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ABSTRACT

Temporal profiles of viral load have individual variability and are used to determine whether individuals
are infected based on some limit of detection. Modelling and simulating viral load profiles allows for the
performance of testing policies to be estimated, however viral load behaviour can be very uncertain. We
describe an approach for studying the input uncertainty passed to simulated policy performance when viral
load profiles are estimated from different data collection strategies. Our example shows that comparing the
strategies solely based on input uncertainty is inappropriate due to the differences in confidence interval
coverage caused by negatively biased simulation outputs.

1 INTRODUCTION

Individuals infected by a virus have a temporal profile of viral load starting from the moment they are
infected. If and when they are tested their test sensitivity, the probability that an infected individual will
correctly receive a positive test result, is a function of their viral load. There is individual variability in
profiles of viral load, and therefore in test sensitivity too. Viral load can be a chief predictor for the risk
of virus transmission (Quinn et al. 2000) and can also be strongly linked to mortality (Pujadas et al.
2020), therefore monitoring and understanding the behaviour of viral load is extremely important. We are
interested in modelling the individual variability in temporal profiles of viral load and test sensitivity, and
using this model to simulate and compare the performance of different testing policies, where a testing
policy is a choice of how many times to test an individual and when. This might assist in suppressing the
spread of a virus by for example indicating which testing policies are most effective in terms of successfully
identifying the virus. Estimates of the shape of viral load profiles and the individual variability can be
very uncertain since it requires observations of viral load across a group of individuals at different time
points. In collecting such data there are choices to be made regarding the number of individuals to observe,
the number of times to observe each individual and the time points at which the observations are taken.
We shall refer to a particular choice of these as a data collection strategy. Modelling viral load profiles
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directly from data will introduce a source of uncertainty into the simulation that will propagate through to
the outputs. We wish to study how data collection strategies differ in terms of the amount of uncertainty
they pass through the simulation to the estimated performance of a testing policy, as if a particular strategy
offers a reduced level of uncertainty then this can be used for future data collection.

Here we outline an approach to compare the uncertainty passed to simulation outputs due to different
data collection strategies. We use a nonlinear mixed effects model to allow for individual variability in viral
load profiles and test sensitivity, and using this as our input model we are able to simulate the performance
of different testing policies. We focus on how different data collection strategies used to estimate the input
model parameters compare in terms of the uncertainty that propagates through the simulation model to the
output, known as input uncertainty. This comparison allows us to consider whether a particular strategy
should be adopted in order to obtain a reduced level of input uncertainty and thus gain greater insight from
the simulated performance of testing policies.

The rest of the paper is organised as follows, we discuss background literature in Section 2 and outline
the steps for our general approach in Section 3. An experiment using this approach is illustrated in Section
4. We discuss the results of our experiment and areas for future work in Section 5 before concluding in
Section 6.

2 BACKGROUND

Lindstrom and Bates (1990) proposed a general nonlinear mixed effects model for data observed from a
number of individuals repeatedly under different conditions, otherwise known as repeated measures data.
They estimate the model parameters via a two-step iterative procedure that draws on methods developed
for nonlinear fixed effects models and linear mixed effects models.

Chen et al. (2020) model respiratory viral load for patients infected with SARS-CoV-2 using a
mechanistic model for respiratory virus kinetics based on a system of differential equations. Heterogeneity
of viral load is evaluated by fitting Weibull distributions at each time point which sample data is available.
Kucirka et al. (2020) model the time profile of test sensitivity using Bayesian hierarchical logistic regression.
By using a nonlinear mixed effects model we are able to incorporate individual variability in viral load
and test sensitivity under a single model.

Quilty et al. (2021) consider how quarantine and testing policies impact transmission of SARS-CoV-2
using an agent-based model to simulate the dynamics of viral load for exposed individuals. Larremore
et al. (2021) use temporal profiles of viral load to simulate the effectiveness of certain testing policies and
tests with different properties in controlling an epidemic. Rather than aiming to compare different testing
policies directly, we are interested in how using different data collection strategies to model viral load
profiles can result in varying levels of uncertainty in simulated responses.

