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Abstract
We consider a single stage stochastic program without recourse with a strictly convex loss function. We assume a
compact decision space and grid it with a finite set of points. In addition, we assume that the decision maker can
generate samples of the stochastic variable independently at each grid point and form a sample average approximation
(SAA) of the stochastic program. Our objective in this paper is to characterize an asymptotically optimal linear sample
allocation rule, given a fixed sampling budget, which maximizes the decay rate of probability of making false decision.

1 Introduction
Let ξ be a measurable function that induces the distribution function F(x) := P(ξ ≤ x). Stochastic programs are
canonical models for decision-making under uncertainty, covering a multitude of classic stochastic optimization prob-
lems:

minimize f (x) := E [L(x,ξ )] =
∫

Ξ

L(x,ξ )dF(ξ ), (1)

subject to x ∈X ,

where L(x,ξ ) : X ×Ξ→ IR is a continuously differentiable ‘loss’ function, X ⊂ IR is the set of decision variables;
for brevity we also call the sample values as ξ . In this paper, we assume that L(x,ξ ) is convex in x and measurable
with respect to ξ .

Sample average approximation (SAA) is a classic Monte Carlo method for estimating the stochastic program (1).
Here, the decision maker (DM) grids the decision space X into a finite set of points D := {x1,x2, ...,xd}, and simulates
samples of the loss function L(xi,ξ ) at each of the grid points. Assuming a total sampling budget of n, the DM
generates m(xi) independent and identically distributed (i.i.d) samples of L(xi,ξ ), denoted as L(xi,ξ

i
j) ∀ 1≤ j≤m(xi);

at each point xi with ∑
d
i=1 m(xi) = n. Then, the SAA stochastic program is

min
xi∈D

f̂ (xi) :=
1

m(xi)

m(xi)

∑
j=1

L(xi,ξ
i
j). (2)

Modulo regularity conditions on L(·, ·), the strong law of large numbers (SLLN) implies that (2) converges to
the true program in (1) [8]. It is also known that the optimizers are consistent and the optimal rate of convergence
is O(n−1/2). An important allied question to these asymptotic results is a quantification of the likelihood that the
empirical optimizer diverges from the true optimizer for a given sampling budget n. We seek such a quantification for
two reasons:

• A quantification of this rate gives a clear sense of how ‘good’ the empirical optimizer and empirical optimal
value are, and
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• in the simulation context it provides a guideline on how to allocate a limited sampling/computational budget
across the design points in D.

In this paper, we focus on the latter issue. In general, it is a formidable task to compute the likelihood for a
fixed budget; in full generality, one requires tight concentration bounds in order to make meaningful predictions about
budget allocations. Instead, in this paper we establish a large deviations. principle (LDP) satisfied by the Monte Carlo
estimator (2) as the sampling budget tends to infinity. For the definition of LDP, we refer the readers to section 1.2 of
[3].

It is important here to differentiate between the optimally computing budget allocation (OCBA) method for select-
ing an optimal system from a finite set of systems [2, 4] and our approach to SAA problem. In OCBA, there is no
topology associated with the finite set of systems unlike SAA. In addition, OCBA approach only considers probability
of selecting suboptimal system due to random sampling errors, whereas our framework also takes into account the
discretization error.

1.1 Our Contributions
Our main objective is the derivation of an optimal allocation of the sampling budget across the design points such that
a canonical LD rate is achieved at the optimizer of (2). In particular, we seek what we term as ‘linear’ allocation rules
where m(x) = αxn, where αx ∈ [0,1] and ∑x∈D αx = 1.

We make the simplifying assumption that the DM can sample independently from each design point x ∈ D. In
effect, this allows an ‘embarrassingly’ parallel implementation of the SAA estimation, where ‘slave’ machines com-
pute f̂ (x) with m(x) samples, and communicate the result to a central ‘master’ machine that coordinates the budget
allocation and aggregates the calculations to compute (2).

