results in a scheme with randomized intermediate
times where the number of intermediate times has a Pareto distribution.

1 INTRODUCTION

For d ≥ 1, we consider the process {X t,x
s ;s≥ t} which is the solution of the following stochastic differential

equation (SDE):

dX t,x
s = b(s,X t,x

s )ds+σ(s,X t,x
s )dWs, s≥ t, X t,x

t = x,

where W is a d-dimensional Wiener process and for fixed time T > 0, the coefficients b : [0,T ]×Rd→Rd

and σ : [0,T ]×Rd→S d satisfy some standard assumptions. Here, S d denotes the set of d×d dimensional
matrices. We are interested to calculate for some bounded measurable function g the following expectation

u(t,x) = E[g(X t,x
T )].

When no explicit solution is available for X t,x
T , the classical approach is to estimate the expectation by using

time discretization schemes such as Euler (Platen and Kloeden 1992) and Milstein (Milstein 1975) schemes.
We can also use Gaussian approximations with some corrections (Bompis and Gobet 2014). However, due
to the time discretization step, these methods inherently contain a bias which vanishes asymptotically. A
way to address this issue is through bias reduction schemes such as the randomization method (random
number of discretization steps) of Rhee and Glynn (2015) which can be seen as a randomized version
of the multilevel Monte Carlo method of Giles (2008). However, the randomization method has a finite
cost but infinite variance in full generality (when b,σ ,g are Lipschitz continuous). The variance of the
randomization method based estimator is finite when σ is constant and b is C2

b , indeed, as the Euler scheme
then converges strongly at order 1 (for k ∈ N, Ck

b stands for the set of bounded continuous functions ϕ

from one Euclidean space to another, k times continuously differentiable with bounded derivatives). Our
aim is to propose a new unbiased estimation scheme for u(t,x), in the multidimensional setting d ≥ 1 with
finite cost such that the estimator has finite variance in the case when b,σ and g are Lipschitz continuous.
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Some of the recent approaches in this direction involve generating unbiased samples of g(X t,x
T ) using

the method of exact simulation by Beskos and Roberts (2005) and Chen and Huang (2013). Note that these
schemes essentially handle one-dimensional situations. More recently, for time-independent coefficients
b and σ , Kohatsu-Higa and co-authors (Bally and Kohatsu-Higa 2015, Andersson and Kohatsu-Higa
2017) have proposed two new schemes (the so-called forward (F) and backward (B) methods) based on
parametrix techniques (infinite series expansion). After reinterpreting the infinite series using a Poisson
process (Nt : t ≥ 0) (with parameter λ > 0), these forward and backward methods take the following form

E
[
g(X0,x0

T )
]
= eλTE

[
Φ(Xπ

T )
NT−1

∏
i=0

λ
−1

θτi+1−τi(X
π
τi
,Xπ

τi+1
)

]
(1)

where π := (τi : i≥ 1) are the Poisson jump times on [0,T ]. In the above Xπ is a Euler scheme based on
the grid π , with drift µ and diffusion σ , with some initialization according to a probability measure ν(dx),
and θt(x,y) := 1

2 ∑
d
i, j=1 κ

i, j
t (x,y)−∑

d
i=1 ρ i

t (x,y), for some functions κ and ρ . More precisely, we have the
following:

The forward method is defined by (see Bally and Kohatsu-Higa (2015), Theorems 5.7 and 7.1)
ν(dx) := δx0(x), Φ(x) := g(x), µ(x) := b(x), a(y) := σσ>(y),
κ

i, j
t (x,y) := ∂ 2

i, ja
i, j(y)+∂ jai, j(y)H i

ta(x)(y− x−b(x)t)

+∂iai, j(y)H j
ta(x)(y− x−b(x)t)+(ai, j(y)−ai, j(x))H i, j

ta(x)(y− x−b(x)t),

ρ i
t (x,y) := ∂ibi(y)+(bi(y)−bi(x))H i

ta(x)(y− x−b(x)t)

(F)

where H i,H i, j are related to the two first Hermite polynomials:

H i
ta(x)(z) :=−t−1(a−1z)i, H i, j

ta(x)(z) = t−2(a−1z)i(a−1z) j− t−1(a−1z)i, j.

The representation (1) with (F) holds under the assumption that b ∈ C1
b and a = σσ> ∈ C2

b and that a
is uniformly elliptic (Andersson and Kohatsu-Higa (2017), Theorem 5.1). Assuming that function g is
bounded measurable is sufficient. Furthermore, if a is constant, the variance of the random variable in (1)
is finite, otherwise in general, it is infinite. However, there is a modification of (1) using τi+1−τi with Beta
distribution (Andersson and Kohatsu-Higa (2017), proposition 7.3) such that the new random variable has
finite polynomial moments of any order.

The backward method is defined, upon the additional condition that g is a density function, by
ν(dx) := g(x)dx, Φ(x) := δx0(x), µ(x) :=−b(x),
κ

i, j
t (x,y) := (ai, j(y)−ai, j(x))H i, j

ta(x)(y− x+b(x)t),

ρ i
t (x,y) := (bi(y)−bi(x))H i

ta(x)(y− x+b(x)t).