Barton (2012) and Song et al. (2014) give an introduction to input uncertainty, a term which refers to
the variance passed to a simulation output due to having estimated the input models via real-world data,
and describe techniques to quantify it. For recent advancements see Lam and Qian (2017), Lam and Qian
(2018). Efforts by Nelson et al. (2020) have also been made to reduce input uncertainty using frequentist
modelling averaging. Morgan et al. (2019) recently considered detection and quantification of bias caused
by input modelling.

3 APPROACH

In this section we outline the steps in our approach. We introduce our model for viral load and discuss how
we simulate the performance of testing policies. We define input uncertainty, a method for quantifying it,
and describe how we can compare the impact different data collection strategies have on it.
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3.1 Modelling Viral Load

To represent the individual variability in temporal profiles of viral load we use a nonlinear mixed effects
model, as it seems appropriate that all profiles follow the same functional form but with individual variability
in some parameters. Let us consider a group of infected individuals who have unique temporal profiles of
viral load and suppose we are able to observe, with noise, the viral loads of these individuals at different
time points. An example of this can be found in Wölfel et al. (2020), where daily measurements of viral
load are taken from different patients using RT-PCR. Let yi j denote the viral load observed in individual i
at time ti j, where i = 1, . . . ,N, and j = 1, . . . ,ni. Our nonlinear mixed effects model is as follows

yi j = v(ti j,θθθ i)+g(ti j,θθθ i,φφφ)εi j,

θθθ i ∼N (θθθ pop,ΩΩΩ),

εi j ∼N (0,1),

where v is a nonlinear function for the temporal profile of viral load, θθθ i is a parameter vector of length m for
the ith individual, g is a function for the residual error, φφφ is a parameter vector of length q for the residual
error function and εi j is an error term which follows a standard normal distribution. Individual parameter
vectors are assumed to be normally distributed with mean θθθ pop, a vector of length m representing the fixed
population parameters and variance ΩΩΩ, an m×m covariance matrix representing the random effects. The
residual errors are assumed to be independent for different individuals and independent of each other for
the same individual.

The parameters of the model (θθθ pop,ΩΩΩ,φφφ) can be estimated by maximising the log-likelihood function
or the restricted log-likelihood function of the observed data. These expressions cannot be evaluated
analytically as they have no closed form, however computational methods can be used to obtain parameter
estimates (θ̂θθ pop,Ω̂ΩΩ, φ̂φφ).

3.2 Simulation

We can use the estimated fixed and random effects to simulate a large number of parameter vectors, where
each parameter vector defines the temporal profile of viral load for an individual. This tells us about
the behaviour of viral load profiles amongst a population. Moreover, the residual error function and its
estimated parameters tell us about the distribution of error that would occur in observing the viral load of
an individual at any time point. A test result for an individual at a specific time is based on whether their
viral load measurement lies above or below some limit of detection. For each simulated individual we can
calculate the probability of their observed viral load lying above or below the limit of detection at some
given testing time by considering the distribution of error around the true viral load.

Suppose we use the estimated fixed and random effects to simulate K individuals. Each individual k
is defined by a parameter vector θ̃θθ k, where

θ̃θθ k ∼N (θ̂θθ pop,Ω̂ΩΩ).

The true viral load for individual k at some time point t is given by v(t, θ̃θθ k), however we observe the viral
load with noise. This noise is distributed according to the residual error function multiplied by a standard
normal random variable. The residual error function can be estimated by g(t, θ̃θθ k, φ̂φφ), therefore it follows
that the distribution of the observed viral load for individual k at time point t is

N (v(t, θ̃θθ k),g(t, θ̃θθ k, φ̂φφ)
2).

For some limit of detection γ , we can use this distribution to measure the probability of an individual
correctly or incorrectly returning either a positive or negative test result at any time point. We can use the
simulated individuals to study the performance of different testing policies amongst a large population.



