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ABSTRACT

Calibration of parameters in simulation models is necessary to develop sharp predictions with quantified
uncertainty. A scalable method for calibration involves building an emulator after conducting an experiment
on the simulation model. However, when the parameter space is large, meaning the parameters are quite
uncertain prior to calibration, much of the parameter space can produce unstable or unrealistic simulator
responses that drastically differ from the observed data. One solution to this problem is to simply discard,
or filter out, the parameters that gave unreasonable responses and then build an emulator only on the
remaining simulator responses. In this article, we demonstrate the key mechanics for an approach that
emulates filtered responses but also avoids unstable and incorrect inference. These ideas are illustrated on
a real data example of calibrating COVID-19 epidemiological simulation model.

1 INTRODUCTION & BACKGROUND

Simulation models are used to understand real world predictions but they are often burdened with parameters
that are either unknown or imprecisely known. Calibration is the process of statistically learning these
parameters with requisite uncertainty quantification. During this process, the simulation output is aligned
with the real observations and uncertainty is pulled through the process. While one might imagine calibration
as a one-shot process, this usage is less common than it once was. Today, simulation calibration is often
done regularly because models and data can rapidly be updated and changed. This motivates the need for
simulation calibration tools that are automated, fast and reliable.

Bayesian statistical inference is a natural and popular candidate for simulation calibration. There also
exist some non-Bayesian ways of handling this brand of calibration, e.g. Yuan et al. (2012) or Plumlee
(2019), but in many calibration settings the prior knowledge and the need to quantify the uncertainty make
Bayesian inference the best candidate. In a Bayesian calibration paradigm, the computation often uses
Markov Chain Monte Carlo (MCMC) for posterior inference (Gelman et al. 2013, Chap. 11). MCMC is a
sequential sampling algorithm that can involve millions of simulation model runs to generate approximate
samples from the posterior distribution. This requirement can be problematic if running a simulator takes
hours or days. An alternative approach is to replace the simulation with a cheaper emulator (Higdon et al.
2008; Plumlee 2017; Wong et al. 2017), which is built by using the simulation runs at chosen parameters
to produce a predictive distribution for the simulation output at parameters where the simulation was not
run. The emulation often uses a Gaussian process framework to easily pull through the uncertainty in the
predictions, see the texts of Santner et al. (2018) and Gramacy (2020). It is then relatively easy to integrate
this emulation prediction with calibration in a manner that allows for uncertainty quantification (Higdon
et al. 2008; Plumlee 2017; Wong et al. 2017). There are also sequential algorithms that use the emulation
to drive collection of new data, e.g. (Wang, Zhang, and Xie 2019) and (Yuan and Ng 2020), but the focus
of this article is the analysis of parameters after a large, parallel simulation expedition.
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When the initial parameter space is large, or the model is sufficiently sensitive to the parameters, it is
possible to get extremely unrealistic results in some regions of the parameter space. In this paper, we present
a new approach for the calibration of black-box simulators with unrealistic results that avoids unstable and
incorrect inference. We demonstrate our approach using a COVID-19 epidemic simulator as a case study
in which disease dynamics are characterized by an enhanced Susceptible-Exposed-Infectious-Removed
(SEIR)-style model of disease transmission (Wang et al. 2020). The simulation results (e.g., forecasted
daily admissions and census hospitalizations, daily and census ICU hospitalizations, confirmed cases,
and deaths) specifically used the COVID-19 differential equation-based simulation model of Yang et al.
(2021). Yang et al. proposes a simulation-based-optimization model to decide on whether the community
mitigation measures should be enhanced or relaxed to guide public policies throughout the COVID-19
epidemic. Because some of the simulation outcomes yield hospitalizations that diverge from real data, Yang
et al. propose a filtering approach to discard the simulator outputs that are unreasonable, meaning they are
inconsistent with observed hospitalizations in their model to create a robust COVID-19 alert system.

