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ABSTRACT

This paper considers Importance Sampling (IS) for the estimation of tail risks of a loss defined in terms
of a sophisticated object such as a machine learning feature map or a mixed integer linear optimization
formulation. Assuming only black-box access to the loss and the distribution of the underlying random
vector, the paper presents an efficient IS algorithm for estimating the Value at Risk and Conditional Value
at Risk. The key challenge in any IS procedure, namely, identifying an appropriate change-of-measure, is
automated with a self-structuring IS transformation that learns and replicates the concentration properties
of the conditional excess from less rare samples. The resulting estimators enjoy asymptotically optimal
variance reduction when viewed in the logarithmic scale. Simulation experiments highlight the efficacy
and practicality of the proposed scheme.

1 INTRODUCTION

Value at Risk (VaR) and Conditional Value at Risk (CVaR) constitute two widely used measures of tail
risk in quantitative risk management (McNeil, Frey, and Embrechts 2015). Desirable properties such
as subaddivity, convexity, etc., have allowed CVaR to further flourish as a vehicle for introducing risk
aversion in planning problems in operations and machine learning (see, for example, Rockafellar et al.
2000; Bienstock et al. 2014; Ban et al. 2018; Tamar et al. 2016). The value at risk at a tail probability
level β is the (1−β )-th quantile of the loss distribution. CVaR at level β is the expected value of the
loss over its largest β fraction of outcomes and is relatively more challenging to estimate than VaR (Lim,
Shanthikumar, and Vahn 2011). With a limited fraction of data representing the loss distribution tail,
estimation of VaR/CVaR via simulation is executed typically with a rare event simulation technique such
as importance sampling, splitting, conditional Monte Carlo or control variates for the purposes of variance
reduction and accelerated estimation (Glasserman 2013).

As we explain imminently in the context of importance sampling (IS), efficient use of these simulation
techniques rely often on leveraging the structure of the loss at hand and the distribution of the underlying
random vector. In terms of general methodology, Glynn 1996 demonstrates how variance reduction using
IS in tail estimation can be translated to efficient estimation of VaR. Sun and Hong 2010 develop asymptotic
representations for VaR/CVaR which yield conveniently applicable characterizations of asymptotic variances
for VaR and CVaR. Bardou et al. 2008; Egloff and Leippold 2010 and, more recently, He et al. 2021
develop adaptive algorithms which incorporate generic IS changes of measure in estimation of VaR/CVaR.
While generically applicable, it is not within the scope of these works to provide specific prescriptions of
IS changes of measure that offer variance reduction guarantees. In this regard, Glasserman et al. 2000;
Glasserman et al. 2002; Bassamboo et al. 2005 demonstrate how the properties of multivariate normal and
t distributions can be exploited to reap substantial variance reduction in portfolio risk estimation contexts.
These algorithms critically utilize the specific structural properties of the loss, such as the linear-quadratic or
the sum of indicators structure, and are restricted to settings involving multivariate normal and t distributions.

In a number of operations and risk management contexts, the underlying loss often involves a sophisticated
structure. Planning problems typically specify a loss in terms of an optimization formulation involving
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numerous constraints. In the rapidly growing instances of operations and risk management models which
use machine learning tools, a suitable loss is written in terms of a feature-map (or) a feature-based decision
rule specified, for example, in terms of representation-learning devices such as kernels or deep neural
networks (see Ban and Rudin 2019; Elmachtoub and Grigas 2021 and references therein). Given the rich
modelling power of these loss instances, it is impractical to explicitly tailor the IS change of measure to the
problem considered. Adaptive IS methods, which utilize the estimator variance (or) cross-entropy criterion
(Rubinstein and Kroese 2013) to search for the best parameter choice within a chosen IS distribution family,
remain the most common approach to address this challenge. The performance of the adaptive approaches
is however determined crucially by the IS family distribution family initially chosen and may additionally
involve systematic underestimation (Arief et al. 2021).

This paper aims to tackle the challenges in marrying efficiency with black-box IS for VaR/CVaR
estimation. Restricting to multivariate normal distributions, Bai et al. 2020; Arief et al. 2021 utilise the
machinery of dominating points to algorithmically arrive at efficient IS mixture distributions for estimation
of distribution tails of losses that can be either directly written or approximated with a piece-wise linear
structure. Assuming only a black box access to the evaluations of loss L(·) and the distribution of the
underlying random vector XXX , we present here an efficient IS algorithm (Algorithm 1) to jointly estimate
VaR/CVaR of L(XXX). The IS scheme in this paper builds upon a generically applicable large deviations
framework and the IS scheme developed in Deo and Murthy 2021 for the estimation of distribution tails.
Exploiting the self-similarity in conditional excess distributions at different thresholds, the novel approach
informs a suitable IS measure by extrapolating excess loss samples observed at less rare thresholds. We
show that the proposed IS scheme offers asymptotically optimal variance reduction, when viewed at a
logarithmic scale, for a broad class of useful losses and multivariate distributions. Specifically, given any
ε > 0, we show that the sample complexity for estimating CVaR at a tail probability level β scales as O(β−ε)
with the proposed IS scheme. It is instructive to contrast this with the scaling of O(β−1−ε) obtained for
the case of naive estimation without IS. We complement the variance reduction guarantees with numerical
experiments that validate the efficacy and generic applicability of the proposed scheme.