Now let x̂n := argminxi∈D f̂ (xi) , x̂ := argminxi∈D f (xi) , and x∗ := argminx∈X f (x). As noted before, the Monte
Carlo empirical objective converges to the population objective as n→ ∞ for any linear allocation rule, and conse-
quently one expects that x̂n → x̂ almost surely (a.s.) as n→ ∞. Since the objective is assumed to be continuously
differentiable, it follows that f (x̂n)→ f (x̂) a.s. as n→ ∞. With this information, we establish the canonical LD rate
function satisfied by the optimal value of (2) as a function of some linear allocation rule and in the limit of a large
sampling budget. This result follows from the Gärtner-Ellis theorem, and does not involve any analytical subtleties in
light of our assumptions. However, the rate function has not appeared in the literature before, and might be of interest
more generally. The proof proceeds in two steps. We first characterize the LD rate of the likelihood of mis-ordering
the SAA empirical estimates at any two points in the decision space D. Next, we use this result to establish our main
result on the LD rate on the likelihood that the objective value f (x̂n) at the SAA optimizer x̂n in (2) is at least ε > 0
worse than the true value f (x∗), in the large budget limit.

We next provide structural results on the LD rate function, in particular demonstrating that it is strictly concave
in the allocation rule α := (αx, x ∈ D). Consequently, there exists a unique optimal linear allocation rule. This
result, of course, presumes that the master machine has complete information about the statistics of the expected
loss function - in particular, we assume the existence of a cumulant generating function. In practice, this is not
an implementable policy, since the DM only has access to a Monte Carlo simulator. We next design two recursive
algorithms that optimize the LD rate function as samples accumulate. The first algorithm parallels Algorithm 2 in [7]
and is applicable when a closed form expression for the rate function for the mis-ordering likelihood is available. When
such an expression is available the problem is really one of ranking and selection (R&S). In general SAA problems,
closed-forms are not easy to compute and this too must be estimated. Our second algorithm is an ‘expectation-
maximization’ style recursive algorithm. We illustrate these algorithms with numerical simulation results.

The remainder of the paper is organized as follows. We begin in Section 3 by proving the LDP satisfied by the
SAA estimator. In Section 4 we derive structural properties of the LD rate function as function of the linear allocation
rule, and exhibit the variational optimization problem to find the optimal linear allocation rule. We then derive a
recursive algorithm for computing the optimal allocation rule on a sample path (and fixed sampling budget), and
illustrate the algorithm, on three different example problems. We end with comments on several future directions for
this paper.
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2 Notations and Preliminaries
We assume there exists a probability sample space (Ω,Ξ,P), and define ξ with respect to this space. The indicator
function of a set is represented by I{·} and b·c denotes the greatest integer function. We define a ‘regret’ function

[ f (x̂n)− f (x∗)] = [ f (x̂n)− f (x̂)]+ [ f (x̂)− f (x∗)] , (3)

where the first term on the right hand side is the Sampling Error and the latter term the Discretization Error. We make
a few assumptions to guarantee the existence of the LD rate function. We assume that the loss function L(·, ·) satisfies

Assumption 1. L(x,ξ ) is not a point mass at f (x) for all x ∈X and for some continuously differentiable function f .

Assumption 2. The cumulant generating function (CGF) of L(·,ξ ) is well defined and finite for all x ∈X , that is

Λ(x,θ) := logE
[
eθL(x,ξ )

]
< ∞ ∀θ ∈ R, ∀x ∈X .

When the loss function L(·,ξ ) is bounded above by ξ and the CGF of ξ is well defined and finite, the above
assumption is trivially satisfied.

Assumption 3. Let Hx(Λ) := {θ : Λ(x,θ) < ∞}∀ x ∈X be such that the origin belongs to the interior of Hx(Λ).

Furthermore, we also assume that Λ(x,θ) is steep, that is limn→∞

∣∣∣ ∂Λ(x,θ)
∂θ

∣∣∣
θ=θn

= ∞, for any sequence θn in the

interior of Hx(Λ), which converges to a boundary point of Hx(Λ) ∀ x ∈X .

3 Large Deviations for SAA
In this section we establish an LDP satisfied by the regret function. Let x,y∈D and consider the Monte Carlo estimates
f̂ (x) and f̂ (y). Our first result establishes a LD rate function for the likelihood that f̂ (x) and f̂ (y) are mis-ordered in
the large budget limit.