(B)

The representation (1) with (B) holds under the assumption that b ∈ Hα
b and σ ∈ Hα

b (for α ∈ (0,1], Hα
b

stands for bounded and uniform Hölder continuous functions) and that a is uniformly elliptic (Andersson
and Kohatsu-Higa (2017), Theorem 5.1). Furthermore, when σ is constant, the variance of the random
variable in (1) is finite and for non-constant σ , it is in general infinite. The aforementioned modification
of (1) using Beta sampling leads to finite variance only in dimension 1.

Another unbiased estimation method has been developed recently by Henry-Labordere et al. (2017). It
makes use of a decomposition method of the expectation u(t,x) using stochastic calculus and the underlying
PDE, with recursive computations of the gradient and the Hessian matrix of u through the integration by
parts formulas of Malliavin calculus. Similar ideas have been performed for sensitivity analysis of diffusion
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processes by Monte-Carlo methods (Gobet and Munos 2005, Theorem 2.11). The crucial point in the
analysis of (Henry-Labordere et al. 2017) is to use piece-wise constant Gaussian proxy so that Malliavin
weights are explicit. Under Lipschitz assumptions on b,σ ,g and uniform ellipticity, the authors derive a
representation similar to (1) using a Poisson process and prove that in the case of constant σ , the estimator
variance is finite (Henry-Labordere et al. 2017, Theorem 3.2). The case of non constant σ with finite
variance is handled in dimension d = 1, with b = 0,σ ∈C2

b ,g ∈C2
b (Henry-Labordere et al. 2017, Theorem

4.2). Doumbia et al. (2017) proposed a variant of the previous Malliavin method, using τi+1−τi distributed
as Gamma random variables. It allows to prove that the new estimator has finite variance for any d ≥ 1,
as soon as b,σ ∈H1

b , g ∈C1
b and ∇g ∈H1

b . In contrast with the previous parametrix-based methods, these
Malliavin methods allow time-dependent coefficients b and σ with appropriate Hölder regularity in time.

1.1 Contributions

It appears that the open problems, for which finite variance is not available so far, correspond to the cases
σ non constant, with low regularity conditions both on (b,σ) and g. In this paper, we propose a method
which is able to undertake this general setting. We follow the Malliavin approach of Henry-Labordere
et al. (2017) but with substantial improvement to allow such level of generality. Mainly, we incorporate
smart sampling of the grid π = (τi : i≥ 0) to suitably handle the singular integrands as first suggested by
Helluy, Maire, and Ravel (1998). The representation we obtain (see Equation (17)) takes a form close to
(1) with a random variable NT that has a Pareto-type distribution (instead of Poisson).

1.2 Assumptions

Assumption 1 (b,σ) : [0,T ]×Rd → Rd×S d are uniformly bounded, 1
2 -Hölder continuous in time and

Lipschitz continuous in space variable. In particular, we have for some constant L,

|(b,σ)(t,x)− (b,σ)(s,y)| ≤ L
(√
|t− s|+ |x− y|

)
, for all (t,x),(s,y) ∈ [0,T ]×Rd .

Assumption 2 Let a := 1
2 σσ>. Then, the diffusion process X t,x is non-degenerate, i.e. there exists δ > 0

such that for y ∈ Rd ,〈a(t,x)y,y〉 ≥ δ |y|2, for all (t,x) ∈ [0,T ]×Rd .

Assumption 3 g ∈C2
b .

Assumption 4 g ∈ H1
b (Lipschitz continuous).

2 PRELIMINARY CALCULATIONS

2.1 Derivation of Representation for g ∈C2

The principal difficulty in the derivation of our unbiased estimation method arises due to the irregularity of
coefficients (b,σ) and function g and remains indifferent to the dimensionality of the SDE. Furthermore,
the problem remains unchanged even when b = 0. Therefore, for simplicity of exposition, we present our
results in the case of SDE without any drift term and d = 1. Then, we have

X t,x
s = x+

∫ s

t
σ(r,X t,x

r )dWr, s≥ t,

where {Wr;r≥ 0} is a standard Brownian motion. Consider the following linear partial differential equation
(PDE)

∂tu+aD2u = 0, u(T, ·) = g(·). (2)

Here, D2(·) denotes second order differential operator w.r.t. state variable. We know that under Assumptions
1, 2 and 3, if there exists a unique classical solution v ∈C1,2

b ([0,T ]×R,R) for equation (2), it can also be
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written as

v(t,x) = u(t,x) = E
[

g(X̃ t,x
T )+

∫ T

t
Ht,x(s1, X̃ t,x

s1
)D2u(s1, X̃ t,x

s1
)ds1

]
, (3)

where for any (t,x) ∈ [0,T ]×R, the function Ht,x : [0,T ]×R→ R and the process {X̃ t,x
s ;s≥ t} are given

as

Ht,x(s,y) :=
(
a(s,y)−a(t,x)

)
, and, X̃ t,x

s := x+σ(t,x)(Ws−Wt).