Parmar, Morgan, Regnier, Sanchez and Titman

The performance of a policy, which is a choice of how many times to test each individual and when, could
be measured in different ways, for example using the expected number of true positive tests or the average
probability of a false negative test.

Let Θ̂ΘΘ = {θ̂θθ pop,Ω̂ΩΩ, φ̂φφ} denote the estimated parameters of the nonlinear mixed effects model that will
drive the simulation. For a testing policy p we denote the simulation output of replication j by

Yj(Θ̂ΘΘ, p) = η(Θ̂ΘΘ, p)+ e j(Θ̂ΘΘ, p),

where η(Θ̂ΘΘ, p) is the expected value of the simulation output for policy p given the parameters Θ̂ΘΘ, and e is
a random variable with mean 0 representing stochastic noise. Note that within a replication a choice for
the number of individuals to simulate must be made. We consider this to be analogous to choosing the run
length of replications and so it is not included in the notation.

We assume that there are unknown but true parameters ΘΘΘ
0 = {θθθ 0

pop,ΩΩΩ
0,φφφ 0} from which the real-world

data is observed and that the goal of the simulation experiment is to estimate η(ΘΘΘ0, p), the expected value
of the simulation output for policy p given the true parameters ΘΘΘ

0. We estimate this value by taking the
sample mean across n simulation replications using the fitted parameters, that is

Ȳ (Θ̂ΘΘ, p) =
1
n

n

∑
j=1

Yj(Θ̂ΘΘ, p),

= η(Θ̂ΘΘ, p)+
1
n

n

∑
j=1

e j(Θ̂ΘΘ, p).

The variance of this estimator breaks down into two distinct terms, stochastic estimation error and input
uncertainty. Stochastic estimation error arises from the random variates generated in each replication and
can be easily estimated via the sample variance.

3.3 Input Uncertainty

Input uncertainty refers to the variance in the expected simulation output that arises due to having estimated
the input models. In our case input uncertainty simply reduces to parameter uncertainty and is given by

σ
2
I = Var[η(Θ̂ΘΘ, p)].

Input uncertainty is not straightforward to estimate since it requires knowledge of the sampling distribution
of Θ̂ΘΘ and the functional form of η(·) both of which are usually unknown (Song et al. 2014).

A simple way to estimate input uncertainty is using bootstrapping, which involves sampling with
replacement from the input model data, fitting input models according to this bootstrapped data and running
replications using the bootstrap fitted input models. Repeating this bootstrapping procedure multiple times
and treating the results as a random-effects model allows us to estimate input uncertainty (Nelson 2013).
In the case of repeated measures data bootstrapping can be done by resampling with replacement from
entire individuals, this is known as a case or paired bootstrap.

3.4 Comparing Data Collection Strategies

By choosing the functions v and g, and selecting some true parameters (θθθ 0
pop,ΩΩΩ

0,φφφ 0) we can simulate
viral load observations from the nonlinear mixed effects model. This allows us to generate data sets of
observations where we choose the number of individuals observed, as well as the number of observations
per individual and the times at which they are observed. Using these data sets we can estimate input
parameters, simulate the performance of different testing policies and quantify input uncertainty. This
will allow us to investigate how different data collection strategies perform in terms of the uncertainty
they propagate to the simulation outputs. If a particular approach clearly returns a reduced level of input
uncertainty compared to any alternatives then using this data collection strategy will provide more insightful
simulation results and allow for better comparisons to be made between different testing policies.
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4 EXPERIMENT

In this section we describe an experiment using the approach outlined in Section 3. We select functions
and parameters for the nonlinear mixed effects model and compare three different data collection strategies
across two sets of testing policies.