We note that an attempt at black box CVaR estimation is made by Deo and Murthy 2020 for the case
where XXX has regularly varying tails (that is, when P(Xi > x)∼ x−αi , for αi > 0). While their scheme bears
some similarity to Algorithm 1, it relies heavily on the weak convergence properties of regularly varying
densities, and does not result in asymptotically optimal variance reduction.
Notation: We use D−→ to denote convergence in distribution. Boldface letters denote vectors. Likewise for
a function fff : Rd → Rk, fff (xxx) = ( f1(xxx), . . . , fk(xxx)). We let N(µ,σ2) denote a normal variable with mean
µ and variance σ2. Let ‖xxx‖p denote the `p norm of a vector xxx ∈ Rd and Br(xxx) denote the l∞-metric ball
of radius r centred at xxx. For an increasing function f : R→ R, we let f−1 denote its left-inverse. For real
valued functions f and g, we say that f (x) = O(g(x)) as x→∞ if there exist positive constants M,x0 such
that for all x > x0, | f (x)| ≤M|g(x)|. We say that f (x) = Õ(g(x)) if f (x) = O(g(x) logk(x)), for some k > 0.

2 PROBLEM DESCRIPTION

Suppose L(xxx) denotes the loss incurred when the underlying random vector XXX realizes the value xxx. Let FL
denote the distribution function of L(XXX), that is, FL(u) = P(L(XXX)≤ u), and let fL be its density. Given a
confidence level β ∈ (0,1), denote the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of the
loss L at level β as,

vβ = F−1
L (u) := inf{u ∈ R : FL(u)≥ 1−β}, and Cβ := vβ +β

−1E
(
L(XXX)− vβ

)+
respectively. Our objective is to enable efficient estimation of the VaR vβ and CVaR Cβ for values of β

close to 0. Assumption 1 below imposes a mild regularity condition on the function L(·), whose evaluation
may be available only via a black-box.
Assumption 1. The function L : Rd → R satisfies the following conditions:
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(i) the set {xxx ∈ supp(XXX) : L(xxx)> u} is contained in Rd
+ for all sufficiently large u; and

(ii) for any sequence {xxxn}n≥1 of Rd
+ satisfying xxxn→ xxx, we have

lim
n→∞

L(nxxxn)

nρ
= L∗(xxx),

where ρ is a positive constant and the limiting function L∗ : Rd
+ → R is such that the cone

{xxx ∈ Rd
+ : L∗(xxx)> 0} is nonempty.

Assumption 1 stipulates that the loss incurred, denoted by L(XXX), is large when at least one of components
of XXX takes large values. Besides commonly considered examples such as piecewise affine and linear-quadratic
losses, Assumption 1 is satisfied for a wide-class of operations and quantitative risk management models
that motivate our study. These include cases where L(·) is written as the value of a suitable mixed integer
linear program or a quadratic program, and instances in prescriptive analytics where a suitable L(·) is
written in terms of feature maps or decision-rules specified by a neural network with ReLU activation units.
We refer the reader to Deo and Murthy 2021, Section 2 for a precise description of these examples for
which Assumption 1 is readily satisfied. Notably, Assumption 1 does not require the loss to be convex or
possess specific combinatorial structure.
Monte-Carlo estimation without any change of measure. Given n independent samples XXX1, . . . ,XXXn
of XXX , let F̂n,L denote the empirical cumulative distribution function (c.d.f.) formed from the samples
L(XXX1), . . . ,L(XXXn). Then the VaR and CVaR at level β can be estimated as,

v̂β ,n = F̂−1
n,L (1−β ) and Ĉβ ,n = v̂β ,n +[nβ ]−1

n

∑
i=1

[
L(XXX i)− v̂β ,n

]+
, (1)

respectively. These estimators satisfy asymptotic normality under nominal assumptions (see, for example,
Serfling 2009, pg. 75 and Trindade et al. 2007, Theorem 2):

√
n(vβ − v̂β ,n)