X̃ t,x is also commonly known as Gaussian proxy process. Next, we have the following automatic differen-
tiation formula by applying Elworthy’s formula (Fournié et al. 1999) (see (Doumbia et al. 2017, Lemma
3.1) or (Henry-Labordere et al. 2017, Lemma A.3) for technical details)

D2u(s1, X̃ t,x
s1
) = E

[
g(X̃

s1,X̃
t,x
s1

T )V
s1,X̃

t,x
s1

s1,T +
∫ T

s1

Hs1,X̃
t,x
s1 (s2, X̃

s1,X̃
t,x
s1

s2 )D2u(s2, X̃
s1,X̃

t,x
s1

s2 )V
s1,X̃

t,x
s1

s1,s2 ds2

∣∣∣Fs1

]
, (4)

where (Fs)s≥t is the natural filtration associated to X̃ t,x and the second order Malliavin weight is given as

V t̃,x̃
s′,t ′ := σ(t̃, x̃)−2 ·

(
(t ′− s′)−2(δWs′,t ′)

2− (t ′− s′)−1), δWs′,t ′ :=Wt ′−Ws′ . (5)

In this case, formula (4) is a result of the likelihood ratio method of Broadie and Glasserman (1996). We
use the result in (4) to write (3) as

u(t,x) = E
[

g(X̃ t,x
T )+

∫ T

t
Ht,x(s1, X̃ t,x

s1
)V

s1,X̃
t,x
s1

s1,T g(X̃
s1,X̃

t,x
s1

T )ds1

+
∫ T

t
Ht,x(s1, X̃ t,x

s1
)ds1

∫ T

s1

Hs1,X̃
t,x
s1 (s2, X̃

s1,X̃
t,x
s1

s2 )D2u(s2, X̃
s1,X̃

t,x
s1

s2 )V
s1,X̃

t,x
s1

s1,s2 ds2

]
.

This procedure can be iteratively repeated to obtain

u(t,x) =
n

∑
k=0

u(k)(t,x)+ ũ(n+1)(t,x), (6)

where

u(0)(t,x) := E
[
g(X̃ t,x

T )
]
,

u(k)(t,x) := E

[∫ T

t

∫ T

s1

. . .
∫ T

sk−1

k−1

∏
l=1

Θ
(l)
sl ,sl+1Θ

(k)
sk,T g(X̃ (k)

T )ds1:k

]
, k ≥ 1, and, (7)

ũ(n+1)(t,x) := E

[∫ T

t

∫ T

s1

. . .
∫ T

sn−1

∫ T

sn

n

∏
l=1

Θ
(l)
sl ,sl+1H(n)(sn+1, X̃

(n)
sn+1)D

2u(sn+1, X̃
(n)
sn+1)ds1:(n+1)

]
. (8)

In the above, we have employed the following notation:

s0 := t, X̃ (−1)
s0 := x, X̃ (0)

s0 := x,

X̃ (l−1)
s := X̃ (l−2)

sl−1 +σ(sl−1, X̃
(l−2)
sl−1 )(Ws−Wsl−1), 1≤ l ≤ k, s≥ sl−1,

H(l)(sl+1, X̃
(l)
sl+1) := a(sl+1, X̃

(l)
sl+1)−a(sl, X̃

(l−1)
sl ), 0≤ l ≤ k,

V
(l)

sl ,s := σ(sl, X̃
(l−1)
sl )−2 (δWsl ,s)

2− (s− sl)

(s− sl)2 , 1≤ l ≤ k, s≥ sl,

Θ
(l)
sl ,s := H(l−1)(sl, X̃

(l−1)
sl ) ·V (l)

sl ,sl+1 , 1≤ l ≤ k, s≥ sl.
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The formula in (6) is an infinite series where ∑
n
k=0 u(k)(t,x) and ũ(n+1)(t,x) are the partial sums. We obtain

a representation of u(t,x) in terms of a convergent infinite series by showing that ũ(n+1)(t,x) is absolutely
convergent (see Rudin (1964), Theorem 3.22). We have due to the uniform bound C2 := |D2u|∞ for any
(t,x) ∈ [0,T ]×R,

|ũ(n+1)(t,x)| ≤ E

[∫ T

t

∫ T

s1

. . .
∫ T

sn−1

∫ T

sn

n

∏
l=1

∣∣∣Θ(l)
sl ,sl+1

∣∣∣∣∣∣H(n)(sn+1, X̃
(n)
sn+1)

∣∣∣∣∣∣D2u(sn+1, X̃
(n)
sn+1)

∣∣∣ds1:(n+1)

]

≤C2Ln+1Cn
∫ T

t

∫ T

s1

. . .
∫ T

sn−1

∫ T

sn

√
s1− t

n

∏
l=2

1√
sl− sl−1

1√
sn+1− sn

ds1:(n+1)

=C2Ln+1CnB(1/2,1)
∫ T

t

∫ T

s1

. . .
∫ T

sn−1

√
s1− t

n−1

∏
l=2

1√
sl− sl−1

√
T − sn√

sn− sn−1
ds1:n

=C2Ln+1CnB(1/2,1)B(1/2,3/2)
∫ T

t

∫ T

s1

. . .
∫ T

sn−2

√
s1− t

n−2

∏
l=2

1√
sl− sl−1

T − sn−1√
sn−1− sn−2

ds1:n−1

= (T − t)3/2+n/2C2Ln+1CnB(3/2,n/2+1)
n+1

∏
l=2

B(1/2,1+(n+1− l)/2)

= (T − t)3/2+n/2C2Ln+1CnB(3/2,n/2+1)
Γ(1/2)n

Γ(n)
→ 0 as n→ ∞.