Filtering, or discarding, unreasonable parameter settings based on simulation results has recently been
investigated under the heading of Approximate Bayesian Computation (ABC) (Beaumont et al. 2002;
Rutter et al. 2019). In basic ABC, one begins by simulating a massive swath of runs at various parameters.
This is also the first step in an emulation-based approach, but typically it is imagined that the sample size
is much larger for ABC. The second step in ABC is simply to remove all simulations that are sufficiently
far from the observations, measured somewhat arbitrarily by an acceptability function. There is a huge
benefit of speed and simplicity in the deployment of ABC. ABC inference is formally proven to agree
with Bayesian inference when the acceptability function is sufficiently tight. However, if we choose an
acceptability function that is too stringent, then ABC can be wasteful if many simulation outcomes are
far from the actual observations. On the other hand, a loose acceptability function may result in including
many sub-optimal parameters in the resulting inference, and the conclusions will drift further from the
correct posterior. There are many direct advantages of using emulation over ABC, and Baker et al. (2020)
describe some key details.

The purpose of this article is to properly marry emulation-based calibration inference with filtration in
a generic, statistical learning framework. We will do so by deploying a broad acceptability function, thus
expanding the acceptable region, and then building an emulator using data from the simulations that were
deemed acceptable. Our broad acceptability function thus discards the unreasonable results from simulation
that are not helpful for representing the underlying truth. This is in contrast to ABC where the acceptability
function is used to fully determine what results are representative of reality. This process has two key
benefits over emulating across the entire parameter space. First, emulators are easier to train and typically
more accurate in the reduced space as unreasonable response regions can give unstable and ill-behaved
emulation results. The resulting calibration models from the proposed filter-emulate-calibrate procedure is
thus more robust than the direct emulate-calibrate procedure. Second, building an emulator with filtered
data can be computationally cheaper than building the one with the entire data set; the computational cost
of Gaussian process inference scales approximately on the number of simulations used in training cubed.
This can overcome through a myriad of choices such as using local approximations (Gramacy and Apley
2015), partitioning the parameter space (Park and Apley 2018), leveraging structured data (Plumlee et al.
2021) or simply brute force computing (Wang et al. 2019). However, with all options less data leads to
faster inference for both building and evaluating the emulation model, which is a benefit to conducting
time-sensitive calibration. Thus the proposed filter-emulate-calibrate procedure will lead to calibration
analysis that requires less computation time than the direct emulate-calibrate procedure.

The rest of this paper is organized as follows. Section 2 provides the summary of the COVID-19
simulation model and explains the natural benefit of filtration in this setting. Section 3 briefly overviews the
proposed methodology. Section 4 elaborates on emulation and calibration of COVID-19 simulation model.
Section 5 provides some numerical results to show the robustness of the proposed calibration approach.
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2 COVID-19 SIMULATION MODEL

In this section, we illustrate how the COVID-19 simulator outcomes diverge from the observed data and
how filtration can play a critical role in improving the resulting inference. In the setup investigated in this
article, there are four uncertain parameters that govern the sojourn time in the exposed compartment of the
SEIR-style model (σ ), the recovery times from the asymptomatic (γA) and symptomatic (γY ) compartments,
and the infectiousness of an asymptomatic individual relative to an infectious individual (ωA). In this study,
we focus on a deterministic simulator meaning that for a given θθθ = (σ ,ωA,γY ,γA), the simulator generates
the same output for each replicate. The parameters and their prior distributions are given in Table 1. We
consider this setting sufficiently complex to explore the ideas discussed in this article, but one could easily
apply this methodology to a stochastic simulator with an increased number of parameters.

Table 1: COVID-19 epidemic model parameters and their prior ranges.