D−→ σv(β )N(0,1) and
√

n(Cβ −Ĉβ ,n)
D−→ σc(β )N(0,1) (2)

where
σ

2
v (β ) = β (1−β )[ fL(vβ )]

−2 and σ
2
c (β ) = β

−2Var
[(

L(XXX)− vβ

)+]
. (3)

The asymptotic variances indicate the price paid in terms of sample complexity when β ↘ 0. Observe
that (2) and (3) imply that with the error in CVaR estimation with n samples is roughly N(0,n−1σ2

c (β )).
It can be seen that σ2

c (β ) = Õ(β−1) (see for example, (23)). Therefore, estimating Cβ within a relative
error of ε with (1− δ ) confidence necessarily requires Õ(β−1δ−1ε−2) samples of XXX when using the
above sample-average based estimators; see also Sun and Hong 2010. Since this sample requirement is
impractically large when β is small, importance sampling is typically considered in order to reduce mean
square error (MSE) to a lower order than Õ(β−1).

3 THE PROPOSED IS ALGORITHM

We begin by describing the IS scheme presented in Algorithm 1 below. To circumvent the issue of limited
relevant observations in tail exceedance events of the form {L(XXX) > u}, IS typically involves obtaining
samples from an alternate distribution under which these exceedance events are less rare. To accomplish
this in our context, define the Rd-valued function TTT (xxx) := xxx[rβ ]

κκκ(xxx), where rβ : [0,1)→R+ is a decreasing
function of β explicitly identified in Algorithm 1 and

κκκ(xxx) :=
log(1+ |xxx|)

ρ‖ log(1+ |xxx|)‖∞

. (4)
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Exponentiation is done component-wise in the above expression for TTT (xxx) as in, TTT (xxx)= (x1rκ1(xxx)
β

, . . . ,xdrκd(xxx)
β

).

In Algorithm 1, we use independent samples of ZZZ := TTT (XXX) as the samples from IS distribution specified
implicitly via TTT . The map TTT : Rd → Rd can be shown to be invertible almost everywhere on Rd (see Deo
and Murthy 2021, Proposition 1) and the resulting vector ZZZ has a probability density if XXX has a density.
Letting fXXX and fZZZ denote the respective densities of XXX and ZZZ, the likelihood ratio resulting from this
change-of measure is given by,

LR =
fXXX(ZZZ)
fZZZ(ZZZ)

=
fXXX(ZZZ)
fXXX(XXX)

J(XXX) (5)

An explicit expression of the Jacobian, J(xxx) = ∂TTT (xxx)/∂xxx in the above expression, is given in Algorithm
1. With this change-of-measure, we have the following unbiased estimator for the c.d.f. FL(u) :

F̂ IS
n,L(u) = 1− 1

n

n

∑
i=1

fXXX(ZZZi)

fXXX(XXX i)
J(XXX i) I(L(ZZZi)> u), (6)

where XXX1, . . . ,XXXn are drawn i.i.d. from XXX , and ZZZi = TTT (XXX i). Subsequent IS estimation of vβ ,Cβ involves a
routine computation of VaR and CVaR from the given IS estimator F̂ IS

n,L(u) for the c.d.f. and is described
precisely in Algorithm 1 below.

A key feature of Algorithm 1 is that it is agnostic to the specific forms of both the loss L(·) and the
distribution of XXX and it requires only a black-box access to evaluations of L(·) and fXXX(·). This is in sharp
contrast to most existing literature requiring careful tailoring of the IS density to the underlying distribution
and the loss considered. Building on the self-structuring IS procedure introduced in Deo and Murthy 2021
for estimating tail probabilities of the form P(L(XXX)> u), Algorithm 1 below offers a suitable adaptation
to the root-finding task required to estimate VaR. In contrast to estimating P(L(XXX)> u) for a fixed large
u, VaR/CVaR estimation requires that the extrapolation parameter rβ is chosen carefully as a function of
β such that variance reduction is pronounced even if the precise range of u over which root-finding has to
be conducted for quantile estimation is not known apriori. The choice of hyperparameter h can be made
either with a cross-validation based approach we demonstrate in numerical experiments, or with recursive
schemes such as those considered in Bardou, Pagès, and Frikha 2008 or He et al. 2021.