Thus, the infinite series converges absolutely and uniformly for (t,x) ∈ [0,T ]×R and we have

u(t,x) =
∞

∑
k=0

u(k)(t,x). (9)

2.2 Finite Variance Representation for g ∈C2

Due to the presence of Malliavin weights
(
V

(l)
sl ,sl+1

)
1≤l≤k (5), it can be seen that each of the integrand in

representation (7) explodes as sl+1→ sl since each term is of the form (sl+1− sl)
−ε for some 0 < ε < 1. As

a result, it is not straightforward to obtain estimators with finite variance unless we impose strong conditions
on b,σ and g as done in Rhee and Glynn (2015). Most of the recent research has been focused to obtain
schemes with finite variance without imposing severe regularity conditions. As discussed earlier, two new
ideas have been recently introduced in (Bally and Kohatsu-Higa 2015) and (Henry-Labordere et al. 2017)
which are further improved in (Andersson and Kohatsu-Higa 2017) and (Doumbia et al. 2017) respectively.
The new modifications can be equivalently seen as an importance sampling change of measure approach.
In this paper, we rather use the technique of change of variables for singular integrands of Helluy, Maire,
and Ravel (1998) to evaluate the integrals present in (9). We propose the change of variable from sk to rk
through the following transformation

Psk−1,T (rk) = sk, 1≤ k ≤ n, (10)

where Psk−1,T : [sk−1,T ]→ [sk−1,T ] is a monotone and surjective map. In the following, we will also
interchangeably use a short-hand notation ρk(rk) for transformation Psk−1,T (rk), 1≤ k≤ n. We perform the
change of variables from (sk)1≤k≤n to (rk)1≤k≤n and get for k ≥ 1,

u(k)(t,x) = E

[∫ T

t

∫ T

ρ1(r1)
. . .
∫ T

ρk−1(rk−1)

k−1

∏
l=1

Θ̂
(l)
ρl(rl),ρl+1(rl+1)

Θ̂
(k)
ρk(rk),T

k

∏
l=1

P′
ρl−1(rl−1),T (rl)g(X̂

(k)
T )dr1:k

]
. (11)
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The new notations denote

r0 := t, ρ0(r0) := t, X̂(−1)
ρ0(r0)

:= x, X̂(0)
ρ0(r0)

:= x,

X̂(l−1)
ρl(rl)

:= X̂(l−2)
ρl−1(rl−1)

+σ(ρl−1(rl−1), X̂
(l−2)
ρl−1(rl−1)

)(Wρl(rl)−Wρl−1(rl−1)), 1≤ l ≤ k,

Ĥ(l)(ρl+1(rl+1), X̂
(l)
ρl+1(rl+1)

) := a(ρl+1(rl+1), X̂
(l)
ρl+1(rl+1)

)−a(ρl(rl), X̂
(l−1)
ρl(rl)

), 0≤ l ≤ k,

V̂
(l)

ρl(rl),ρl+1(rl+1)
:= σ(ρl(rl), X̂

(l−1)
ρl(rl)

)−2

×
(δWρl(rl),ρl+1(rl+1))

2− (ρl+1(rl+1)−ρl(rl))

(ρl+1(rl+1)−ρl(rl))2 , 1≤ l ≤ k,

Θ̂
(l)
ρl(rl),ρl+1(rl+1)

:= Ĥ(l−1)(ρl(rl), X̂
(l−1)
ρl(rl)

) · V̂ (l)
ρl(rl),ρl+1(rl+1)

, 1≤ l ≤ k.

Next, we denote by R = (R1,R2, . . . ,Rk) a k-dimensional random vector with the correct distribution such
that it allows us to write the following formula:

u(k)(t,x) = ckE

[
k−1

∏
l=1

Θ̂
(l)
ρl(Rl),ρl+1(Rl+1)

k

∏
l=1

P′
ρl−1(R),1(Rl)Θ̂

(k)
ρk(Rk),T

g(X̂(k)
T )

]
, k ≥ 1, (12)

where ρl(R) is also a shorthand notation for ρl(Rl). In (12), the normalization constant ck is given as

ck :=
∫ T

t

∫ T

ρ1(r1)
. . .
∫ T

ρk−1(rk−1)
dr1:k. (13)

