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Inexact-Proximal Accelerated Gradient Method for Stochastic

Nonconvex Constrained Optimization Problems

Morteza Boroun, Afrooz Jalilzadeh∗

Abstract

Stochastic nonconvex optimization problems with nonlinear constraints have a broad range
of applications in intelligent transportation, cyber-security, and smart grids. In this paper, first,
we propose an inexact-proximal accelerated gradient method to solve a nonconvex stochastic
composite optimization problem where the objective is the sum of smooth and nonsmooth
functions, the constraint functions are assumed to be deterministic and the solution to the
proximal map of the nonsmooth part is calculated inexactly at each iteration. We demonstrate
an asymptotic sublinear rate of convergence for stochastic settings using increasing sample-size
considering the error in the proximal operator diminishes at an appropriate rate. Then we
customize the proposed method for solving stochastic nonconvex optimization problems with
nonlinear constraints and demonstrate a convergence rate guarantee. Numerical results show
the effectiveness of the proposed algorithm.

1 INTRODUCTION

There is a rapid growth in the global urban population and the concept of smart cities is proposed
to manage the impact of this surge in urbanization. Intelligent transportation, cyber-security,
and smart grids are playing vital roles in smart city projects which are highly influenced by big
data analytic and effective use of machine learning techniques [19]. As data gets more complex
and applications of machine learning algorithms for decision-making broaden and diversify, recent
research has been shifted to constrained optimization problems with nonconvex objectives [14] to
improve efficiency and scalability in smart city projects.

Consider the following constrained optimization problem with a stochastic and nonconvex ob-
jective:

min
x∈X

f(x) , E[F (x, ζ(ω))]

s.t. φi(x) ≤ 0, i = 1, . . . ,m, (1)

where ζ : Ω → R
o, F : Rn × R

o → R, and (Ω,F ,P) denotes the associated probability space.
We consider function f(x) : R

n → R is smooth and possibly nonconvex, φi(x) : R
n → R are

deterministic, convex, and smooth for all i, and set X is convex and compact. To solve this
problem, first we propose an algorithm for solving the following composite optimization problem

min
x∈Rn

g(x) , f(x) + h(x), (2)
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where h(x) : Rn → R is a convex function and possibly nonsmooth. Using the indicator function
IΘ(·), where IΘ(x) = 0 if x ∈ Θ and IΘ(x) = +∞ if x /∈ Θ, one can write problem (1) in the form of
problem (2) by choosing h(x) = IΘ(x) and Θ = {x | x ∈ X, φi(x) ≤ 0, ∀i = 1, . . . ,m}. Moreover,
we show that how to customize the proposed method to solve problem (1). Indeed, proximal-
gradient methods are an appealing approach for solving (2) due to their computational efficiency and
fast theoretical convergence guarantee. In deterministic and convex regime, subgradient methods
have been shown to have a convergence rate of O(1/

√
T ), however, proximal-gradient methods can

achieve a faster rate of O(1/T ), where T is the total number of iterations. Each iteration of a
proximal-gradient method requires solving the following:

proxγ,h(y) = argmin
u∈Rn

{h(u) + 1

2γ
‖u− y‖2}. (3)

In many scenarios, computing the exact solution of the proximal operator may be expensive or
may not have an analytic solution. In this work, we propose a gradient-based scheme to solve
the nonconvex optimization problem (2) by computing the proximal operator inexactly at each
iteration.

Next, we introduce important notations that we use throughout the paper and then briefly
summarize the related research.

1.1 Notations

We denote the optimal objective value (or solution) of (2) by g∗ (or x∗) and the set of the optimal
solutions by X∗, which is assumed to be nonempty. For any a ∈ R, we define [a]+ = max{0, a}. E[•]
denotes the expectation with respect to the probability measure P and B(s) = {x ∈ R

n | ‖x‖ ≤ s}.
ΠΘ(·) denotes the projection onto convex set Θ and relint(X) denotes the relative interior of the
set X. Throughout the paper, Õ is used to suppress all the logarithmic terms.