Parameter Label Prior
σ θ1 Uniform(1, 5)
ωA θ2 Uniform(0.1, 5)
γY θ3 Uniform(1, 7)
γA θ4 Uniform(1, 7)

Our goal is to conduct inference using COVID-19 hospitalization data (specifically hospital census, ICU
census, and daily hospital admissions) from February 28 through October 7, 2020 from the Austin, Texas
metropolitan area, with a population of about 2.2 million (City of Austin 2020). The simulation model was
used to construct the optimal staged alert system in Austin (Yang et al. 2021), and the calibration of this
simulation model has been done regularly because the data and the model have been updated frequently
with different public health interventions. Figure 1 illustrates simulator outputs and the observed data for
hospital census (1st row), ICU census (2nd row), and daily hospital admissions (3rd row). As in Figure 1a,
the simulator outputs with a total of 1000 random samples have greater degree of uncertainty in model
predictions before filtering. Given the data set, such as the COVID-19 hospitalizations in Austin, a subset
of simulator outputs can be filtered out in order to restrict ourselves to a certain parameter space to do
inference.

In this example, similar to issues faced by simulation researchers studying models in nascent stages,
there are unreasonable results at some parameter combinations. Our suggestion is to filter these unreasonable
results out from the simulation results. For this example, the filtration is done by removing the simulator
outputs with census hospitalization at day 100 (which corresponds to day when the first peak occurs in
hospitalizations) that are either smaller than 50 or larger than 3000. The resulting 206 filtered simulator
outputs are illustrated in Figure 1b. The goal of filtering here is to remove parameters with unrealistic
simulation outcomes rather than identify parameters with realistic simulator outcomes. For example, the
threshold of 3000 is over the Austin area total hospital capacity of 1500, and the values over 3000 do not
reflect the realistic case.

3 OVERVIEW OF THE PROPOSED CALIBRATION FRAMEWORK

3.1 Review of Bayesian Calibration

Let θθθ = (θ1, . . . ,θp) denote the set of calibration parameters that are unknown or uncertain. We assume that
there exists a corresponding physical observation from the real system denoted by vector y = (y1, . . . ,yd)
and it can be modeled as the best fit of the complex simulation model ηηη(θθθ). Our statistical model is of
the form

y =ηηη(θθθ)+εεε,
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(a) Initial simulator outputs. (b) Filtered simulator outputs.

Figure 1: COVID-19 simulator outputs for Austin, from February 28, 2020 through October 7, 2020. In
both plots, the grey curves indicate deterministic simulations, the red points correspond to the reported
COVID-19 admissions, hospital census, and ICU census for all Austin area hospitals.

where εεε denotes the residual error and is assumed to come from a multivariate normal distribution with a
mean vector of zeros and a covariance matrix (assumed known) ΣΣΣ. Importantly, the model is deterministic
and the discrepancy between the model output ηηη(θθθ) and the observations y is independent of θθθ . There
are some ways to account for emulation for stochastic simulations (Ankenman et al. 2010; Plumlee and
Tuo 2014; Binois et al. 2018), but this complexity is ignored in this article for brevity.

As with all Bayesian inference, we assume that we are provided a prior distribution of the unknown
calibration parameter θθθ denoted by p(θθθ) and the likelihood p(y|θθθ). The prior distribution p(θθθ) is generally
based on subject-matter expert opinion. Using Bayes rule, the posterior density has the form

p(θθθ |y) ∝ p(y|θθθ)p(θθθ),

where ∝ implies equality up to some constant. For our case, the likelihood is proportional to

p(y|θθθ) = |ΣΣΣ|−1/2 exp
{
− 1

2
(y−ηηη(θθθ))ᵀΣΣΣ

−1(y−ηηη(θθθ))

}
. (1)

If a simulator is not computationally demanding, then the inference would be done using MCMC on this
form. However, if an evaluation of a simulation model is computationally expensive, the emulator replaces
the simulation model to predict the simulator output. In that case, the likelihood is updated using the
emulator’s mean and covariance. Before we discuss the details of the emulator in Section 4, we briefly
overview the proposed calibration approach in Section 3.2.
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3.2 Proposed Filtering-Based Bayesian Framework