For an integer valued independent random variable NT with probability mass function f which denotes the
number of arrivals in the interval [t,T ], we further write

u(k)(t,x) = E

[
cNT

NT−1

∏
l=1

Θ̂
(l)
ρl(Rl),ρl+1(Rl+1)

NT

∏
l=1

P′
ρl−1(R),T (Rl)Θ̂

(NT )
ρNT (RNT ),T

g(X̂(NT )
T )

∣∣∣NT = k

]
, k ≥ 1. (14)

Then, for the following choice of probability mass function for λ > 1,

f (n) = P(NT = n) =
c f

n1+λ
,n≥ 1, with c−1

f = ∑
n≥1

n−1−λ = ζ (1+λ ) (Riemann zeta function), (15)

we have the following result:
Theorem 1 Suppose Assumption 1, 2 and 3 hold. For an appropriate choice of transformation (P′

ρl(rl),T
)l≥0

and f as in (15), we have

u(t,x) = E

[
cNT

f (NT )

NT−1

∏
l=1

Θ̂
(l)
ρl(Rl),ρl+1(Rl+1)

NT

∏
l=1

P′
ρl−1(R),T (Rl)Θ̂

(NT )
ρNT (RNT ),T

Ξ
(NT )
T

]
, with Θ̂

(0)
ρ0(R0),T

:= 1, (16)

and

Ξ
(0)
T := g(X̂(0)

T ), Ξ
(k)
T := g(X̂(k)

T )+g
(
X̂(k)

T −2(X̂(k)
T − X̂(k−1)

Rk
)
)
−2g(X̂(k−1)

Rk
), k ≥ 1.

Furthermore, the estimator has finite variance and finite expected computational cost.
The probabilistic representation (16) follows from the representation result in (9). The choice of

appropriate transformation to achieve finite variance is provided in Remark 1. The proof for finite variance
follows similar arguments as the proof of Theorem 2 and we thus omit it to avoid repetition. The expected
computational cost is (up to a constant) given by ∑n≥1 nP(NT = n) which remains finite for the choice of
f in (15). Furthermore, we discuss about the feasible choices of f in Section 3.
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2.3 Finite Variance Representation for Lipschitz continuous g

To obtain the probabilistic representation in this case, we first go back to the term ũ(n+1)(t,x) in the infinite
series representation (6). For Lipschitz continuous g, we have the upper bound on the second derivative
of the solution u as |D2u(t,x)| ≤ Ke|x|√

T−t
(see Gobet and Temam (2001)). Then, we get

|ũ(n+1)(t,x)| ≤ KLn+1Cn
∫ T

t

∫ T

s1

. . .
∫ T

sn−1

∫ T

sn

√
s1− t

n

∏
l=2

1√
sl− sl−1

1√
sn+1− sn

1√
T − sn+1

ds1:(n+1)

= (T − t)1+n/2KLn+1CnB(3/2,(n+1)/2)
n+1

∏
l=2

B(1/2,1/2+(n+1− l)/2)→ 0 as n→ ∞.

Thus, the series representation (9) still holds in the case of Lipschitz continuous g. For the discretized SDE
sample path with Euler scheme (X̂(l−1)

ρl(rl)
)1≤l≤n+1 for some (r0,r1, . . . ,rn,rn+1) where r0 := t, rn+1 := T and

ρn+1(rn+1) := T , we denote Ŷ as the ghost path which is based on the same Euler discretized Brownian
motion except for the last time step component which is generated separately from the original discretized
Brownian motion. Next, we use the ghost path and repeat the arguments preceding formula (16) to show
that we have the following formula with the choice of f as in (15)

u(t,x) = E

[
cNT

f (NT )

NT−1

∏
l=1

Θ̂
(l)
ρl(Rl),ρl+1(Rl+1)

NT

∏
l=1

P′
ρl−1(R),T (Rl)Θ̂

(NT )
ρNT (RNT ),T

Ξ
(NT )
T

]
, with Θ̂

(0)
ρ0(R0),T

:= 1, (17)

and

Ξ
(0)
T := g(X̂(0)

T ), Ξ
(k)
T := g(X̂(k)

T )−g(Ŷ(k)
T ),k ≥ 1.

Now, we address the choice of appropriate change of variable transformation
(
Pρl(rl),T

)
l≥0 to obtain a finite

variance estimator. Recall that we need to change the variable for taking care of the singularity arising at
the left boundary and right boundary of the time interval due to the Malliavin weights V̂

(l)
ρl(rl),ρl+1(rl+1)

in the

terms Θ̂
(l)
ρl(rl),ρl+1(rl+1)

. Then, from formula (11), it is intuitively clear that we need to select P′sl−1,T such that

P′sl−1,T (ρ
−1
k (sl))∼ (sl− sl−1)

η(T − sl)
ν , η ,ν > 0.

We also need the property that Psl−1,T : [sl−1,T ]→ [sl−1,T ] is a monotone surjective map. For any invertible
function P(x), we have

dP−1(x)
dx

=
1

P′(P−1(x))
.