Lemma 1. Fix γ > 0 and x,y ∈ D. Then, under Assumptions 1, 2 and 3,

lim
n→∞

1
n

logP( f̂ (y)− f̂ (x)≥ γ) =−I(γ,αx,αy)I{ f (y)− f (x)<γ},

where I(γ,αx,αy) := supt∈R

(
tγ−αyΛ

(
y, t

αy

)
−αxΛ

(
x,− t

αx

))
.

Proof. Let Yn := n
(

f̂ (y)− f̂ (x)
)
, and observe that for any t ∈ R

E[etYn ] = E

[
exp

(
t
bαync

∑
i=1

L(y,ξ y
i )

αy
− t
bαxnc

∑
j=1

L(x,ξ x
j )

αx

)]

= E
[

exp
(

t
L(y,ξ )

αy

)]bαync
E
[

exp
(
−t

L(x,ξ )
αx

)]bαxnc
,

where the last equality follows from the fact that we sample independently at every design point. Next, using the fact
that limn→∞bαinc/n = αi observe that

lim
n→∞

1
n

logE
[
etYn
]
= αy logE

[
exp
(

t
L(y,ξ )

αy

)]
+αx logE

[
exp
(
−t

L(x,ξ )
αx

)]
=: ϕ(t,αx,αy) ∀t ∈ R.

By Assumption 2 , ϕ(t,αx,αy)< ∞ ∀t ∈ R. Together with Assumption 3 it follows that the Gärtner–Ellis Theorem
holds [3], and the lemma is proved with good rate function I(z,αx,αy) := supt∈R (tz−ϕ(t,αx,αy)). Since I(z,αx,αy)
is strictly convex in z and attains the minimum value 0 precisely at f (y)− f (x), Therefore, infz∈[γ,∞) I(z,αx,αy) =
I(γ,αx,αy)I{ f (y)− f (x)<γ}.

The next two lemmas are crucial for establishing the main result of this section.
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Lemma 2. Fix k ∈ N and let {an
i } ⊂ R be arbitrary sequences for 1≤ i≤ k. Then

liminf
n→∞

max{an
1,a

n
2, . . . ,a

n
k} ≥max{liminf

n→∞
an

1, liminf
n→∞

an
2, . . . , liminf

n→∞
an

k}.

Proof. First observe that for any i ∈ {1,2, . . . ,k} max{an
1,a

n
2, . . . ,a

n
k} ≥ an

i . Therefore, liminfn→∞ max{an
1,a

n
2,

. . . ,an
k} ≥ liminfn→∞ an

i . Since this holds for any i ∈ {1,2, . . . ,k}, the lemma follows.

Lemma 3. Let {an
i } ⊂ R for i = 1,2 be arbitrary sequences. Then,

liminf
n→∞

(an
1 +an

2)≥ liminf
n→∞

an
1 + liminf

n→∞
an

2.

Proof. The proof follows from the definition of liminf and infimum inequality.

We now turn to main result, which establishes an LDP for the regret (3).

Theorem 1. Fix ε > f (x̂)− f (x∗). Under Assumptions 1, 2 and 3 the regret (3) satisfies

lim
n→∞

1
n

logP( f (x̂n)− f (x∗)≥ ε) =−J(ε),

where J(ε) :=minx∈Q(δ ) ∑y∈D I(αx,αy)I{ f (y)< f (x)}, I(αx,αy) := supt∈R

(
−αyΛ(y, t

αy
)−αxΛ(x,− t

αx
)
)

, and Q(δ ) :=
{x ∈ D : f (x)> f (x∗)+ ε}.

Proof. Recall that our objective is to characterize the rate of decay of the likelihood of the rare event,

{ f (x̂n)− f (x∗)> ε}. (4)

Observe that

P( f (x̂n)− f (x∗)> ε) = P( f (x̂n)− f (x̂)+ f (x̂)− f (x∗)> ε)

= P( f (x̂n)− f (x̂)> δ )) ,

where δ := ε− ( f (x̂)− f (x∗)), and f (x̂)− f (x∗) is the non-random discretization error. From the definition of Q(δ )
set observe that the event { f (x̂n)− f (x̂)> δ )} is equivalent to {x̂n ∈ Q(δ )}. Now, using the definition of x̂n, observe
the equivalence

{x̂n ∈ Q(δ )}=
⋃

x∈Q(δ )

⋂
y∈D

{
f̂ (x)≤ f̂ (y)

}
.