4 VARIANCE REDUCTION GUARANTEES FOR ALGORITHM 1

Let ΛΛΛ(xxx) = (Λ1(x1), . . . ,Λd(xd)), where Λi(x) =− logP(Xi ≥ x) denotes the hazard function of component
Xi. We say that f : R→ R is regularly varying if for all x ∈ R+,

lim
t→∞

f (tx)
f (t)

= xp,

for some p ∈ R (see de Haan and Ferreira 2007, Definition B.1.1). In this case, we write f ∈ RV(p).
Letting YYY := ΛΛΛ(XXX), we see that vector YYY has standard exponential distribution as marginals. Just as in the
use of copula models, standardization of marginals allows to state the main result without getting distracted
by the differing marginal distributions.
Assumption 2. The marginal distribution of XXX = (X1, . . . ,Xd) is such that each of {Λi : i = 1. . . . ,d} are
eventually strictly increasing and Λi ∈ RV(αi) for some αi > 0. The joint distribution, when written in
terms of the probability density fYYY (·) of YYY = ΛΛΛ(XXX), admits the form,

fYYY (yyy) = p(yyy)exp(−ϕ(yyy)), (10)

where the functions ϕ(·), p(·) satisfy the following: There exists a limiting function I : Rd
+→R+ such that,

n−1
ϕ(nyyyn)→ I(yyy) and n−ε log p(nyyyn)→ 0, (11)

for any sequence {yyyn}n≥1 of Rd
+ satisfying yyyn→ yyy 6= 000, and ε > 0.
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Algorithm 1: Importance Sampling Algorithm for joint computation of VaR and CVaR
Input: Target tail probability level β , hyper-parameter h > 0, n i.i.d. samples XXX1, . . . ,XXXn from

fXXX(·).
1. Transform the samples: For each sample i = 1, . . . ,N, compute the transformation,

ZZZi = TTT (XXX i) := XXX i[rβ ]
κ(XXX i),

where rβ = h log log(1/β ) and κκκ(xxx) is given as in (4).
2. Compute the associated likelihood: For each transformed sample ZZZi, compute the respective
likelihood ratio as,

LR,i :=
fXXX(ZZZi)

fXXX(XXX i)
J(XXX i) i = 1, . . . ,N, (7)

where fXXX(·) is the density of XXX and J(·) is the Jacobian of the transformation TTT (·) given by,

J(xxx) :=

[
d

∏
i=1

J̃i(xxx)

]
×

r111ᵀκκκ(xxx)
β

maxi=1,...,d J̃i(xxx)
, (8)

where J̃i(xxx) := 1+
ρ−1 log(rβ )

‖ log(1+ |xxx|)‖∞

|xi|
1+ |xi|

, i = 1, . . . ,d.

3 Compute the IS based VaR and CVaR:

ĈIS
β ,n := v̂IS

β ,n +
1

nβ

n

∑
i=1

(
L(ZZZi)− v̂IS

β ,n

)+
LR,i, (9)

where IS based VaR, v̂IS
β ,n := inf{u : F̂ IS

n,L(u)≥ 1−β}, is estimated from the c.d.f. estimate
F̂ IS

n,L(·) in (6).

A wide variety of parametric and nonparametric multivariate distributions, including normal, exponential
family, elliptical, log-concave distributions and Archimedian copula models satisfy Assumption 2. Marginal
distributions which satisfy Λi ∈ RV(αi) include all distributions that are either Weibull-type heavy-tailed
or possess lighter tails (such as exponential, normal, etc.). See Deo and Murthy 2021, Appendix B for
further details and sufficient conditions directly in terms of the distribution of XXX .
Choice of the IS density. A cornerstone of VaR/CVaR estimation is the accurate estimation of the loss
tail distribution, 1−FL(u), for large values of u. In elementary examples, this is typically achieved by
choosing an IS density with features suitably mirroring the conditional distribution of XXX over L(xxx) > u
(see Bucklew 2013, Section 4.2). A central component in this endeavour is to utilize large deviations to
identify the most likely way in which the loss L(XXX) becomes large. For the broad family of losses and
distributions specified by Assumptions 1 and 2 above, Deo and Murthy 2021 show that the sequence of
random vectors {t−1YYY : t ≥ 1} satisfy (i) the following large deviations principle (LDP),

lim
t→∞

1
t

logP
(
t−1YYY ∈ A

)
=− inf

yyy∈A
I(yyy), for any Borel set A, (12)

and (ii) consequently, satisfy the tail asymptotic,

lim
u→∞

1
Λ(u1/ρ)

logP(L(XXX)> u) =−I∗, (13)
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for some positive constant I∗ (see Deo and Murthy 2021, Theorems 3.3 and 4.1).
The lack of explicit dependence on parameter u in the right-hand side of (13) suggests that the

concentration of the target conditional distribution of (XXX | L(XXX) > vβ ) may be approximated from the
conditional samples of (XXX | L(XXX)> lβ ), where lβ � vβ and lβ →∞ as the tail probability level β → 0. The
requirements on lβ ensure that the event {L(XXX)> lβ}, though rare by itself, is significantly less rare than
the target event {L(XXX)> vβ} and is observed more often in the samples. Letting lβ = vβ/rβ , the map TTT in
Algorithm 1 suitably replicates these more frequent samples from the less rare region {L(xxx)> lβ} onto the
target set {L(xxx)> vβ}. Specifically, the distribution of ZZZ = TTT (XXX) can be roughly written as approximating
the conditional distribution of XXX given L(XXX)> vβ as in,

log fXXX(xxx)
logP(L(XXX)> vβ )