1.2 Related Works

There has been a lot of studies on first-order methods for convex optimization with convex con-
straints, see [18, 20] for deterministic constraints and [1, 10] for stochastic constraints. Nonconvex
optimization problems without constraints or with easy-to-compute projection on the constraint
set have been studied by [3, 21, 9]. When the function f in problem (2) is convex and h is a
nonsmooth function, [17] showed that even with errors in the computation of the gradient and the
proximal operator, the inexact proximal-gradient method achieves the same convergence rates as
the exact counterpart, if the magnitude of the errors is controlled in an appropriate rate. In non-
convex setting, assuming the proximal operator has an exact solution, [4] obtained a convergence
rate of O(1/T ), using accelerated gradient scheme for deterministic problems and in stochastic
regime using increasing sample-size they obtained the same convergence rate. Inspired by these
two works, we present accelerated inexact proximal-gradient framework that can solve problems
(1) and (2). In deterministic regime, [8] analyzed the iteration-complexity of a quadratic penalty
accelerated inexact proximal point method for solving linearly constrained nonconvex composite
programs with iteration complexity of Õ(ǫ−3). Inexact proximal-point penalty method introduced
by [13] and [11] can solve nonlinear constraints with complexity of Õ(ǫ−2.5) and Õ(ǫ−3) for affine
equality constraints and nonconvex constraints, respectively. Recently, [12] showed complexity re-
sult of Õ(ǫ−2.5) for deterministic problems with nonconvex objective and convex constraints with
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nonlinear functions to achieve ǫ-KKT point. In stochastic regime, [2] has studied functional con-
strained optimization problems and obtained a non-asymptotic convergence rate of O(ǫ−2) for
stochastic problems with convex constraints to achieve ǫ2-KKT point. In this paper, we obtain the
same convergence rate under weaker assumptions. In particular, in contrast to [2], our analysis
does not require the objective function to be Lipschitz and we prove an asymptotic convergence
rate result. Next, we outline the contributions of our paper.

1.3 Contributions

In this paper, we consider a stochastic nonconvex optimization problem with convex nonlinear
constraints. We propose an inexact proximal accelerated gradient (IPAG) method where at each
iteration the projection onto the nonlinear constraints is solved inexactly. By improving the accu-
racy of the approximate solution of the proximal subproblem (projection step) at an appropriate
rate and ensuring feasibility at each iteration combined with a variance reduction technique, we
demonstrate a convergence rate of O(1/T ), where T is the total number of iterations, and the
oracle complexity (number of sample gradients) of O(1/ǫ2) to achieve an ǫ-first-order optimality
of problem (1). To accomplish this task, first we analyze the proposed method for the composite
optimization problem (2) which can be specialized to (1) using an indicator function. Moreover,
our proposed method requires weaker assumptions compare to [2].

Next, we state the main definitions and assumptions that we need for the convergence analysis.
In Section 2, we introduce the IPAG algorithm to solve the composite optimization problem and
then in Section 2.1 we show that IPAG method can be customized to solve a nonconvex stochastic
optimization problem with nonlinear constraints (1). Finally, in section 3 we present some empirical
experiments to show the benefit of our proposed scheme in comparison with a competitive scheme.

1.4 Assumptions and Definitions

Let ρ be the error in the calculation of the proximal objective function achieved by x̃, i.e.,

1

2γ
‖x̃− y‖2 + h(x̃) ≤ ρ+ min

x∈Rn

{
1

2γ
‖x− y‖2 + h(x)

}

, (4)

and we call x̃ a ρ-approximate solution to the proximal problem. Next, we define ρ-subdifferential
and then we state a lemma to characterize the elements of the ρ-subdifferential of h at x.

Definition 1 (ρ-subdifferential). Given a convex function h(x) : Rn → R and a positive scalar ρ,
the ρ-approximate subdifferential of h(x) at a point x ∈ R

n, denoted as ∂ρh(x), is

∂ρh(x) = {d ∈ R
n : h(y) ≥ h(x) + 〈d, y − x〉 − ρ}.

Therefore, when d ∈ ∂ρh(x), we say that d is a ρ-subgradient of h(x) at point x.

Lemma 1. If x̃ is a ρ-approximate solution to the proximal problem (3) in the sense of (4), then
there exists v such that ‖v‖ ≤ √

2γρ and

1
γ (y − x̃− v) ∈ ∂ρh(x̃).

Proof of Lemma 1 can be found in [17]. Throughout the paper, we exploit the following basic
lemma.
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Lemma 2. Given a symmetric positive definite matrix Q, we have the following for any ν1, ν2, ν3:

(ν2 − ν1)
TQ(ν3 − ν1) =

1

2
(‖ν2 − ν1‖2Q + ‖ν3 − ν1‖2Q − ‖ν2 − ν3‖2Q), where ‖ν‖Q ,

√

νTQν.