Therefore, it straightforwardly follows that

max
x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})
≤ P( f (x̂n)− f (x∗)> ε)≤ ∑

x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})
. (5)

Now, since the set Q(δ ) is finite, Lemma 1.2.15 of [3] implies

limsup
n→∞

1
n

logP( f (x̂n)− f (x∗)> ε)≤ limsup
n→∞

1
n

log ∑
x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})

= max
x∈Q(δ )

limsup
n→∞

1
n

logP

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})

≤ max
x∈Q(δ )

∑
y∈D

limsup
n→∞

1
n

logP
(

f̂ (x)≤ f̂ (y)
)
, (6)
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where the last inequality follows from the fact that sampling is independent at each of the design points. Next, for the
lower bound, the monotonicity of the logarithm function and the sampling independence implies

liminf
n→∞

1
n

logP( f (x̂n)− f (x∗)> ε)≥ liminf
n→∞

1
n

log max
x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})

≥ max
x∈Q(δ )

∑
y∈D

liminf
n→∞

1
n

logP
(

f̂ (x)≤ f̂ (y)
)
, (7)

where the final inequality follows from Lemmas 2 and 3. Finally, the theorem follows from an application of Lemma 1
to (6) and (7).

Some comments are in order for this result. First, observe that the fact that we assume a finite grid D⊂X implies
that the LD rate function is well-defined. Furthermore, it can be anticipated that the rate function can be established
even with a countable grid. Second, the set Q(δ ) is critical for establishing the limit. This is the set of design points in
the grid D that are ε worse than the optimal design point x∗ ∈X . Thus, the rate function J(ε) identifies the dominant
point on the boundary of the set Q(δ ) that x̂n is most likely to diverge away from x∗. The form of J(ε) indicates that
it is a composition of the closest point in Q(δ ) to each design point in D that is most likely to cause a mis-ordering.

4 Optimal Linear Allocation Rule
In this section, we identify an (asymptotically) optimal linear allocation rule that optimizes the rate function in Theo-
rem 1. Note that this optimization is post hoc in the sense that the rate function is identified for an arbitrary allocation.
The optimal allocation maximizes the rate at which the log likelihood of misordering the empirical optimizer ap-
proaches zero. First, we show that the rate function obtained in Theorem 1 is strictly concave and thus has a unique
maximizer. Let J(αx,αy, t) :=

(
αyΛ

(
y, t

αy

)
+αxΛ

(
x,− t

αx

))
for brevity.

Lemma 4. I(αx,αy) = supt∈R

(
−αyΛ

(
y, t

αy

)
−αxΛ

(
x,− t

αx

))
, is strictly concave ∀{αx,αy} ∈ [0,1]× [0,1].

Proof. Observe that proving I(αx,αy) is concave in αx and αy is equivalent to proving

inf
t∈R

(
αyΛ

(
y,

t
αy

)
+αxΛ

(
x,− t

αx

))
= inf

t∈R
J(αx,αy, t)

is convex ∀ αx,αy ∈ [0,1]× [0,1]. First, we demonstrate that αyΛ

(
y, t

αy

)
is convex in t and αy. Using the definition

of Λ(·, t) we have

∂ 2

∂α2
y

αyΛ

(
y,

t
αy

)
=

t2

α3
y


E
[
exp
(

t L(y,ξ )
αy

)
L(y,ξ )2

]
E
[
exp
(

t L(y,ξ )
αy

)] −
E
[
exp
(

t L(y,ξ )
αy

)
L(y,ξ )

]2

E
[
exp
(

t L(y,ξ )
αy

)]2

> 0. (8)

Observe that the expression on the right hand side of (8) is the variance of L(y,ξ ), with respect to the ‘twisted’
distribution,

exp
(

t L(y,ξ )
αy

)
dF(ξ )

E
[
exp
(

t L(y,ξ )
αy

)] ,

and the overall expression is strictly positive since t2/α3
y > 0. It follows that αyΛ

(
y, t

αy

)
is strictly convex in αy.