4.1 Input Model

To provide an example of functions and parameters we use the recent literature on SARS-CoV-2. Note
we are not aiming to accurately model viral load profiles that occurred during the COVID-19 pandemic,
rather just choose a nonlinear mixed effects model that is somewhat representative of a real-world problem.
To model the temporal profile of viral load we choose a shifted scaled lognormal function as this has a
single peak and an unbounded right tail, with a shape similar to the right-skewed plots of viral load in
Wölfel et al. (2020). Individual i is represented by parameter vector θθθ i = (µi,σi,αi), where µi and σi are
parameters to the lognormal distribution and αi is the scale parameter. The viral load of individual i at
time t is given by

v(t,θθθ i) =

{
αi f (t−s,µi,σi)

f (exp(µi−σ2
i ),µi,σi)

, t ≥ s

0, t < s

where f (t,µi,σi) is the probability density function of a lognormal distribution with parameters µi and σi,
s > 0 represents the shift, and t is interpreted as days since infection. The mode of f (t,µi,σi) is given
by t = exp(µi−σ2

i ), therefore αi represents the peak of the viral load profile for individual i. Note that v
measures viral load in units of log10.

We find fixed and random effects, and a shift value such that the viral load profiles generated by the
nonlinear mixed effects model match properties found in the literature, such as the peak viral load behaviour
in Chen et al. (2020) and the time between infection and the peak viral load in Backer et al. (2020). The
fixed and random effects are given (to three decimal places) by the following

θθθ
0
pop = (3.453,1.415,7.023), ΩΩΩ

0 =

0 0 0
0 0.030 0.046
0 0.046 2.639

 ,
with shift s = 1.5.

We consider a multiplicative residual error function with parameter vector φφφ = (β ,ρ), where the residual
error function for individual i at time t is given by

g(t,θθθ i,φφφ) = βv(t,θθθ i)
ρ .

We set the true residual error parameters to be φφφ
0 = (0.25,1), as this means the test sensitivity over time

exhibits similar behaviour to that found in Kucirka et al. (2020).

4.2 Simulation

In our experiment we measure policy performance using the average probability of an individual returning
at least one positive test. An individual will return a negative test result if their observed viral load is
below some limit of detection γ . The probability of a simulated individual k with parameters θ̃θθ k returning
a negative test result at time t, where t > s, is given by

Φ

(
γ− v(t− s, θ̃θθ k)

g(t, θ̃θθ k, φ̂φφ)

)
,

where Φ denotes the cumulative distribution function of the standard normal distribution. Reported limits
of detection of the PCR tests for SARS-CoV-2 have a wide range, we will use γ = 4.
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A policy that involves testing every individual at d time points given by t1, . . . , td , is denoted by pt1,...,td .
For example p3 denotes a policy where every individual is tested on day 3, whilst p3,5 denotes a policy
where every individual is tested on both day 3 and day 5. The probability that an individual returns at
least one positive test for a particular policy is equal to 1 minus the probability that the individual returns
a negative test result at all time points in the policy. For individual k, the probability of returning at least
one positive test under the policy pt1,...,td is given by

1−
d

∏
i=1

Φ

(
γ− v(ti− s, θ̃θθ k)

g(ti, θ̃θθ k, φ̂φφ)

)
.

We can consider how the policy pt1,...,td performs across all simulated individuals by computing the mean
probability of an individual returning at least one positive test under the policy, thus our simulation output
is

1
K

K

∑
k=1

[
1−

d

∏
i=1

Φ

(
γ− v(ti− s, θ̃θθ k)

g(ti, θ̃θθ k, φ̂φφ)

)]
.

This performance measure might be used to help successfully identify infected individuals and implement
effective isolation measures.

We simulate the performance of 22 policies which are split into two sets. The first set consists of policies
pt1 , pt1,t2 , pt1,t2,t3 where t2 = t1 + 2 and t3 = t1 + 4 for t1 = 3,4,5,6. These policies might be simulated to
study how increased testing affects policy performance, we will refer to them as the multiple testing policies.
The second set consists of policies p3 and p3,t2 , for t2 = 4, . . . ,14. These policies might be simulated to
help decide when to conduct a follow up test on individual, we will refer to these as the follow up testing
policies.