Say that our prior on the parameters is sufficiently broad in the sense that draws from the prior p(θθθ) can be
such that ηηη(θθθ) yield unreasonable results. Pre-processing operations, like those discussed in Section 2, can
be used to remove unwanted simulator outputs via some filtration rules. For the rest of the paper, we use
the terms “accept” and “reject” to denote the filtered-in and filtered-out simulator outputs, respectively. In
that sense, we “accept” a simulator output if it is reasonable, and otherwise we “reject” and exclude because
it is unreasonable. Let the acceptability function r(θθθ) be a binary variable representing acceptability such
that

r(θθθ) =

{
1 if a simulator output is accepted for the corresponding parameter θθθ , and
0 otherwise.

The terms an accepted simulator output and an accepted parameter can be used interchangeably because
there is one-to-one correspondence between a parameter and a corresponding simulation output.

The likelihood p(y|θθθ) then can be written as

p(y|θθθ) = p(y,r(θθθ) = 1|θθθ)+ p(y,r(θθθ) = 0|θθθ).

When r(θθθ) = 0, the simulator output generated with θθθ is unreasonable and thus drastically diverges from
the observed data y, and thus p(y,r(θθθ) = 0|θθθ) ≈ 0. Given p(y,r(θθθ) = 0|θθθ) ≈ 0, we can approximate
p(y|θθθ) as

p(y|θθθ)≈ p(y,r(θθθ) = 1|θθθ). (2)

Using conditional probability, (2) can be written equivalently as

p(y|θθθ)≈ p(y,r(θθθ) = 1|θθθ) = p(y|θθθ ,r(θθθ) = 1)p(r(θθθ) = 1|θθθ). (3)

It helps to contrast (3) with an ad hoc approach. In practice, filtration often happens naturally during
analysis where one informally explores the parameter space to find decent regions of the parameter space
and then emulates where the simulator outputs are deemed reasonable. In this case, given the filtered
simulator outputs (e.g., the simulator outputs with r(θθθ) = 1, and the ones with r(θθθ) = 0 are filtered out)
we would compute the likelihood via

p(y|θθθ)≈ p(y|θθθ ,r(θθθ) = 1). (4)

On an intuitive level, this procedure makes sense as the emulator only needs to be accurate where there
are reasonable outputs. However, if one uses the emulation built on filtered data without accounting for
the filtration, the inference can be wrong. The calibration posterior will be much larger than desired in a
way that keeps mass in areas where there is little chance of getting acceptable simulation outcomes. This
is incorrect because the emulation built on filtered data is the prediction conditional on the model output
being acceptable.

One must use (3) instead of (4) in order for filtration and emulation to produce reasonable inference.
This amounts to a simple fix: multiply the likelihood from filtered responses by an adjustment factor
p(r(θθθ) = 1|θθθ) in (3) that reflects the probability of θθθ being accepted. The development of this is described
in Section 4.4. This way, regions with little likelihood of acceptability will have reduced posterior mass
even if the likelihood conditional on it being accepted is large. In this paper, we integrate this adjustment
factor into the calibration framework as a multiplicative of the likelihood p(y|θθθ ,r(θθθ) = 1) conditioning on
the corresponding simulator outcome is being accepted as it will be described in Section 4.5.

4 EMULATION AND CALIBRATION OF COVID-19 SIMULATION

4.1 Emulation Model for the Simulation Output

Calibration often involves running a simulator many times to draw samples from the posterior of θθθ . If the
simulator runs fast, one can compute the likelihood as in (1) using the simulator response. However, in
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many cases a direct use of simulation model ηηη(θθθ) for MCMC is not practical because it is computationally
inefficient to run the simulation even for a single parameter vector θθθ . An emulator is commonly used as
a surrogate to replace the simulator in these cases to reduce the computational cost. We treat ηηη(.) as an
unknown function and use the responses from n initial parameter settings as a training set to emulate ηηη(.)
leveraging a Gaussian process (GP) model. These initial parameters are randomly generated from their
prior distribution.