Similarly, observe that αxΛ

(
x,− t

αx

)
is strictly convex in αx. Consequently, it is straightforward to see that the Hessian

of J(αx,αy, t) ∀t ∈ R is positive definite. Therefore, J(αx,αy, t) is strictly convex ∀ αx,αy ∈ [0,1]× [0,1]. We also
know that the cumulant generating function is convex in t in general, but it is strictly convex due to Assumption 1.
Since the sum of two strictly convex function is strictly convex, J(αx,αy, t) is strictly convex ∀t ∈ R.
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Next, observe that for any η > 0, there exists a t ∈ R, such that for a given αx,αy ∈ [0,1]× [0,1],

J(αx,αy, t)≤−I(αx,αy)+η .

We now follow the arguments in Sec. 3.2.5 of [1]. For any β ∈ [0,1] and α
j

x ,α
j

y ∈ [0,1]× [0,1], j = 1,2,

−I(βα
1
x +(1−β )α2

x ,βα
1
y +(1−β )α1

y ) = inf
t∈R

J(βα
1
x +(1−β )α2

x ,βα
1
y +(1−β )α1

y , t)

≤ J(βα
1
x +(1−β )α2

x ,βα
1
y +(1−β )α1

y ,β t1 +(1−β )t2)

< βJ(α1
x ,α

1
y , t1)+(1−β )J(α2

x ,α
2
y , t2)

≤−β I(α1
x ,α

1
y )− (1−β )I(α2

x ,α
2
y )+η ,

where penultimate inequality follows from Jensen’s inequality. Since η is arbitrary, it follows that I(αx,αy) is strictly
concave.

Lemma 5. minx∈Q(δ ) ∑y∈D I(αx,αy)I{ f (y)< f (x)} is strictly concave in {α1,α2, . . .αd} ∈ [0,1]d .

Proof. From Lemma 4 and the fact that the minimum of strictly concave functions preserves strict concavity, the
proposition follows.

Theorem 2. The following constraint maximization problem is strictly concave,

max
{α1,α2,...αd}

min
x∈Q(δ )

∑
y∈D

I(αx,αy)I{ f (y)< f (x)}, (9)

such that
d

∑
i=1

αi = 1, αi ∈ [0,1]∀i ∈ {1,2, . . . ,d}.

Proof. The proof immediately follows from Lemma 5.

Hence, the optimal allocation strategy is the solution of (9). Next, we illustrate this optimization for specific cases.

Example 1: Normal Distribution
Assume that L(x,ξ )∼N ( f (x),σ2(x)), and observe that

I(αx,αy) = sup
t∈R

(
−αyΛ

(
y,

t
αy

)
−αxΛ

(
x,− t

αx

))
=

1
2
( f (x)− f (y))2

(
σ2(y)

αy
+

σ2(x)
αx

)−1

. (10)

Therefore, using Theorem 1, the LDP for a given ε > 0 is

lim
n→∞

1
n

logP( f (x̂n)− f (x∗)> ε) =− min
x∈Q(δ )

∑
y∈D

1
2
( f (x)− f (y))2

(
σ2(y)

αy
+

σ2(x)
αx

)−1

I{ f (x)> f (y)},

where Q(δ ) is as defined in Theorem 1.

Example 2: Binomial Distribution

Assume that L(x,ξ )∼ Bin( f (x)
m ,m), where m is the number of binomial trials. Observe that

I(αx,αy) = sup
t∈R

(
−αyΛ(y,

t
αy

)−αxΛ(x,− t
αx

)

)
= m

(
−αy log

(
1− f (y)

m
+

f (y)
m

e
t∗
αy

)
−αx log

(
1− f (x)

m
+

f (x)
m

e−
t∗
αx

))
, (11)
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where t∗ = log
(

f (x)(m− f (y))
f (y)(m− f (x))

)[
1

αx
+ 1

αy

]−1
.Therefore using Theorem 1, the LDP for a given ε > 0 is

lim
n→∞

1
n

logP(ω ∈Ω : f (x̂n)− f (x∗)> ε) =− min
x∈Q(δ )

∑
y∈D

m

(
−αy log

(
1− f (y)

m
+

f (y)
m

e
t∗
αy

)

−αx log
(

1− f (x)
m

+
f (x)
m

e−
t∗
αx

))
I{ f (x)> f (y)},

where Q(δ ) is as defined in Theorem 1.