In our analysis we use the following lemma [4].

Lemma 3. Given a positive sequence αk, define Γk = 1 for k = 1 and Γk = (1 − αk)Γk−1 for
k > 1. Suppose a sequence {χk}k satisfies χk ≤ (1 − αk)χk−1 + λk, where λk > 0. Then for any
k ≥ 1, we have that χk ≤ Γk

∑k
j=1 γj/Γj .

The following assumptions are made throughout the paper.

Assumption 1. The following statements hold:

(i) A slater point of problem (1) is available, i.e., there exists x◦ ∈ R
n such that φi(x

◦) < 0 for
all i = 1, . . . ,m and x◦ ∈ relint(X).

(ii) Function f is smooth and weakly-convex with Lipschitz continuous gradient, i.e. there exists
L, ℓ ≥ 0 such that − ℓ

2‖y − x‖2 ≤ f(x)− f(y)− 〈∇f(x), y − x〉 ≤ L
2 ‖y − x‖2.

(iii) There exists C > 0 such that ‖proxγ,h(y)‖ ≤ C for any γ > 0 and y ∈ R
n.

(iv) E[ξk | Fk] = 0 holds a.s., where ξk , ∇f(zk) − ∇F (zk, ωk). Also, there exists τ > 0 such

that E[‖ξ̄k‖2 | Fk] ≤ τ2

Nk
holds a.s. for all k and Fk , σ

(
{z0, ξ̄0, z1, ξ̄1 . . . , zk−1, ξ̄k−1}

)
, where

ξ̄k ,

∑Nk
j=1

∇f(zk)−∇F (zk,ωj,k)

Nk
.

Note that Assumption 1 is a common assumption in nonconvex and stochastic optimization
problems and it holds for many real-world problems such as problem of non-negative principal
component analysis and classification problem with nonconvex loss functions [16].

2 CONVERGENCE ANALYSIS

In this section, we propose an inexact-proximal accelerated gradient scheme for solving problem
(2) assuming that an inexact solution to the proximal subproblem exists through an inner al-
gorithm M. Later in section 2.1, we show that how the inexact solution can be calculated at
each iteration for problem (1). Since problem (2) is nonconvex, we demonstrate the rate result
in terms of ‖z − proxλh(z − λ∇f(z))‖ which is a standard termination criterion for solving con-
strained or composite nonconvex problems [15, 5, 4]. For problem (1), the first-order optimality
condition is equivalent to find z∗ such that z∗ = ΠΘ(z

∗ − λ∇f(z∗)) for some λ > 0. Hence,
we show the convergence result in terms of ǫ-first-order optimality condition for a vector z, i.e.,
‖z −ΠΘ(z − λ∇f(z))‖2 ≤ ǫ.

Assumption 2. For a given c ∈ R
n and γ > 0, consider the problem ũ , proxγh (c). An algorithm

M with an initial point u0, output u and convergence rate of O(1/t2) within t steps exists, such
that ‖u− ũ‖2 ≤ (a1‖u0 − ũ‖2 + a2)/t

2 for some a1, a2 > 0.
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Algorithm 1 Inexact-proximal Accelerated Gradient Algorithm (IPAG)

input: x0, y0 ∈ R
n, positive sequences {αk, γk, λk}k and Algorithm M satisfying Assumption 2;

for k = 1 . . . T do

(1) zk = (1− αk)yk−1 + αkxk−1;
(2) xk ≈ proxγkh

(
xk−1 − γk(∇f(zk) + ξ̄k)

)
(solved inexactly by algorithm M with qk iterations);

(3) yk ≈ proxλkh

(
zk − λk(∇f(zk) + ξ̄k)

)
(solved inexactly by algorithm M with pk iterations);

end for

Output: zN where N is randomly selected from {T/2, . . . , T} with Prob{N = k} =
1

∑T
k=⌊T/2⌋

1−Lλk
16λkΓk

(
1−Lλk
16λkΓk

)

.