For the rest of this section, θθθ denotes the unknown best parameter setting, and t represents any parameter
setting. To construct an emulator, we model the simulation output using the basis representation of Higdon
et al. (2008) where

ηηη(t) =
q

∑
i=1

kiwi(t)+eee (5)

where {k1, . . . ,kq} is a collection of orthogonal d-dimensional basis vectors, wi(t) are weights modeled
with independent, univariate GPs and eee is an d-dimensional term that contains any residual between the
model and the span of {k1, . . . ,kq}. The COVID-19 simulator requires p = 4 dimensional parameter vector
t = (t1, t2, t3, t4) (see Table 1), and returns d = 114 dimensional output.

In (5), the weight wi(t) for i = 1, . . . ,q is a function mapping the p-dimensional input t to a scalar.
These q functions are modeled as independent GPs on the region where r(.) = 1 with mean and covariance
function γi(.) and Ci(., .). Explained differently, if Θ is our parameter space, then we are presuming that

wi(.)∼ GP(γi(.),Ci(., .)) on ΘA = {t|r(t) = 1, t ∈Θ}. (6)

We presume that wi(.) is independent of all locations where r(θθθ) = 0. Following typical emulation
approaches (Gramacy 2020), we take the covariance as some constant times a correlation function plus
some nugget (Gramacy and Lee 2012),

Ci(t, t′) = τ
2
i
[
R(t, t′;ρρρ i)+νiδt,t′

]
, (7)

where δt,t′ = 1 if t = t′ and 0 otherwise. For the correlation function R, we used the separable version of
the Matérn correlation function with smoothness parameter 1.5 (Handcock and Stein 1993) which depends
on a p-dimensional vector of length-scale parameters ρρρ i. In (7), νi and ρρρ i are the hyper-parameters that
can be estimated from the training data by numerically maximizing the likelihood function as described in
the next subsection. The key to our inference approach is that this setup, namely (6), implies we are only
interested in the parameters that were not filtered out.

To find k1, . . . ,kq, we use the following process. Using n = 206 filtered simulator runs corresponding to
parameter settings t∗1, . . . , t∗n, and obtain d-dimensional simulator outputs ηηη(t∗1), . . . ,ηηη(t∗n), and then construct
d×n data matrix Ξ = [ηηη(t∗1), . . . ,ηηη(t∗n)]. After mean-centering and scaling each of the rows of Ξ, we obtain
the q orthogonal basis vectors k1, . . . ,kq via principal components to project the original simulator outputs
onto a lower-dimensional space spanned by an orthogonal basis. In this case study, less than 10 PCs are
enough to explain 99% of the variation in the simulator output Ξ. Using n parameter settings, let the n-vector
wi be wi = (wi(t∗1), . . . ,wi(t∗n)) for i = 1, . . . ,q, and let n×n matrix Ci be the covariance matrix resulting
from applying (7) to each pair of the parameter settings t∗1, . . . , t∗n. Then, the nq-vector w = (w1, . . . ,wq)
has a prior distribution w1

...
wq

∼ N


γγγ1

...
γγγq

 ,

C1 . . . 0
...

. . .
...

0 . . . Cq


 .