≈ log fZZZ(xxx)
logP(L(ZZZ)> vβ )

, over xxx ∈ {L(xxx)> vβ}. (14)

Example 1. To see (14) by means of an example, suppose XXX has a multivariate exponential distribution with
density fXXX(xxx) = g(xxx)exp(−‖xxx‖m), xxx∈Rd

+, for some g :Rd
+→R+ and m∈ [1,∞) (see Lu and Bhattacharyya

1990, Section 4). Changing variable to ppp = v−1/ρ

β
xxx and letting I∗ = infL∗(ppp)≥1 ‖ppp‖m, we obtain

log fXXX(v
1/ρ

β
ppp) =−v1/ρ

β
‖ppp‖m(1+o(1)) and log fZZZ(v

1/ρ

β
ppp) =−l1/ρ

β
‖ppp‖m(1+o(1)),

logP(L(XXX)> vβ ) =−v1/ρ

β
I∗(1+o(1)) and logP(L(ZZZ)> vβ ) =−l1/ρ

β
I∗(1+o(1)),

as β → 0, and over xxx = v1/ρ

β
ppp in the region {xxx : L(xxx)> vβ}.

Indeed the approximating feature of TTT demonstrated in Example 1 can be shown to hold more generally
for any XXX satisfying Assumption 2; see Deo and Murthy 2021, Proposition 5.1 for a precise statement of
this self-structuring feature of the map TTT and the accompanying figures. The following asymptotic variance
reduction guarantees for the proposed VaR/CVaR estimation are obtained as a consequence.
Theorem 1 Under Assumptions 1 and 2, the IS estimators for VaR and CVaR returned by Algorithm 1
are asymptotically normal and offer the following variance reduction:

√
n(vβ − v̂IS

n,β )
D−→ σis,v(β )N(0,1) and

√
n(Cβ −ĈIS

n,β )
D−→ σis,c(β )N(0,1),

where the limiting variances, σ2
is,v(β ) and σ2

is,c(β ), satisfy,

σ2
is,v(β )

σ2
v (β )

= o(β 1−ε) and
σ2

is,c(β )

σ2
c (β )

= o(β 1−ε),

as β → 0, when compared to the naive estimation variances σ2
v (β ) and σ2

c (β ) in (3).
Considering the proposed change of measure for the example of CVaR estimation, Theorem 1 guarantees

a sample complexity of o(β−ε) as β ↘ 0, where ε > 0 can be made arbitrarily small. Thus the asymptotic
variance reduction is optimal when viewed in the logarithmic scale (see Bassamboo et al. 2005). In contrast,
naive estimation without any change of measure requires Õ(β−1) samples. With the variance reduction
guarantee holding for any choice of hyperparameter h > 0, an effective h can be chosen via cross-validation
without incurring a change of scaling in sample complexity. The numerical experiments below demonstrate
this by illustrating the relative insensitivity of variance reduction to various choices of h.

5 NUMERICAL EXAMPLES

For a given loss L(·) and the random vector XXX , we adopt the following procedure across all the experiments.
Following Algorithm 1, we take n independent samples XXX1, . . . ,XXXn to arrive at the IS c.d.f. estimate F̂ IS

n,L(·)
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in (6) and subsequently use it to arrive at the IS VaR estimate v̂IS
β ,n := inf{u : F̂ IS

n,L(u)≥ 1−β} and the IS
CVaR estimate in (9). For every choice of β considered, the hyper-parameter h is chosen by performing
cross-validation over the observed coefficient of variation. Each experiment involves computation of CVaR
as above from n independent samples of XXX and we report the relative root-mean square error = (root
mean-square error of CVaR observed across 50 independent experiments)/(average of CVaR observed
across 50 experiments). To enable comparison with naive estimation without IS, we also report its sample
complexity for attaining the same precision offered by the IS algorithm. We observe the following across
the experiments: 1) the proposed IS has a significantly smaller relative error and a lower sample complexity
when compared to estimation without any change of measure, and 2) the errors obtained using IS do not
increase as the problem is made increasingly difficult by considering smaller values of β . These observations
align with the conclusions of Theorem 1. The specific details of the experiments are given below.