4.3 Data Collection Strategies

We are interested in comparing data collection strategies where the total number of viral load observations
are the same but the observations are split differently in terms of the number of individuals observed and
the number of observations per individual. We consider three strategies all of which use 350 observations
of viral load. The first takes 10 observations from 35 individuals, the second takes 7 observations from 50
individuals, and the third takes 5 observations from 70 individuals. These will be referred to as the 35x10,
50x7, and 70x5 strategies respectively. For each strategy individuals are observed at equally spaced time
points with their first observation taken at a randomised time after s such that their final observation is
taken before 21+ s.

4.4 Results

We now have our input model functions and parameters, simulation output, testing policies, and different
data collection strategies to compare. For each strategy we generate a data set of viral load observations
as appropriate from the true input model and estimate the input model parameters using the R package
developed by Pinheiro et al. (2020) which implements the computational methods described in Lindstrom
and Bates (1990). These input parameters drive the simulation model in the nominal experiment, where each
policy performance is estimated across n= 100 replications, each of which simulates K = 10000 individuals.
We then approximate input uncertainty and stochastic estimation error for each policy performance via a
diagnostic experiment where the data is bootstrapped B = 250 times, and where for each bootstrap the same
number of replications and individuals are used as in the nominal experiment. This gives us an estimate
of policy performance, input uncertainty and stochastic estimation error for each of the 22 policies.

Measures of input uncertainty and stochastic estimation error are typically used to construct confidence
intervals for simulation outputs. We use the asymptotic normality theory method described in Cheng and
Holland (2004), however we make a slight adjustment. Since the simulation output is a probability we
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construct 95% confidence intervals using normality theory on the logarithm of one minus the bootstrapped
outputs, and then transform the intervals back to the original scale. The confidence intervals for each
policy performance produced by the three data collection strategies are shown in Figure 1. Note that the
stochastic estimation error is very small so the uncertainty in policy performance is primarily due to input
uncertainty.

Figure 1: Confidence intervals produced by each data collection strategy in a single macro replication.

We can see that the widths of the confidence intervals and their estimates of the performance measure
differ for each strategy. In this case the 35x10 strategy has the smallest input uncertainty for policies p3,
p3,5, p4 and p3,4, whilst the 50x7 strategy has the smallest input uncertainty for all other policies. Note that
policies that test more frequently have a reduced level of input uncertainty and this translates to narrower
confidence intervals. To understand the behaviour of each strategy more generally we conduct 100 macro
replications, that is we repeat this experiment 100 times. First we compare the average input uncertainty
estimates for the two sets of policies across the three data collection strategies.

From Table 1 we see that all the multiple testing policies have the smallest average input uncertainty
when using the 70x5 strategy and the largest average input uncertainty when using the 35x10 strategy. The
same holds for all the follow up testing policies, apart from policy p3,4 where the 50x7 strategy has the
smallest average input uncertainty. Although not shown here, the average stochastic estimation error is of
order ×10−7 for p3 and order ×10−8 for all other policies across each of the data collection strategies,
and is therefore relatively small compared to input uncertainty. Since input uncertainty and stochastic
estimation error combine to give the total variance of a simulation output, these results suggest that the
simulation outputs from using the 70x5 data collection strategy will have smallest variance and will hence
offer the greatest level of insight.

As we have seen in Figure 1, the confidence intervals produced by each data collection strategy can
cover quite different output values. Using the true input model parameters to run simulation replications
we are able to estimate the true performance of each policy, and check whether these lie in the confidence
intervals. Table 2 shows how many of the 100 macro replications produced confidence intervals that
contained the true performance measure for each of the three data collection strategies.

For the multiple testing policies we see that generally the 50x7 strategy produces the most confidence
intervals that contain the true performance measure. The 70x5 strategy produces many confidence intervals
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Table 1: Average input uncertainty (×10−4) for each data collection strategy across 100 macro replications.