4.2 Estimation of the Hyper-parameters in the Gaussian Process Model

Following common procedures and to eliminate a very expensive numeric integration problem, we will set
all hyper-parameters equal to their maximum likelihood data given the (accepted) simulation responses.
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The GP prior on wi, that is, wi ∼ N(γγγ i,Ci) as stated above, implies that the likelihood is in the form of

(2πτ
2
i )
−n/2|Ci|−1/2 exp

{
− 1

2τ2
i
(wi−γγγ i)

ᵀC−1
i (wi−γγγ i)

}
. (8)

In order to simplify the likelihood further, we assume a constant mean for each GP such that γγγ i = γi1n.
Taking the log of (8) and plugging γγγ i = γi1n yields the log-likelihood

l(τ2
i ,γγγ i,Ci,νi,ρρρ i) =−

n
2

log(2π)− n
2

log(τ2
i )−

1
2

log(|Ci|)−
1

2τ2
i
(wi− γi1n)

ᵀC−1
i (wi− γi1n). (9)

Maximizing the log-likelihood with respsect to τ2
i and γi gives us

γ̂i =
1ᵀnC−1

i wi

1ᵀnC−1
i 1n

and τ̂
2
i =

1
n
(wi− γ̂i1n)

ᵀC−1
i (wi− γ̂i1n). (10)

The hyperparameters νi and ρρρ i need to be estimated as well. If we plug the estimates γ̂i and τ̂2
i in (10)

back into our log-likelihood in (9), we can ignore an additive constant and get a revised log-likelihood of

l?(νi,ρρρ i) =−
n
2

log(τ̂2
i )−

1
2

log(|Ci|).

Maximizing l?(νi,ρρρ i) requires numerical methods. In this study, all hyper-parameters are optimised until
convergence using scipy’s implementation of the L-BFGS-B algorithm (Nocedal and Wright 2006).

4.3 Emulator-based Predictions

We require the ability to infer on ηηη(.) for any parameter input conditional on it being accepted. In order
to generalize predictions at any parameter settings, we use conditional normal theory, and find that

wi(θθθ)|wi,r(θθθ) = 1∼ N(µi(θθθ),σ
2
i (θθθ ,θθθ))

with mean µi(θθθ) = γ̂i + ci(θθθ)
ᵀC−1

i (wi− γ̂i1n) and variance σ2
i (θθθ ,θθθ) = Ci(θθθ ,θθθ)− ci(θθθ)

ᵀC−1
i ci(θθθ). Here,

ci(θθθ) is an n-dimensional vector obtained by applying (7) to n experimental settings {t∗1, . . . , t∗n} crossing
with any setting θθθ .

Let d× q matrix K be K = [k1, . . . ,kq], and let q-length vector w(θθθ) = (w1(θθθ), . . . ,wq(θθθ)). Define
µµµ(θθθ) = (µ1(θθθ), . . . ,µq(θθθ)) and q× q matrix S(θθθ) with diagonal elements σ2

i (θθθ ,θθθ) for i = 1, . . . ,q and
off-diagonal elements 0. Then, because one can generate the realizations from the process ηηη(θθθ) at θθθ via
ηηη(θθθ) = ∑

q
i=1 kiwi(θθθ), we can obtain

ηηη(θθθ)∼ N(Kµµµ(θθθ),KS(θθθ)Kᵀ). (11)

Here, Kµµµ(θθθ) and KS(θθθ)Kᵀ are the emulator predictive mean and covariance, respectively.

4.4 Probability of Acceptance

In (3), in addition to p(y|θθθ ,r(θθθ) = 1), the probability of accepting the simulator output for a given
input parameter θθθ , that is, p(r(θθθ) = 1|θθθ) is needed, and we use a statistical-learning method to estimate
p(r(θθθ) = 1|θθθ) as follows. We construct a training data set where each observation of data corresponds to
one simulation run, and the training set consists of 400 randomly selected balanced rows with 200 accepted
and 200 rejected simulator runs. We fit a binary classification model to predict whether the simulator output
is accepted (the response) based on a given input parameter θθθ (the predictors). The response is defined as
a binary random variable that takes values zero and one, and it is one if the simulator output corresponding
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to θθθ is accepted, otherwise zero, according to user chosen filtration rules like those described in Section
2. In order to estimate p(r(θθθ) = 1|θθθ), we consider the following logistic regression model

log
[

p(r(θθθ) = 1|θθθ)
1− p(r(θθθ) = 1|θθθ)