5.1 PERT Network:

We consider a PERT network where the project completion time L(·) is generally written as the value
of a mixed integer linear program. We consider an example with d = 7 tasks and take L(xxx) = x1 + x7 +
max{x5 +max{x2,x3},x6 +max{x4,x3}}. Here L(xxx) is taken to be completion time of the PERT network
when the individual task completion times realise the values xxx. To demonstrate performance for heavier
than exponential delays, we assume that the marginal distribution of each delay is F(x) = 1− e−x0.5

and
their joint dependence is through a Gaussian copula whose correlation matrix is given by

Ri, j =


0.1 if |i− j|= 1,
1 if i = j,
0 other-wise.

. (15)

In each experiment, we take n = 103 samples to compute VaR/CVaR using the IS estimator. We plot the
observed root mean square errors (observed across 50 independent experiments) in Figure 1 as a function of
the tail probability level β ∈ (10−7,10−3). The parameter h is selected as h(β ) = 2−0.6logβ . Figure 1(a)
details the results. Contrast this to estimation without IS which requires ≈ 2× 105 samples to attain a
relative error similar to the IS scheme at β = 10−3.5 (see Figure 1(b)).
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(a) Relative error in CVaR estimation without IS
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(b) Relative error in VaR/CVaR estimation using IS

Figure 1: Figure 1(a) displays the relative RMSE in CVaR estimation without IS. The solid red curve is fit
to the estimated relative RMSE from the sample estimates indicated by green crosses. Figure 1(b) shows
the relative errors in VaR (blue fit line to black marks) and CVaR (red fit line to green crosses) estimation
using the IS scheme. The RMSE does not grow even as the tail probability level β is made small.
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(a) Cross validation over h
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(b) Relative error in VaR/ CVaR estimation using IS

Figure 2: Figure 2(a) displays the relative RMSE in CVaR computation against the parameter h (for the
target level β = 10−6) and Figure 2(b) shows the relative errors observed for β ∈ [10−3.5,10−7]. The solid
curves are fit to the observed relative errors in VaR (black marks) and CVaR (green crosses) estimation.
In Figure 2(b), h = 2.6.

5.2 Linear portfolios:

We consider the equally weighted linear portfolio loss L(xxx) = 111ᵀxxx in this example. To illustrate performance
in a case where the marginal distributions of the components of XXX ∈ R10 are different, we consider the
marginal c.d.f.s Fi(x) = P(Xi ≤ x) = 1− e−xαi where αi = 0.9 for 1 ≤ i ≤ 5, and αi = 1.1 for 6 ≤ i ≤ 10.
Dependence among the components of XXX is introduced through a Gaussian copula for which the correlation
matrix R is specified by the off-diagonal entries [R]i, j = 0.1 for i 6= j, and diagonal entries [R]i,i = 1 for
i ∈ {1, . . . ,10}. Figure 2(a) below presents details on cross-validation by plotting the relative error of
estimation observed for different choices of hyper-parameter h considered. With the relative RMSE staying
less than 5% throughout the interval h ∈ (1.5,3.5), we note that the error reduction is robust and the
estimator variance is relatively less sensitive to the choice of parameter h. Notice from Figure 2(b) that a
relative error between 3%−4% is obtained with only n = 103 samples upon use of the IS algorithm, and
that this error is constant even as the target level β is varied from 10−3.5 to 10−7. Note that to obtain a
3% relative error at level β = 10−3.5, estimation without IS requires n≈ 2×105 samples.

5.3 Forest fires data-set

We consider a loss trained from the forest fires dataset used in Cortez and Morais 2007 in this example.
The input covariates XXX consist of climatic factors such as wind speed, daily rainfall, temperature, humidity
etc. The output L(XXX) is the area of forest fires, in hectares, corresponding to the respective climatic data.
We train a deep neural network (DNN) network to learn the function Lθθθ (·), which maps the covariates to
the log of the area of the forest fire. The DNN has one hidden layer consisting of 12 neurons with ReLU
link. The parameters θθθ are learnt via stochastic gradient descent. We consider the following example
distribution for covariates XXX for the sake of the experiment: The marginal distribution of the components
are given by F(x) = 1− e−x0.6

and the dependence structure is informed via a Gaussian copula whose
correlation matrix is given as in (15). For the purpose of this experiment, we choose n = 517 in (9) to
match the size of the input data-set. As before, we cross validate over the parameter h (see Figure 3(a)),
and then using h = 4.6 in Algorithm 1, jointly estimate VaR / CVaR for β ∈ (10−4.5,10−2). Figure 3(b)
gives the result of our experiment. It is worthwhile to note that although the loss Lθθθ (·) is a black box, our
algorithm still produces estimates of VaR/CVaR with a small relative error (4-6% for CVaR and 7-10% for
VaR). Contrast this to MC estimation, which requires n≈ 7×103 samples to give a relative error of 4%
in CVaR estimation at β = 10−2.
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(b) Relative error in VaR/CVaR estimation with IS

Figure 3: Figure 3(a) displays the relative RMSE in CVaR computation without IS using 104 samples.
Figure 3(b) displays the relative errors in IS based VaR/CVaR computation with the parameter h = 4.6. In
each of the figures, black and green marks respectively denote estimated VaR and CVaR values respectively.