5 Sequential Optimization
The optimization problem (9) is solved by the master machine, and the sampling budget is assigned to the slave
machines. Observe that (9) assumes that the master machine has complete knowledge of the true cumulant generating
function of the (stochastic) loss function. In practice, of course, this is unknown and the master machine must rely
on empirical estimates of the objective from the slave machines. An appropriate approach to solving the optimization
problem would be to perform a sequential optimization as sample estimates accumulate. With a large, but finite budget
the sequential optimum should be close to the optimizer of (9).

We demonstrate the computation in two different scenarios. First, we assume that the (rate) function J(αx,αy, t)
can be analytically optimized over t. In this case, the objective in (9) is simpler to estimate and optimize. Note that
these instances are direct analogues in the SAA context of the ranking and selection (R&S) problems studied in [4, 7],
and [6]. To deal with these types of problems, we present Algorithm 1 below, that parallels [7] Algorithm 2.

Second, in many applications of SAA, the optimization of J(·, ·, t) must be carried out numerically since closed
forms are not available. These instances are far more complicated than the straightforward R&S analogues considered
above, as the geometry of the loss function now plays a prominent role. Algorithm 2 below exploits an expectation-
maximization (EM) type iterative structure to recursively compute the optimal allocation efficiently.

Of course, in either scenario, the rate functions and objectives must be estimated by Monte Carlo sampling at the
slave machines. Let Ĵ(αx,αy, t) :=αyΛ̂

(
y, t

αy

)
+αxΛ̂

(
x,− t

αx

)
, where Λ̂

(
x, t

αx

)
:=(bnαxc)−1

∑
bnαxc
i=1 exp

(
t

αx
L(x,ξ x

i )
)

is the natural empirical estimator of the log moment generating function. We also define the set Q̂(δ ) = {x∈D : f̂ (x)>
f̂ (x∗)+ ε}, for a given ε > 0. In the remainder of this section, we assume a fixed ε > 0. Let α̂x(n) represent the es-
timated allocation at location x ∈ D with total sampling budget n. We define the optimality gap of the estimator
as

OG(n) := ∑
x∈D
|α̂(n)

x −αx|,

where αx is the ‘true’ optimal linear allocation obtained by solving (9).

5.1 Optimization with Closed-forms
Consider situations where the ‘inner’ optimization supt∈R J(αx,αy, t) x,y ∈ D can be completed in closed form
analytically. For instance, in Examples 1 and 2 above closed forms were derived for cases where the loss functions
at each of the design points are Gaussian and binomially distributed (respectively). Let Î(·, ·) represent the Monte
Carlo estimate of this closed form, which will require estimation of the mean and (possibly) the variance. Algorithm 1
proceeds iteratively by estimating the optimal allocation while accumulating more and more samples at each iteration.
This method parallels Algorithm 2 in [7].

Observe that the algorithm runs until the sampling budget is exhausted with no guarantees on convergence to
the true optimal allocation rule. Consistency results from [7] and [4] imply that with a large, but finite budget the
allocation obtained at the end of the procedure should closely match the optimal linear allocation rule.We now illustrate
the algorithm by running through a couple of examples.

Gaussian Loss: For simplicity we assume that the variances σ2(x) ∀x ∈ D are known, and the mean value at each
of the design points is estimated using the natural estimator.
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Table 1: Algorithm 1.

Step 0 Initialize pilot sample n(0)x = N0 at each x ∈ D.
For each k ≥ 0 :

Step 1 Generate n(k)x i.i.d. samples at each x ∈ D.
Compute Î(αx,αy) ∀ x,y ∈ D, f̂ (x) ∀x ∈ D and Q̂(δ ) using all ∑

k
i=0 n(i)x samples.

Step 2 Compute (α
(k+1)
x , x ∈ D) = argmax

{αx,x∈D}
min

{x∈Q̂(δ )}
∑y∈D Î(αx,αy)I{ f̂ (x)> f̂ (y)}.