This gives us for the invertible map Psl−1,T ,

ρ
−1
k (sl)∼

∫ sl

sl−1

(y− sl−1)
(1−η)−1(T − y)(1−ν)−1dy.

Thus, from the above heuristics, we define the transformation as

rl = ρ
−1
l (sl) = (T − sl−1)I(sl;sl−1,1−η ,1−ν)+ sl−1, (18)(

P′sl−1,T (ρ
−1
l (sl))

)−1
=

dρ
−1
l (sl)

sl
= (T − sl−1)

(sl− sl−1)
(1−η)−1(T − sl)

(1−ν)−1

(T − sl−1)1−(η+ν)B(1−η ,1−ν)

= (T − sl−1)
η+ν (sl− sl−1)

(1−η)−1(T − sl)
(1−ν)−1

B(1−η ,1−ν)
,
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where

I(b;a,1−η ,1−ν) :=
B(b;a,1−η ,1−ν)

B(T ;a,1−η ,1−ν)
,

B(b;a,1−η ,1−ν) :=
∫ b

a
(y−a)(1−η)−1(T − y)(1−ν)−1dy,

B(T ;a,1−η ,1−ν) = (T −a)1−(η+ν)B(1−η ,1−ν),

B(x,y) :=
Γ(x)Γ(y)
Γ(x+ y)

.

In the probabilistic representation of (12), this transform necessitates to compute the normalizing constant
(13) for the distribution of k-dimensional random vector R.

Lemma 1 For change of variable transformation Psk−1,T (18), the normalizing constant for distribution of
k-dimensional random vector R in (12) is

cn = (T − t)n ∏
n
k=1 B(1−η ,k−ν)(
B(1−η ,1−ν)

)n .

Proof. We prove the result by method of induction. From the definition of normalizing constant ck in
(13) and transformation Psk−1,T (18), we have for n = 1,

c1 =
∫ T

t

(
P′t,T (ρ

−1
1 (s1))

)−1
ds1 =

∫ T

t
(T − t)η+ν (s1− t)−η(T − s1)

−ν

B(1−η ,1−ν)
ds1

=
(T − t)

B(1−η ,1−ν)

∫ 1

0
z−η(1− z)−νdz = T − t.

Next, we suppose that the induction hypothesis holds for some n. Then, we have

cn+1 =
∫ T

t

∫ T

s1

. . .
∫ T

sn−1

∫ T

sn

n+1

∏
l=1

(
P′sl−1,T (ρ

−1
l (sl))

)−1
ds1:n+1

=
∫ T

t
(T − s1)

n ∏
n
k=1 B(1−η ,k−ν)(
B(1−η ,1−ν)

)n ×
(T − t)η+ν(s1− t)−η(T − s1)

−ν

B(1−η ,1−ν)
ds1

=
∏

n
k=1 B(1−η ,k−ν)(

B(1−η ,1−ν)
)n+1 (T − t)n+1

∫ 1

0
z−η(1− z)n−νdz

which shows that the result holds for any n by the principle of mathematical induction.

3 MAIN RESULT

Theorem 2 Suppose Assumption 1, 2 and 4 hold. Then, if we use the appropriate transformation defined
in (18) and f as in (15), the estimator in (17) has finite variance and finite expected computational cost.

Proof. Notice that if we have u(t,x)=E[∏NT
l=1 Zl] for a random variable NT which is independent of random

variables (Zl)l≥1, we have that the variance Var(∏NT
l=1 Zl) =E[Var(∏NT

l=1 Zl|NT )]+Var(E[∏NT
l=1 Zl|NT ]). Thus,

to prove the claim, we are required to look at the following two sums:

∞

∑
n=1

E

[( cn

f (n)

)2 n−1

∏
l=1

(
Θ̂

(l)
ρl(Rl),ρl+1(Rl+1)

)2 n

∏
l=1

(
P′

ρl−1(R),T (Rl)
)2(

Θ̂
(n)
ρn(Rn),T

)2
(Ξ

(n)
T )2

∣∣∣NT = n

]
P(NT = n),

(19)
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∞

∑
n=1

(
E

[
cn

f (n)

n−1

∏
l=1

Θ̂
(l)
ρl(Rl),ρl+1(Rl+1)

n

∏
l=1

P′
ρl−1(R),T (Rl)Θ̂

(n)
ρn(Rn),T

Ξ
(n)
T

∣∣∣NT = n

])2

P(NT = n), (20)

and show that each is finite. We focus on the term in (19) and the term in (20) follows similarly. For n≥ 1,
consider the following term which appears in (19)

E

[
n−1

∏
l=1

(
Θ̂

(l)
ρl(Rl),ρl+1(Rl+1)

)2 n

∏
l=1

(
P′

ρl−1(R),T (Rl)
)2(

Θ̂
(n)
ρn(Rn),T

)2
(Ξ

(n)
T )2

∣∣∣NT = n

]
. (21)

We further condition on the independently generated intermediate times R= (Rl)1≤l≤n and use the shorthand
notation ENT ,R[·] = E[·|NT ,R] to write

ENT ,R

[
n−1

∏
l=1

(
Θ̂

(l)
ρl(Rl),ρl+1(Rl+1)

)2 n

∏
l=1

(
P′

ρl−1(R),T (Rl)
)2(

Θ̂
(n)
ρn(Rn),T )

)2
(Ξ

(n)
T )2

]

= ENT ,R

[
n−1

∏
l=1

(
Θ̂

(l)
ρl(Rl),ρl+1(Rl+1)

)2 n

∏
l=1

(
P′

ρl−1(R),T (Rl)
)2

E
[(

Θ̂
(n)
ρn(Rn),T

)2
(Ξ

(n)
T )2

∣∣∣Fρn(Rn)

]]
.