6 PROOF OF THEOREM 1

For ease of presentation, we focus on variance reduction in CVaR estimation and assume that XXX has identical
marginals (that is, Λi = Λ for all i). The proof for the case where XXX has heterogeneous marginals can
be similarly accomplished by introducing a vector for capturing differing relative tail heaviness as in the
results in Deo and Murthy 2021. To begin, we recall Sun and Hong 2010, Corollary 2, as applicable to
our IS estimator: √

n(ĈIS
β ,n−Cβ )

D−→ σis,c(β )N(0,1) (16)

where β 2σ2
is,c(β ) = Var

[
(L(ZZZ)− vβ )

+LR
]

and the likelihood ratio LR is defined as in (5). To present
the main ideas in deconstructing the above variance term, we postpone the verification of the technical
conditions required for applying Sun and Hong 2010, Corollary 2 towards the end of this section.

For any aaa ∈Rd
+ and r > 0, let Br(aaa) = {yyy ∈Rd

+ : ‖aaa−yyy‖∞ ≤ r} be a ball of radius r, centred at aaa, under
the ‖ · ‖∞ norm. Denote Br(000) by Br. Define qqq = ΛΛΛ

−1 be the component-wise inverse, ψψψβ = ΛΛΛ◦TTT−1 ◦qqq

and t(β ) = Λ(v1/ρ

β
). Let λi(x) = fXi(x)/(1−FXi(x)) denote the hazard rate of Xi and E[X ;A] = E[XI(A)].

Define Lβ (ppp) = [vβ ]
−1L(qqq(t(β )ppp)). Finally, let YYY β = [t(β )]−1YYY . For notational convenience, let M2,β

denote the second moment of [LR(L(ZZZ)− vβ )
+]. For A⊆ Rd

+, let χA(·) denote its characteristic function;
that is, χA(xxx) = ∞ if xxx 6∈ A and χA(xxx) = 0 if xxx ∈ A. Further, for a function f : Rd

+→ R and a ∈ R, let
lev+a ( f ) = {xxx ∈ Rd

+ : f (xxx)≥ a} denote the super-level set of f . Let fLD(xxx) = L∗(xxx1/α).
With this notation, see that YYY β = [t(β )]−1YYY = [t(β )]−1ΛΛΛ(XXX). Changing variables from XXX to YYY β in the

expectation below (see (EC.16) onward in the proof of Lemma EC.6 of Deo and Murthy 2021 for detailed
steps in a similar change of variables exercise), we obtain

M2,β = E
[
(L(XXX)− vβ )

2 fXXX(XXX)

fXXX(TTT−1(XXX))
J(TTT−1(XXX));L(XXX)≥ vβ

]
= E

[
exp(−t(β )Fβ (YYY β ))

]
(17)

where Fβ (ppp) = aβ (ppp)+bβ (ppp)+ cβ (ppp)−2d[t(β )]−1 log t(β )+χlev+1 (Lβ )
(ppp)] (18a)

where aβ (ppp) = [t(β )]−1 [log fYYY (ψψψu(t(β )ppp)− log fYYY (t(β )ppp)] , and (18b)
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bβ (ppp) = [t(β )]−1

[
d

∑
i=1

[
logλi(TTT−1

i (qqq(t(β )ppp)))− logλi(qi(t(β )pi))
]
− logJ(TTT−1(qqq(t(β )ppp)))

]
and (18c)

cβ (ppp) =−2[t(β )]−1 log(L(qqq(t(β )ppp)− vβ ). (18d)

Notice that cβ (ppp) is well defined for all ppp ∈ lev+1 (Lβ ). Observe that from (13), vβ ∼ qρ(−I∗ logβ ). Next,
recall that Λ ∈RV(α) and that Λ−1 = q. Hence, from de Haan and Ferreira 2007, Proposition B.1.9 (viii),
q ∈RV(1/α). Therefore, rβ/vβ → 0 and rβ →∞ as β → 0. Hence, the following conclusions of Deo and
Murthy 2021, Lemmas A.8-A.11 and Corollary A.3 hold: for ε,r > 0, for all sufficiently small enough β ,

sup
ppp∈Rd

+

bβ (ppp)≥ 0 (19a)

lev+1 (Lβ )∩Bδ1 = /0 for some δ1 > 0, (19b)

aβ (ppp)≥ I(ppp)+o(1) uniformly over ppp ∈ lev+1 (Lβ )∩Br, and liminf
β→0

χlev+1 (Lβ )
(pppβ )≥ χlev+1 ( fLD)