Suppose the solutions of proximal operators x̃k , proxγkh
(
xk−1 − γk(∇f(zk) + ξ̄k)

)
and ỹk ,

proxλkh
(zk

− λk(∇f(zk) + ξ̄k)) are not available exactly, instead an ek-subdifferential solution xk and ρk-
subdifferential solution yk are available, respectively. In particular, given ξ̄k for the proximal
subproblem in step (2) and (3) of Algorithm 1 at iteration k, Assumption 2 immediately im-
plies that after qk and pk steps of Algorithm M with initial point xk−1 and yk−1, we have
ek = γk(c1‖xk−1 − x̃k‖2 + c2)/q

2
k and ρk = λk(b1‖yk−1 − ỹk‖2 + b2)/p

2
k, for some c1, c2, b1, b2 > 0

where γk, λk represents strong convexity of the subproblems, respectively. Later, in Section 2.1, we
show the existence of Algorithm M such that it satisfies Assumption 2.

Remark 1. Note that from Assumption 1(iii) and 2, we can show the following for all k > 0:

‖xk − x̃k‖2 ≤ 1
q2k

[
2c1(‖xk−1 − x̃k−1‖2 + ‖x̃k−1 − x̃k‖2) + c2

]
≤ ‖xk−1 − x̃k−1‖2 + 8C2+c2

q2k

=⇒ ‖xk − x̃k‖2 ≤ ‖x0 − x̃0‖2 +
k∑

j=1

8C2+c2
q2j

=⇒ ‖xk‖ ≤ C +

√

‖x0 − x̃0‖2 + C̃ , B1, (5)

where C̃ ,
∑k

j=1
8C2+c2

q2j
and we used the fact that ‖x̃k‖ ≤ C. Similarly for step (3) of Algorithm

1, there exist B2, B3 > 0 such that the followings hold for all k > 0,

‖yk‖ ≤ B2, ‖zk‖ ≤ B3. (6)

Next, we state our main lemma that provides a bridge towards driving rate statements.

Lemma 4. Consider Algorithm 1 and suppose Assumption 1 and 2 hold and choose stepsizes
αk, γk and λk such that αkγk ≤ λk. Let ŷk ≈ proxλkh (zk − λk∇f(zk)) in the sense of (4) and

ŷrk , proxλkh
(zk − λk∇f(zk)) for any k ≥ 1, then the following holds for all T > 0.

E[‖ŷN − zN‖2 + ‖ŷrN − zN‖2]

≤





T∑

k=⌊T/2⌋

1−Lλk
16λkΓk





−1
[

α1

2γ1Γ1
‖x0 − x∗‖2 + ℓ

2

T∑

k=1

αk
Γk

[
2B2

3 + C2 + αk(1− αk)(2B
2
2 +B2

1)
]

+
T∑

k=1

(
λkτ

2

ΓkNk(1−Lλk)
+ 2ek

Γk
+

B2
1
+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1
+B2

2

kλkΓk
+ 5λkτ

2(1−Lλk)
8ΓkNk

+ ρk(1−Lλk)
λ2
kΓk

) ]

. (7)
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Proof. First of all from the fact that ∇f(x) is Lipschitz, for any k ≥ 1, the following holds:

f(yk) ≤ f(zk) + 〈∇f(zk), yk − zk〉+ L
2 ‖yk − zk‖2. (8)

Using Assumption 1(ii), for any αk ∈ (0, 1) one can obtain the following:

f(zk)− [(1− αk)f(yk−1) + αkf(x)]

= αk[f(zk)− f(x)] + (1− αk)[f(zk)− f(yk−1)]

≤ αk[〈∇f(zk), zk − x〉+ ℓ
2‖zk − x‖2] + (1− αk)[〈∇f(zk), zk − yk−1〉+ ℓ

2‖xu − yk−1‖2]
= 〈∇f(zk), zk − αkx− (1− αk)yk−1〉+ ℓαk

2 ‖zk − x‖2 + ℓ(1−αk)
2 ‖zk − yk−1‖2

≤ 〈∇f(zk), zk − αkx− (1− αk)yk−1〉+ ℓαk
2 ‖zk − x‖2 + ℓα2

k(1−αk)
2 ‖yk−1 − xk−1‖2, (9)

where in the last inequality we used the fact that zk − yk−1 = αk(xk−1 − yk−1). From Lemma
1, if ek be the error in the proximal map of update xk in Algorithm 1 there exists vk such that
‖vk‖ ≤ √

2γkek and 1
γk

(
xk−1 − xk − γk(∇f(zk) + ξ̄k)− vk

)
∈ ∂ekh(xk). Therefore, from Definition

1, the following holds:

h(x) ≥ h(xk) + 〈 1
γk
(xk−1 − xk)−∇f(zk)− ξ̄k − 1

γk
vk, x− xk〉 − ek

=⇒ 〈∇f(zk) + ξ̄k, xk − x〉+ h(xk) ≤ h(x)− 1
γk
〈vk, xk − x〉+ ek +

1
γk
〈xk−1 − xk, xk − x〉.