(a) Multiple testing policies

Policy 35x10 50x7 70x5
p3 39.7 33.9 32.4

p3,5 12.6 10.8 10.7
p3,5,7 4.79 3.96 3.74

p4 21.7 18.6 18.4
p4,6 7.35 6.21 6.00

p4,6,8 3.60 2.85 2.61
p5 13.6 11.7 11.6

p5,7 5.30 4.28 3.97
p5,7,9 3.23 2.42 2.16

p6 10.8 9.19 9.01
p6,8 4.85 3.72 3.33

p6,8,10 3.42 2.46 2.15

(b) Follow up testing policies

Policy 35x10 50x7 70x5
p3 39.7 33.9 32.4

p3,4 21.6 18.6 18.9
p3,5 12.6 10.8 10.7
p3,6 9.03 7.68 7.43
p3,7 7.79 6.50 6.17
p3,8 7.55 6.20 5.82
p3,9 7.82 6.36 5.93

p3,10 8.40 6.79 6.30
p3,11 9.19 7.40 6.85
p3,12 10.1 8.16 7.54
p3,13 11.2 9.03 8.35
p3,14 12.3 10.0 9.27

Table 2: Number of macro replications out of 100 that produced confidence intervals containing the true
performance measure for each data collection strategy.

(a) Multiple testing policies

Policy 35x10 50x7 70x5
p3 87 89 65

p3,5 87 94 84
p3,5,7 93 94 89

p4 85 92 80
p4,6 91 94 86

p4,6,8 94 95 89
p5 84 95 81

p5,7 94 95 86
p5,7,9 94 96 91

p6 91 95 82
p6,8 94 94 89

p6,8,10 96 94 91

(b) Follow up testing policies

Policy 35x10 50x7 70x5
p3 87 89 65

p3,4 90 94 82
p3,5 87 94 84
p3,6 87 94 82
p3,7 90 93 84
p3,8 91 92 84
p3,9 93 91 85

p3,10 93 92 87
p3,11 93 89 86
p3,12 92 86 86
p3,13 92 87 86
p3,14 92 87 85

that do not contain the true measure, particularly for the single day testing policies. For the follow up testing
policies we again see that the 70x5 strategy produces the least amount of confidence intervals containing
the true performance measure. For policies p3 to p3,8 the 50x7 strategy has the highest coverage whilst
for policies p3,9 to p3,14 the 35x10 strategy has the highest coverage. These results suggest that the 50x7
approach performs best in terms of capturing the true performance measure. The results of Table 1 and
Table 2 combined suggest that the 70x5 approach is reducing the variance the most but around the incorrect
point, possibly indicating some input modelling bias. Note that across all policies the 35x10 strategy has
the largest average interval width. The 70x5 strategy has the smallest average interval width for all policies
apart from p3,4 and p3,5 where the 50x7 strategy has the smallest.

We investigate whether the true performance measure lies above or below the confidence intervals and
find that there is a very strong tendency for the performance measure to lie above the confidence intervals
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across all data collection strategies, particularly for the 50x7 and 70x5 strategy. This suggests that the policy
performances estimated by the nominal experiments are underestimating the true performance measures,
which we confirm by finding a negative bias for each simulated policy performance across every data
collection strategy. Following this we calculate the bias in the input model parameter estimates. Figure 2
shows the relative bias induced by each data collection strategy across the 100 macro replications for each
of the 8 input parameters. By considering relative bias we are able to make comparisons across parameters.

Figure 2: Relative input parameter bias across 100 macro replications for each data collection strategy.

From the top row we see that the relative bias in the population parameters, or the fixed effects, is
smallest when using the 35x10 approach and is largest when using the 70x5 approach. Notably the relative
bias is negative for each population parameter and strategy, perhaps indicating a tendency for each of these
parameters to be underestimated regardless of how the data is collected. We see that parameters σ and α

have a larger relative bias than µ for each strategy. Conversely the relative bias in estimating the terms of
the variance matrix, or the random effects, generally seems to be largest when using the 35x10 strategy and
smallest when using the 70x5 strategy. Again the relative bias is negative for each parameter and strategy,
and is particularly large for the covariance of σ and α under the 35x10 and 50x7 strategy. The two terms
in the residual error function have the smallest relative bias when using the 35x10 strategy.