(ppp) (19c)

whenever pppβ → ppp. Let p̂pp = ppp/‖ppp‖∞ be the unit vector in the direction of ppp. Rewrite

L(qqq(t(β )ppp)) =
L
(

qqq(t(β )‖ppp‖∞ p̂pp)
q(t(β )‖ppp‖∞)

q(t(β )‖ppp‖∞)
)

qρ(t(β )‖ppp‖∞)
qρ(t(β )‖ppp‖∞) = L∗(p̂pp1/α)qρ(t(β )‖ppp‖∞)(1+o(1)),

uniformly over ‖ppp‖∞ ≥ δ ; the second equality in the above is obtained upon noting that q ∈ RV (1/α), and
using the continuous convergence of L(·) as specified in Assumption 1. Further, as x→ ∞, for any ε > 0,

logq(x)
εx

→ 0 see de Haan and Ferreira 2007, Proposition B.1.9 (1).

Therefore, (19b) suggests that uniformly over lev+1 (Lβ ), logL(qqq(t(β ))ppp)≤ εt(β )‖ppp‖∞, for all β sufficiently
small. Further, since t(β )≤ exp(εt(β )) for all small enough β ,

cβ (ppp)≥−ε‖ppp‖∞ uniformly over lev+1 (Lβ ). (20)

Now for any ε > 0, from the bounds in (19a), (19c) and (20), one obtains that whenever pppβ → ppp as β → 0,

liminf
β→0

Fβ (pppβ )≥ I(ppp)− ε‖ppp‖∞ +χlev+1 ( fLD)
(ppp).

Noting that YYY β satisfies an LDP with rate function I(·), an application of the general Varadhan’s integral
lemma (see Varadhan 1988, Theorem 2.2) yields,

limsup
β→0

[t(β )]−1 logM2,β ≤− inf
ppp∈lev+1 ( fLD)

[2I(ppp)− ε‖ppp‖∞] . (21)

Since YYY has standard exponential marginals, I(ppp) ≥ ‖ppp‖∞ for all ppp (see Deo and Murthy 2021, Lemma
3.4 (d)). The infimum in (21) therefore occurs in a compact set. As ε > 0 above is arbitrary, we have

limsup
β→0

[t(β )]−1 logM2,β ≤−2 inf
ppp∈lev+1 ( fLD)

I(ppp) =−2I∗. (22)

Next, as a consequence of (13), (1+o(1))I∗t(β ) =− logP(L(XXX)> vβ ) =− logβ as β → 0. With t(β ) =
−(1/I∗+o(1)) logβ ,we have logM2,β ≤ (2−δ ) logβ .With the choice of δ > 0 being arbitrary, we therefore
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have M2,β = o(β 2−δ ) for any δ > 0. Finally, for the Monte Carlo estimator without change-of-measure,

β 2σ2
c (β ) = E

(
[(L(XXX)− vβ )

+]2
)
−
(
E
(
(L(XXX)− vβ )

+
))2. Notice that

E
(
[(L(XXX)− vβ )

+]2
)
=
∫

L(xxx)≥vβ

(L(xxx)− vβ )
2 fXXX(xxx)dxxx ≥ P(L(XXX)≥ vβ +1) = β (1+o(1)). (23)

Further, notice that following the analysis from (17), for any δ > 0, E
(
(L(XXX)− vβ )

+
)
≤ β 1−δ . Hence,(

E
(
(L(XXX)− vβ )

+
))2

= o(E
(
[(L(XXX)− vβ )

+]2
)
). Thus, we have that for all δ > 0,

σ2
is,c(β )

σ2
c (β )

= o(β 1−δ ).

Verification of the conditions of Sun and Hong 2010, Corollaries 1 and 2 : Here we perform the pending
verification of Sun and Hong 2010, Assumption 2. Notice that existence of fL(·) automatically implies that
Sun and Hong 2010, Assumption 1 holds, which is a sufficient condition for the central limit theorem to
hold. Fix any p > 2. Notice that using a similar change of variables arguments as in the beginning of the
proof (with Ẽ denoting expectation under the IS measure), Ẽ

(
L p

R I(L(XXX)≥ vβ + ε)
)

is bounded above by

E
[
exp(−(p−1)t(β )Fβ (YYY β ))

]
, (24)

for any ε > 0. Following (19a) through to (19c), Ẽ
(
L p

R I(L(XXX)≥ vβ + ε)
)
≤ exp(t(β )pε) for any p > 2.
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