From Lemma 2, we have that 1
γk
〈xk−1−xk, xk −x〉 = 1

2γk
[‖xk−1−x‖2−‖xk −xk−1‖2−‖xk −x‖2],

therefore,

〈∇f(zk) + ξ̄k, xk − x〉+ h(xk)

≤ h(x)− 1
γk
〈vk, xk − x〉+ ek +

1
2γk

[‖xk−1 − x‖2 − ‖xk − xk−1‖2 − ‖xk − x‖2]. (10)

Similarly if ρk be the error of computing the proximal map of update yk in Algorithm 1, then there
exists wk such that ‖wk‖ ≤ √

2λkρk and one can obtain the following:

〈∇f(zk) + ξ̄k, yk − x〉+ h(yk)

≤ h(x) − 1
λk
〈wk, yk − x〉+ ρk +

1
2λk

[‖zk − x‖2 − ‖yk − zk‖2 − ‖yk − x‖2]. (11)

Letting x = αkxk + (1− αk)yk−1 in (11) for any αk ≥ 0, the following holds:

〈∇f(zk) + ξ̄k, yk − αkxk − (1− αk)yk−1〉+ h(yk)

≤ h(αkxk + (1− αk)yk−1)− 1
λk
〈wk, yk − αkxk − (1− αk)yk−1〉+ ρk

+ 1
2λk

[‖zk − αkxk − (1− αk)yk−1‖2 − ‖yk − zk‖2].

From convexity of h and step (1) of algorithm 1 we obtain:

〈∇f(zk) + ξ̄k, yk − αkxk − (1− αk)yk−1〉+ h(yk)

≤ αkh(xk) + (1− αk)h(yk−1)− 1
λk
〈wk, yk − αkxk − (1− αk)yk−1〉+ ρk

+ 1
2λk

[α2
k‖xk − xk−1‖2 − ‖yk − zk‖2. (12)

Multiplying (10) by αk and then sum it up with (12) gives us the following

〈∇f(zk) + ξ̄k, yk − αkx− (1− αk)yk−1〉+ h(yk)

6



≤ (1− αk)h(yk−1) + αkh(x)− αk
2γk

[‖xk−1 − x‖2 − ‖xk − x‖2]− 1
γk
〈vk, xk − x〉

+ ek +
αk(γkαk−λk)

2γkλk
︸ ︷︷ ︸

term (a)

‖xk − xk−1‖2 − 1
2λk

‖yk − zk‖2 − 1
λk
〈wk, yk − αkxk − (1− αk)yk−1〉+ ρk.

(13)

By choosing γk such that αkγk ≤ λk, one can easily confirm that term (a)≤ 0. Now combining (8),
(9) and (13) and using the facts that g(x) = f(x) + h(x) and zk = yk−1 + αk(xk−1 − yk−1), we get
the following:

g(yk) ≤ (1− αk)g(yk−1) + αkg(x)− 1
2 (

1
λk

− L)‖yk − zk‖2 +
term (b)

︷ ︸︸ ︷

〈ξ̄k, αk(x− xk−1) + zk − yk〉

+ αk
2γk

[‖xk−1 − x‖2 − ‖xk − x‖2] + ℓαk
2 ‖xmd − x‖2 + ℓα2

k(1−αk)
2 ‖yk−1 − xk−1‖2

− 1
γk
〈vk, xk − x〉+ ek − 1

λk
〈wk, yk − αkxk − (1− αk)yk−1〉+ ρk. (14)

Moreover one can bound term (b) as follows using the Young’s inequality.