Interpreting the results in Figure 2 is not straightforward as the relative bias in the estimated parameters
occur simultaneously. For example, if we just consider a negatively biased estimate of α then this will
clearly result in underestimated simulation outputs since this represents the mean peak height of the viral
load profiles. However a biased estimate of α occurs at the same time as biased estimates of all other input
parameters, and we do not know how these interact in terms of affecting the simulation output.
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5 DISCUSSION

Initially we compared the input uncertainty induced by different data collection strategies and the results in
Table 1 showed that the 70x5 data collection strategy generally had the smallest average input uncertainty
across all policies. However the results in Table 2 showed that this strategy performs poorly in terms of
producing confidence intervals for the simulation outputs that contain the true performance measure, whilst
the 50x7 strategy showed the best coverage. We found that in many cases the true performance measures
were greater than the upper bounds of the confidence intervals and that the true policy performance was
being underestimated by the simulation outputs. Figure 2 showed that each data collection strategy provided
negatively biased estimates of every fixed and random effect of the nonlinear mixed effects model.

Based on the results in this experiment it appears that the 50x7 strategy is most suitable, not because
it returns a reduced level of input uncertainty across policies compared to the alternative strategies, but
because it produces the best coverage of the true performance measure. Clearly it is inappropriate to solely
compare the data collection strategies based on input uncertainty and that the confidence interval coverage
should be considered, along with the bias in the simulation outputs. Should the data collection strategies
give similar coverage and bias across all policies then comparing input uncertainty may help to differentiate
between them.

With the example discussed we have seen negatively biased estimates of the fixed and random effects
in our input model. Whether this is due to the amount of data being used to fit the input parameters or due
to an inherent trait of the model fitting methodology remains to be seen and requires further investigation.
Regardless of this, giving more consideration to how the input parameter estimates produced by each data
collection strategy compare to the true input parameters may help us to understand the differences between
strategies in terms of replicating the true input model behaviour. In addition, an input parameter sensitivity
analysis would indicate which of the input model parameters is most influential in estimating each policy
performance, as well as revealing how the simulation outputs are affected by interactions between the
parameters.

More generally there are alternative methods for bootstrapping that could be used, such as the parametric
bootstrap as well as bootstrap methods specific to nonlinear mixed effects models. Comparing these methods
is difficult however as the true value of input uncertainty is unknown. There are also alternative techniques
for quantifying input uncertainty that could be implemented which may offer a computational advantage
over a bootstrapping procedure. We have seen issues with the simulation outputs behaving differently to
the true performance measures, demonstrated by the poor confidence interval coverage shown by some of
the data collection strategies. It therefore might be suitable to compare the strategies via the mean squared
error due to input modelling, which incorporates input uncertainty and squared input model bias.

6 CONCLUSION

In this paper we outline an approach for comparing different data collection strategies via input uncertainty
when modelling temporal profiles of viral load and simulating the performance of different testing policies.
In particular, we use a nonlinear mixed effects model to represent individual variability in temporal profiles
of viral load and use the residual error function to model measurement error. By selecting the functions and
parameters of the model we can generate different sets of viral load observations that represent different
strategies for collecting data. For each strategy we use the observations to estimate the model parameters
which are used to simulate the performance of different testing policies. The different data collection
strategies are compared by the impact of input uncertainty in the simulation outputs.

We demonstrate this approach using a nonlinear mixed effects model which aims to replicate the
behaviour of viral load profiles seen during the COVID-19 pandemic. We simulate the probability of an
individual returning at least one positive test across two sets of testing policies and compare data collection
strategies which use the same number of total observations but split differently between the number of
individuals and the number of observations per individual. In this example we find that comparing the
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strategies solely based on input uncertainty is not sensible as the strategies perform differently in terms of
producing confidence intervals for the simulation output that contain the true performance measure. We find
a tendency for the true performance measures to be underestimated by the simulation and although this can
be linked to negatively biased parameter estimates it requires further investigation through some sensitivity
analysis. Future research includes considering alternative techniques for quantifying input uncertainty and
incorporating confidence interval coverage and simulation output bias in the approach.
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