Generate Tj ∀ j = {1,2, . . .N}, where Tj has empirical distribution with probability
α
(k+1)
x on support x ∈ D. Set n(k+1)

x = ∑
N
j=1 I{Tj=x} ∀x ∈ D.

Step 3 Repeat Steps 1 and 2 , until sampling budget exhausts.

The choice of δ determines the error tolerance, and affects the allocation budget. Figure 1(a) depicts a case where
δ is much smaller than the resolution of the grid. In this case, both the true allocation and the estimated allocation
place much of the sampling effort near the optimizer. On the other hand, when δ is of the order of the grid resolution,
Figure 1(b) demonstrates that both the true and the estimated allocations expend substantial sampling efforts near the
“boundary” of the sets Q(δ ) and Q̂(δ ) respectively. Figure 2 illustrates that in both the cases, optimality gap appears
to converge, but with large variance.

Binomial Loss: Next, in the case of the binomially distributed loss function, it suffices to compute the objective
value f̂ (x) using the natural, plug-in estimator for (11). Our observations here parallel the Gaussian case.

5.2 Optimization without Closed-forms
It is rare to place explicit distributional assumptions on the loss function at different design points in the grid, and
typical stochastic programming models assume regularity conditions on the loss function L(·, ·) and stochasticity
conditions on ξ . The distributional conditions are then consequences of these two ingredients. In general, then, it is
highly unlikely that there exists a closed form for the optimization supt∈R J(·, ·, t), and the optimization must be carried
out numerically on a Monte Carlo estimate Ĵ(·, ·, t).

As noted before, Algorithm 1 has no guarantees on convergence within a fixed number of iterations, since it is
only running till the sampling budget is exhausted. On the other hand, there are many applications of SAA where it
is useful to run the algorithm till convergence. For instance, in data-driven applications, it may be possible to obtain
n samples repeatedly from a simulator, or by bootstrap sampling of a given dataset. To handle such situations we
propose a second iterative algorithm that is expectation-maximization (EM) like, and proceeds in two iterative steps.
In step one, for a fixed linear allocation rule (αx, x ∈ D), we compute Ĵ(αx,αy, t) for every x,y ∈ D and identify the
optimal t(x,y). In step two, we compute an allocation using the objective in 9 albeit with I(αx,αy, t(x,y)) from step
one. These two steps are iterated till there is no improvement in the allocation in step two. The following display
summarizes the algorithm.

Table 2: Algorithm 2.

Step 0 Fix (α
(0)
x , x ∈ D), where α

(0)
x ∈ [0,1] and ∑x α

(0)
x = 1.

For each k ≥ 0:
Step 1 Generate Tj ∀ j = {1,2, . . .n}, where Tj has empirical distribution with probability

α
(k)
x on support x ∈ D. Set n(k)x = ∑

n
j=1 I{Tj=x} ∀x ∈ D.

Generate n(k)x i.i.d. random samples at each x ∈ D.
Compute t(k)(x,y) = argsupt∈R Ĵ(α(k)

x ,α
(k)
y , t) for all x,y ∈ D, and

Compute f̂ (x) for all x ∈ D and Q̂(δ ) using all ∑
k
i=0 n(i)x samples.

Step 2 Compute (α
(k+1)
x , x ∈ D) ∈ argmax

{αx, x∈D}
min

x∈Q̂(δ )
∑y∈D Î(αx,αy, t(k)(x,y))I{ f̂ (x)> f̂ (y)}.

Step 3 Repeat Step 1 and 2, until (α(k)
x , x ∈ D) converges.
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(a) δ = 0.05 (b) δ = 1.0

Figure 1: Approximate and true allocations with Gaussian distributed loss functions. Total sampling
budget n = 4600, |D|= 46 and averaged over 50 sample paths.

(a) δ = 0.05 (b) δ = 1.0

Figure 2: Sample quantile of Optimality Gap for Gaussian distributed loss functions for 50 Sample paths.
Total sampling budget n = 4600 and |D|= 46.