〈ξ̄k, αk(x− xk−1) + zk − yk〉 = 〈ξ̄k, αk(x− xk−1)〉+ 〈ξ̄k, zk − yk〉
≤ 〈ξ̄k, αk(x− xk−1)〉+ λk

1−Lλk
‖zk − yk‖2 + 1−Lλk

4λk
‖ξ̄k‖2. (15)

Using (15) in (14), we get the following.

g(yk) ≤ (1− αk)g(yk−1) + αkg(x)− 1
4(

1
λk

− L)‖yk − zk‖2 + 〈ξ̄k, αk(x− xk−1)〉+ λk
1−Lλk

‖ξ̄k‖2

+ αk
2γk

[‖xk−1 − x‖2 − ‖xk − x‖2] + ℓαk
2 ‖xmd − x‖2 + ℓα2

k(1−αk)
2 ‖yk−1 − xk−1‖2

− 1
γk
〈vk, xk − x〉+ ek − 1

λk
〈wk, yk − αkxk − (1− αk)yk−1〉+ ρk.

Subtract g(x) from both sides, using lemma 3, assuming αk
λkΓk

is a non-decreasing sequence and
summing over k from k = 1 to T, the following can be obtained.

g(xT )−g(x)
ΓT

+
T∑

k=1

1−Lλk
4λkΓk

‖yk − zk‖2

≤ α1

2γ1Γ1
‖x0 − x‖2 − αT+1

2γT+1ΓT+1
‖xT − x‖2 + ℓ

2

T∑

k=1

αk
Γk

[
‖zk − x‖2 + αk(1− αk)‖yk−1 − xk−1‖2

]

+

T∑

k=1

αk
Γk

〈ξ̄k, x− xk−1〉+
T∑

k=1

λk
Γk(1−Lλk)

‖ξ̄k‖2

−
T∑

k=1

[
1

γkΓk
〈vk, xk − x〉+ ek

Γk
− 1

λkΓk
〈wk, yk − αkxk − (1− αk)yk−1〉+ ρk

Γk

]
.

Letting x = x∗ and using Assumption 1(iii), inequalities (5) and (6) and the fact that ‖vk‖ ≤ √
2γkek

and ‖wk‖ ≤ √
2λkρk, we can simplify the above inequality as follows:

g(xT )−g(x∗)
ΓT

+
T∑

k=1

1−Lλk
4λkΓk

‖yk − zk‖2 ≤ α1

2γ1Γ1
‖x0 − x∗‖2 + ℓ

2

T∑

k=1

αk
Γk

[
2B2

3 + C2 + αk(1− αk)(2B
2
2 +B2

1)
]
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+

T∑

k=1

αk
Γk

〈ξ̄k, x∗ − xk−1〉+
T∑

k=1

λk
Γk(1−Lλk)

‖ξ̄k‖2

+

T∑

k=1

(
2ek
Γk

+
B2

1
+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1
+B2

2

kλkΓk

)
.

Using the fact that g(xT )− g(x∗) ≥ 0, taking conditional expectation from both sides and applying
Assumption 1(iv) on the conditional first and second moments, we get the following.

T∑

k=1

1−Lλk
4λkΓk

E[‖yk − zk‖2 | Fk] ≤ α1

2γ1Γ1
‖x0 − x∗‖2 + ℓ

2

T∑

k=1

αk
Γk

[
2B2

3 + C2 + αk(1 − αk)(2B
2
2 +B2

1)
]

+

T∑

k=1

λkτ
2

ΓkNk(1−Lλk)
+

T∑

k=1

(
2ek
Γk

+
B2

1
+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1
+B2

2

kλkΓk

)
. (16)

To bound the left-hand side we use the following inequality by defining yrk , proxλkh

(
zk − λk(∇f(zk) + ξ̄k)

)

and ŷrk , proxλkh (zk − λk∇f(zk)).

‖yk − zk‖2 =
1

2
‖yk − zk‖2 +

1

2
‖yk − zk‖2

≥ 1

4
‖ŷk − zk‖2 −

1

2
‖ŷk − yk‖2 +

1

4
‖ŷrk − zk‖2 −

1

2
‖ŷrk − yk‖2

≥ 1

4
‖ŷk − zk‖2 +

1

4
‖ŷrk − zk‖2 −

3

2
‖ŷk − ŷrk‖2 −

5

2
‖ŷrk − yrk‖2 −

5

2
‖yrk − yk‖2,

where we used the fact that for any a, b ∈ R, we have that (a− b)2 ≥ 1
2a

2 − b2 and for any ai ∈ R,
(
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i . From Assumption 1(iv), we know that ‖ŷrk − yrk‖2 ≤ λ2

kτ
2/Nk, also we

know that ‖ŷk − ŷrk‖2 ≤ ρk/λk and similarly ‖yk − yrk‖2 ≤ ρk/λk. Therefore, one can conclude that
‖yk−zk‖2 ≥ 1

4‖ŷk−zk‖2+ 1
4‖ŷrk−zk‖2− 5

2λ
2
kτ

2/Nk−4ρk/λk. Hence, by taking another expectation
from (16) and then using this bound, the following can be obtained.