We apply Cauchy-Schwarz inequality and then use Assumption 1 and 4 to obtain the following:

ENT ,R

[(
Θ̂

(n)
ρn(Rn),T

)2
(Ξ

(n)
T )2

∣∣∣Fρn(Rn)

]
≤ L
(
ρn(Rn)−ρn−1(Rn−1)

)
×

Cg(
T −ρn(Rn)

)
where Cg is Lipschitz constant of g. Next, we continue to iteratively take conditional expectation and
similarly obtain upper bounds for the terms in the product (21) such as

ENT ,R

[(
Θ̂

(l)
ρl(Rl),ρl+1(Rl+1)

)2∣∣∣Fρl(Rl)

]
≤ L
(
ρl(Rl)−ρl−1(Rl−1)

)
× 1(

ρl+1(Rl+1)−ρl(Rl)
)2 .

Then, we get

ENT ,R

[
n−1

∏
l=1

(
Θ̂

(l)
ρl(Rl),ρl+1(Rl+1)

)2 n

∏
l=1

(
P′

ρl−1(R),T (Rl)
)2(

Θ̂
(n)
ρn(Rn),T )

)2
(Ξ

(n)
T )2

]

≤ LnCg

n−1

∏
l=1

(
ρl(Rl)−ρl−1(Rl−1)

)(
ρl+1(Rl+1)−ρl(Rl)

)2

n

∏
l=1

(
P′

ρl−1(R),T (Rl)
)2
×
(
ρn(Rn)−ρn−1(Rn−1)

)(
T −ρn(Rn)

) . (22)

Thus by taking expectation over R, we get the following upper bound on the term in (21),

ENT

LnCg

(ρ1(R1)− t)∏
n
l=1

(
P′

ρl−1(R),T (Rl)
)2

∏
n
l=2
(
ρl(Rl)−ρl−1(Rl−1)

) (
T −ρn(Rn)

)−1


=

LnCg

cn

∫ T

t
. . .
∫ T

ρn−1(rn−1)

(ρ1(r1)− t)∏
n
l=1

(
P′

ρl−1(r),T (rl)
)2

∏
n
l=2
(
ρl(rl)−ρl−1(rl−1)

) (
T −ρn(rn)

)−1dr1:n

=
LnCg

cn

∫ T

t
. . .
∫ T

sn−1

(s1− t)∏
n
l=1 P′sl−1,T (ρ

−1
l (sl))

∏
n
l=2(sl− sl−1)

(T − sn)
−1ds1:n. (23)
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We collect the results in (23) for each n≥ 1 to see that the sum in (19) is upper bounded by

∑
n

LnCg

f (n)
cnIn (24)

where

In :=
∫ T

t
. . .
∫ T

sn−1

(s1− t)∏
n
l=1 P′sl−1,T (ρ

−1
l (sl))

∏
n
l=2(sl− sl−1)

(T − sn)
−1ds1:n. (25)

For the multiple integral in (25), we obtain a formula in Lemma 2. Going back to the upper bound in (24),
we have from the result in Lemma 1 and 2 that it equals

(T − t)∑
n
(T − t)n LnCg

f (n)
∏

n
l=1 B(1−η , l−ν)(
B(1−η ,1−ν)

)n B(1−η ,1−ν)nBn−1(η ,ν)B(2+η ,ν)

= (T − t)∑
n

L̃nCg

f (n)

n

∏
k=1

B(1−η ,k−ν)Bn−1(η ,ν)B(2+η ,ν),

where we denote L̃ := (T − t)L. For fixed x and large y, we know that Stirling’s approximation for Beta

function B(x,y) is given as B(x,y) ∼ Γ(x)y−x. Thus, for large n, ∏
n
k=1 B(1−η ,k− ν) ∼

(
1

(n−ν)!

)(1−η)
.

Further, denote Cη ,ν := B(η ,ν), C̃η ,ν := B(2+η ,ν). Then, the upper bound is given as

(T − t)∑
n

L̃nCn−1
η ,ν C̃η ,νCg

f (n)

( 1
(n−ν)!

)(1−η)
. (26)

For the choice of f as suggested in (15) (any f which makes the sum in (26) finite is acceptable), it follows
from Stirling’s approximation n!∼

√
2πn(n/e)n, that the upper bound is indeed finite as

(T − t)∑
n

L̃nCn−1
η ,ν n1+λC̃η ,νCg

λ

( 1
(n−ν)!