]
= β0 +β1θ1 + · · ·+β4θ4 +β5θ

2
1 + · · ·+β8θ

2
4 +β9θ1θ2 + · · ·+β14θ3θ4, (12)

where each βi is a regression coefficient for i = 0, . . . ,14. We estimate these βis via sklearn (Pedregosa
et al. 2011), and include the quadratic and interaction terms as in (12) since including them increases the
classification accuracy (i.e., the percentage of correct predictions out of total number of samples) on the
test data about 10% (increased from 74% to 85%).

4.5 Calibration of COVID-19 Simulation Model with the Proposed Approach

In this study, we use the emulator described above to replace the computationally expensive COVID-19
simulation model. In such a case, when computing the likelihood p(y|θθθ), the simulator output ηηη(θθθ) is
replaced by the emulator mean, and the prediction uncertainty from the emulator is integrated within the
likelihood. We assume that the emulator is conditionally a GP given r(θθθ) = 1 as in (6), and it is fitted
using n filtered simulation runs as explained above. At any input setting, we obtain the emulator mean and
covariance as Kµµµ(.) and KS(.)Kᵀ, respectively, as given in (11).

Using the idea introduced in Section 3.2, we compute the posterior of θθθ via

p(θθθ |y) ∝ p(y|θθθ ,r(θθθ) = 1)p(r(θθθ) = 1|θθθ)p(θθθ). (13)

Integrating emulation mean and variance to the likelihood, one can obtain the conditional likelihood
p(y|θθθ ,r(θθθ) = 1) in (13) as

|ΣΣΣ+KS(θθθ)Kᵀ|−1/2 exp
{
− 1

2
(y−Kµµµ(θθθ))ᵀ(ΣΣΣ+KS(θθθ)Kᵀ)−1(y−Kµµµ(θθθ))

}
. (14)

5 RESULTS

In this section, we present our results and provide insights into why incorporating the probability of
acceptability into the calibration framework helps to avoid unstable and incorrect inference. First, we
explain the role of the acceptance probability in the proposed calibration approach. As described above, we
use four uncertain parameters, that is, θθθ = (σ ,ωA,γY ,γA), to calibrate, and Figure 2 illustrates how the log
of the acceptance probability p(r(θθθ) = 1|θθθ) (in Figure 2a) and the log of the likelihood p(y|θθθ ,r(θθθ) = 1)
conditioning on the parameters being accepted (in Figure 2b) vary with changing values of the pair of
parameters. In the 3×3 array of panels in Figures 2a–2b, columns correspond to the parameters σ ,ωA,γY
and rows correspond to the parameters ωA,γY ,γA, respectively. Within each panel the corresponding values
are visualized with changing values of the pair of parameters represented by the x- and y- axes, and the
remaining two parameters are set to the median of the 1000 samples from the posterior distribution of θθθ

determined from MCMC.
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(a) Log-acceptance probability, log p(r(θθθ) = 1|θθθ). (b) Log-likelihood, log p(y|r(θθθ) = 1,θθθ).

Figure 2: Illustration of the log-acceptance probability and the log-likelihood with changing values of all
paired combinations of parameters.

Figure 3: Distribution of the calibrated parameters σ , ωA, γY , γA sampled from the posterior distribution.
The results are obtained through calibration using emulation of filtered simulation results without acceptance
probability (1) and with acceptance probability (2).
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(a) Calibration without acceptance probability. (b) Calibration with acceptance probability.

Figure 4: Emulator mean at posterior parameters obtained at test points through calibration using emulation
of filtered simulation results without acceptance probability (left) and with acceptance probability (right).
In both plots, the grey lines indicate the error bars corresponding to the 95% interval, the red points
correspond to the reported COVID-19 hospital census, ICU census and hospital admissions for all Austin
area hospitals.