T∑

k=1

1−Lλk
16λkΓk

E[‖ŷk − zk‖2 + ‖ŷrk − zk‖2]

≤ α1

2γ1Γ1
‖x0 − x∗‖2 + ℓ

2

T∑

k=1

αk
Γk

[
2B2

3 + C2 + αk(1− αk)(2B
2
2 +B2

1)
]

+
T∑

k=1

(
λkτ

2

ΓkNk(1−Lλk)
+ 2ek

Γk
+

B2
1
+C2

γkΓk
+ ρk(1+k)

Γk
+

B2
1
+B2

2

kλkΓk
+ 5λkτ

2(1−Lλk)
8ΓkNk

+ ρk(1−Lλk)
λ2
kΓk

)

.

Using the fact that
∑T

k=⌊T/2⌋At ≤
∑T

k=1At where At =
1−Lλk
16λkΓk

E[‖ŷk − zk‖2 + ‖ŷrk − zk‖2], dividing
both side by

∑T
k=⌊T/2⌋

1−Lλk
16λkΓk

and using definition of N in Algorithm 1, the desired result can be
obtained.

We are now ready to prove our main rate results.
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Theorem 1. Let {yk, xk, zk} generated by Algorithm 1 such that at each iteration k ≥ 1, ek-
approximate solution of step (2) and ρk-approximate solution of step (3) are available through an
inner algorithm M. Suppose Assumption 1 and 2 hold and we select the parameters in Algorithm
1 as αk = 2

k+1 , γk = k
4L , λk = 1

2L , Γk = 2
k(k+1) and Nk = k+1. Then for B = B2

1 +B2
2 +B2

3 +C2,
the following holds for all T > 0.

E[‖ŷN − zN‖2 + ‖ŷrN − zN‖2] ≤ 128
LT 3

[

2BT (T + 1)
(

ℓ
4 +

13τ2

64LB + 4L
)

+
T∑

k=1

(
2ek
Γk

+ ρk(1+k)
Γk

+ 4L2ρk
Γk

)
]

,

(17)

where ŷk ≈ proxλkh
(zk − λk∇f(zk)) in the sense of (4), and ŷrk = proxλkh

(zk − λk∇f(zk)) for any
k ≥ 1.

Proof. Using the definition of λk and Γk, we get the following.

T∑

k=⌊T/2⌋

1−Lλk
16λkΓk

=

T∑

k=⌊T/2⌋

Lk(k+1)
32 = L

32

[
7T 3

24 + T 2 + 5T
6

]

≥ LT 3

128 . (18)

Next, using the definition of parameters specified in the statement of the theorem we have that

T∑

k=1

αk
Γk

=

T∑

k=1

k = T (T+1)
2 ,

T∑

k=1

τ2

ΓkNk
=

T∑

k=1

τ2k
2 = τ2T (1+T )

4 ,

T∑

k=1

1
γkΓk

=

T∑

k=1

2L(k + 1) = 2LT (T + 3),

T∑

k=1

1
kλkΓk

=

T∑

k=1

L(k + 1) = LT (T + 3). (19)

Using (18) and (19) in (7) and the fact that αk(1−αk) ≤ 1, T+3
T+1 ≤ 2 and defining B = B2

1 +B2
2 +

B2
3 + C2 we get the desired result.

Corollary 1. Let {yk, xk, zk} be generated by Algorithm 1 such that at each iteration k ≥ 1, ek-
approximate solution of step (2) and ρk-approximate solution of step (3) are calculated by an inner
algorithm M where ek = γk(c1‖xk−1− x̃k‖2+ c2)/q

2
k and ρk = λk(b1‖yk−1− ỹk‖2+ b2)/p

2
k. Suppose

Assumptions 1 and 2 hold and pk = k + 1 and qk = k. If we choose the stepsize parameters as in
Theorem 1, then the following holds for all T ≥ 1.