Note that we assume that the sampling budget n is fixed, and allow the algorithm to produce n samples on each
iteration. It is possible to couple the iterative scheme to the sampling budget by fixing the number of iterations a priori
to K = bn∗ γc, where γ ∈ [0,1] is fixed. At the kth iteration, ∑

k
i=0 α

(i)
x K samples is generated at sample point x ∈D. In

this case, the algorithm terminates once K iterations have been completed.

Mean-squared Error Consider a squared error loss, widely used in empirical risk minimization of machine learning
models, where L(x,ξ ) := (x− ξ )2. For simplicity, we assume that the design space is one dimensional and that ξ is
Gaussian.

Observe that the estimated allocation is quite close to the true allocation, even in this case (see Figure 3). Significant
budget allocations are once again made in the vicinity of the boundary of Q(δ ). Figure 4 on the other hand, amply
demonstrates that while the estimators are consistent with a large budget “on average” as demonstrated by the 50th
percentile lines, there is significant variance in the optimality gap even at large sample values as shown by the spread
between the 90th and 10th percentiles.
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(a) δ = 1.0 (b) δ = 2.0

Figure 3: Approximate and true allocations for squared loss with Gaussian random samples. Sample at
each iteration n = 460, |D|= 46 and averaged over 30 sample paths.

(a) δ = 1.0 (b) δ = 2.0

Figure 4: Sample quantile of Optimality Gap for squared loss functions with Gaussian random samples
for 30 Sample paths and |D|= 46.

6 Conclusions and Future Directions
We study the problem of optimally allocating a sampling budget in order to compute a sample average approximation
(SAA) of the solution of a single-stage stochastic program. Under a fixed finite discretization of the design space (or
‘grid’), we first establish a large deviations principle satisfied by the regret, defined as f (x̂n)− f (x∗), where f (·) is
the true objective, x̂n is the SAA estimate of the optimizer and x∗ the true optimizer. Next, we identify a constraint
maximization problem, whose solution identifies an optimal linear allocation rule that maximizes the decay rate of
the likelihood of identifying an incorrect optimal design point, in the limit of a large sampling budget. Finally, we
designed two different algorithms to sequentially implement this optimization.

The developments in this paper lead to multiple important and open problems, relevant to both simulation opti-
mization and machine learning more broadly. First, our current treatment of the regret effectively assumes that the
grid is fixed. An important question is how the grid size affects the large deviations rate function. In particular, it can
be easily seen that when the grid has the cardinality of the continuum, the rate function does not exist. On the other
hand, there is definite benefit in scaling the grid size with the sampling budget. How should this be done to obtain a
large deviations principle in the limit?

Second, while results in [4] and [7] can be straightforwardly adapted to establish consistency of the sequentially
estimated allocation rule, the efficiency of the estimator is unknown. In particular, we conjecture that the rate function
estimators used are highly inefficient. This follows from the fact that we use the canonical estimator for the cumulant
generating function, and it is conjectured that the latter estimators are heavy-tailed [5]. On the other hand, we are
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really only interested in the accuracy of the estimated objective in the vicinity of the true optimizer, and not the global
accuracy. Closer to the optimizer, and in the large sampling budget limit, we conjecture that it is possible to use fewer
moments to accurately estimate the rate function, leading to substantial improvements in efficiency.

Third, note that the algorithms designed here are not dimension free, and we conjecture that even with strictly
convex objective functions f they will not scale well. We postulate that it is possible to combine (9) with multiple
stochastic gradient descent (SGD) crawlers starting at each of the grid-points, and letting these iterate a fixed number
of times, to make the allocation optimization algorithm dimension-free.

Fourth, ‘gridding’ the design space has significant algorithmic advantages since it allows our present algorithms
to be implemented in a ‘divide and conquer’ manner, whereby slave machines sample and estimate moments of the
loss function at each design point, and communicate this to the master machine for optimization. On the other hand,
estimates at a given design point must be close to those at other design points in its neighborhood. With a fine
grid, the amount of communication overhead required to implement a fully parallel computation is likely significant.
We speculate that it should be possible to design a completely decentralized optimization scheme to determine the
optimal allocation just by performing local message passing. Such a scheme would yield substantial reductions in
communication overhead.
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