Figure 2a illustrates the log of the probability that the simulator output is being accepted for a given
parameter θθθ . In Figure 2b, the log-likelihood values are illustrated for the same pair of parameters. We can
now revisit the pitfall inference discussed in Section 3. If one applies the aforementioned filter-emulate-
calibrate procedure without considering the acceptance probability, then the log-likelihood would look like
Figure 2b. Obviously, this leads to large posterior density for the parameters that are likely to return both
realistic and unrealistic simulator outputs. The parameters lying in the upper blue region in the initial panel
in Figure 2b for instance tend to be the rejected ones in the upper red region of Figure 2a. If one does not
consider the fact that the inference is conditional on the simulator output is being acceptable and ignores
the acceptance probability, then the inference will be wrong. On the other hand, when the acceptance
probability is incorporated into the calibration framework as in the proposed approach, the parameters lying
in the regions with smaller probability of acceptance in Figure 2a have reduced adjusted likelihood, and
thus the reduced posterior density. This illustrates exactly why including the probability of acceptance is
critical, because without it, unrealistic parameters would have large mass in the posterior.

Recall that we obtained the likelihood in (14) using the emulator built on the filtered simulator outputs.
As mentioned above, the advantages of emulating the simulator outputs over a filtered space are the
decreased computational expense and the improved prediction quality. For example, in our case study if



Sürer and Plumlee

we built an emulator without filtering out any simulator outputs (e.g., using all simulator outputs illustrated
in Figure 1a), then the number of observations in the training set would be 1000. In such a case, the
computational time of training and prediction procedure would increase compared to that of the emulator
fitted with 206 observations. In terms of the emulation prediction quality, as an illustration, in addition to
the emulator fitted with the filtered simulation outputs, we built an emulator with all simulator outputs, and
evaluated the prediction quality on a test set via the root-mean-square error (RMSE) value. We obtained the
RMSE of 3.66 (with 17 PCs) using the emulator fitted with 1000 outputs, whereas the RMSE is 1.27 (with
9 PCs) using the emulator built with 206 filtered simulator outputs. This demonstrates that by building
an emulator with filtered data we can obtain higher prediction accuracy with less number of PCs because
filtering eliminates the unstable outcomes. Once we fit the emulator with filtered outputs and incorporate
the acceptance probability into the posterior, we use the parallel-tempering ensemble MCMC (Liu 2008,
Chapter 10) to sample from the posterior. This posterior is very difficult for most MCMC approaches
because of multi-modality. This is especially true for a method that ignores the acceptance probability
term (see the log-likelihood illustrated in Figure 2b), further motivating the need for including this novel
acceptance probability term.

We compare the proposed approach with the filter-emulate-calibrate procedure without the acceptance
probability in our benchmark study. The first calibration approach requires the emulator fitted with filtered
simulation outputs, and returns the posterior draws without using the acceptance probability in computation
of the posterior. The second one is the proposed approach, and the posterior is obtained via (13). Figure 3
illustrates the variability in the median and the ranges of the parameters with two different approaches. As
the ranges of the four parameters show, the incorporation of a statistical-learning method in the form of
an acceptance probability into the calibration formulation indicate a reduction of uncertainty levels in the
parameters, especially for the second parameter ωA.

Once we obtain the posterior draws by using two different approaches, we predict the COVID-19 hospital
census, ICU census and hospital admissions at unseen time points (we downsampled our 576-dimensional
response vector to 114 dimensions, leaving the remaining for testing). Figure 4 illustrates the observed data,
the prediction mean (black line), and the prediction error at each time point (grey lines) without using an
acceptance probability and with using an acceptance probability. Overall, as the calibration results indicate
our approach greatly reduces the uncertainty in the model predictions. This comparison has helped us
identify the trade-off in not using acceptance probability when the filtered data is used through calibration
in terms of reducing the uncertainty in the parameters and the resulting predictions.
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