)(1−η)
< ∞.

This concludes the proof.

Lemma 2 For the change of variable transformation Psl−1,1 as in (18), the multiple integral in (25) simplifies
to

In = (T − t)
(
B(1−η ,1−ν)

)nBn−1(η ,ν)B(2+η ,ν).

Proof. We have from the transformation in (18),

In = (B(1−η ,1−ν))n
∫ T

t
. . .
∫ T

sn−2

(s1− t)

∏
n−1
l=2 (sl− sl−1)

n−1

∏
l=1

(sl− sl−1)
η(T − sl)

ν

(T − sl−1)η+ν

× 1
(T − sn−1)η+ν

ds1:n−1

∫ T

sn−1

(sn− sn−1)
−1+η(T − sn)

−1+νdsn.

Then, we first consider∫ T

sn−1

(sn− sn−1)
η

(sn− sn−1)

(T − sn)
ν

(T − sn)
dsn =

∫ T

sn−1

(sn− sn−1)
η−1(T − sn)

ν−1dsn

= (T − sn−1)
−1+(η+ν)B(η ,ν).
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This gives us

In =
(
B(1−η ,1−ν))nB(η ,ν)

∫ T

t
. . .
∫ T

sn−3

(s1− t)

∏
n−2
l=2 (sl− sl−1)

×
n−2

∏
l=1

(sl− sl−1)
η(T − sl)

ν

(T − sl−1)η+ν

× 1
(T − sn−2)η+ν

ds1:n−2×
∫ T

sn−2

(sn−1− sn−2)
η

(sn−1− sn−2)

(T − sn−1)
ν

(T − sn−1)
dsn−1.

We continue to iterate to get

In = B(1−η ,1−ν)nBn−1(η ,ν)
∫ T

t
(s1− t)

(s1− t)η(T − s1)
ν

(T − t)η+ν
× (T − s1)

−1ds1

= (T − t)B(1−η ,1−ν)nBn−1(η ,ν)B(2+η ,ν).

Remark 1 The choice of transformation to achieve finite variance in Theorem 1 for 0 < ε < 1 is given as
follows

sk = Psk−1,T (rk) =
( rk− sk−1

(T − sk−1)ε

) 1
(1−ε)

+ sk−1,

rk = (T − sk−1)
ε(sk− sk−1)

(1−ε)+ sk−1

P′sk−1,T (y) =
1

(1− ε)

( y− sk−1

T − sk−1

) ε

(1−ε)

P′sk−1,T (ρ
−1
k (sk)) =

1
(1− ε)

(sk− sk−1

T − sk−1

)ε

.

The normalization constant cn = (T − t)n(1− ε)n
∏

n
k=1 B(1− ε,k).

4 CONCLUSION

We provided a new finite variance unbiased estimation method with finite expected computational cost
to calculate the expectation of a function of the solution of a stochastic differential equation (SDE). Our
work extended the current results in the literature to the case of Lipschitz continuous SDE coefficients
and Lipschitz continuous objective function. We first carefully handled the singular integrands in our
probabilistic representation by introducing a variable transformation which cancels out the singularity in
the transformed integrands. Finally, to show that our unbiased estimator has a finite variance, we generate
an appropriate number of random intermediate time steps where the probability mass function of the number
of steps is chosen in such a way that the expectation of the corresponding error contribution remains finite.

REFERENCES

Andersson, P., and A. Kohatsu-Higa. 2017. “Unbiased Simulation of Stochastic Differential Equations using
Parametrix Expansions”. Bernoulli 23 (3): 2028–2057.

Bally, V., and A. Kohatsu-Higa. 2015. “A Probabilistic Interpretation of the Parametrix Method”. The
Annals of Applied Probability 25 (6): 3095–3138.

Beskos, A., and G. O. Roberts. 2005. “Exact Simulation of Diffusions”. The Annals of Applied Probability 15
(4): 2422–2444.

Bompis, R., and E. Gobet. 2014. “Stochastic Approximation Finite Element method: Analytical formulas
for Multidimensional Diffusion Process”. SIAM Journal on Numerical Analysis 52 (6): 3140–3164.

Broadie, M., and P. Glasserman. 1996. “Estimating Security Price Derivatives using Simulation”. Manage-
ment Science 42 (2): 269–285.



Agarwal and Gobet

Chen, N., and Z. Huang. 2013. “Localization and Exact Simulation of Brownian Motion-driven Stochastic
Differential Equations”. Mathematics of Operations Research 38 (3): 591–616.

Doumbia, M., N. Oudjane, and X. Warin. 2017. “Unbiased Monte Carlo Estimate of Stochastic Differential
Equations Expectations”. ESAIM: PS 21:56–87.
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Application to Stochastic Control Problem.”. SIAM Journal of Control and Optimization 43 (5):1676–
1713.

Gobet, E., and E. Temam. 2001. “Discrete Time Hedging Errors for Options with Irregular Payoffs.”.
Finance and Stochastics 5 (3):357–367.
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