E[‖ŷN − zN‖2 + ‖ŷrN − zN‖2] ≤ D1

T + D2

T 2 , (20)

D1 ,
128
L

[

4B
(

ℓ
4 + 13τ2

64LB + 4L
)

+
(
c1(2B2

1+C2)+c2
L

)

+
(
b1(2B2

2+C2)+b2
4L

)]

,

D2 , 128
(
b1(2B

2
2 +C2) + b2

)
,

where ŷk ≈ proxλkh
(zk − λk∇f(zk)) in the sense of (4) and ŷrk = proxλkh

(zk − λk∇f(zk)) for any
k ≥ 1. The oracle complexity (number of gradient samples) to achieve E[‖ŷN−zN‖2+‖ŷrN−zN‖2] ≤
ǫ is O(1/ǫ2).

Proof. Using the definition of the stepsizes, pk, ek, and ρk one can obtain the following:

T∑

k=1

2ek
Γk

≤ c1(2B2
1
+C2)+c2
4L

T∑

k=1

(k + 1) =
(
c1(2B2

1
+C2)+c2
4L

)

T (T + 3).
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T∑

k=1

ρk(1+k)
Γk

≤ b1(2B2
2
+C2)+b2
4L

T∑

k=1

k =
(
b1(2B2

2
+C2)+b2
8L

)

T (T + 1).

T∑

k=1

ρk
Γk

=
(
b1(2B2

2
+C2)+b2
4L

) T∑

k=1

k(k+1)
(k+1)2

≤
(
b1(2B2

2
+C2)+b2
4L

) T∑

k=1

1 =
(
b1(2B2

2
+C2)+b2
4L

)

T.

Using the above inequalities in (17), we get the desired convergence result. Additionally, the
total number of sample gradients of the objective is

∑T
k=1Nk =

∑T
k=1(k + 1) = T (T + 3) and

the total number of gradients of the constraint is
∑T

k=1 pk + qk =
∑T

k=1 2k + 1 = T (T + 2).

From (20), we have that E[‖ỹN − zN‖2] ≤ O(1/T ) = ǫ, hence,
∑T

k=1Nk = O(1/ǫ2) and similarly
∑T

k=1 pk + qk = O(1/ǫ2).

In the next corollary, we justify our choice of measure. We show that if E[‖ŷrN −zN‖2] ≤ ǫ, then
the first order optimality condition for problem (2) holds within a ball with radius

√
ǫ.

Corollary 2. Under the premises of Corollary 1, after running Algorithm 1 for T ≥ D/ǫ iterations,
where D , D1 +D2, the following holds.

0 ∈ E[∇f(ŷrN)] + E[∂h(ŷrN )] + B
(
3L

√
ǫ
)
.

Proof. Suppose ŷrN is a solution of proxλNh (zN − λN∇f(zN)). Then 0 ∈ ∂h(ŷrN )+∇f(zN)+(ŷrN −
zN )/λ. Adding and subtracting ∇f(ŷrN) form the right-hand side of the above inequality, gives the
following:

0 ∈ ∂h(ŷrN ) +∇f(zN ) + 1/λ(ŷrN − zN )±∇f(ŷrN). (21)

Moreover, using the fact that T ≥ D/ǫ and E[‖ŷrN − zN‖2] ≤ D
T = ǫ one can show the following

result.

E [‖∇f(zN )−∇f(ŷrN ) + 1/λ(ŷrN − zN )‖] ≤ E [L‖ŷrN − zN‖+ 1/λ‖ŷrN − zN‖] ≤ 3L
√
ǫ,

where we use the fact that λ = 1/(2L). Using the above inequality and taking expectation from
(21) the desired result can be obtained.

In the next section, we show how Algorithm 1 can be customized to solve problem (1).

2.1 Constrained Optimization

Recall that problem (1) can be written in a composite form using an indicator function, i.e. problem
(1) is equivalent to minx g(x) = f(x) + h(x), where h(x) = IΘ(x) and Θ = {x | x ∈ X, φi(x) ≤
0, ∀i = 1, . . . ,m}. In step (2) and (3) of Algorithm 1, one needs to compute the proximal operators
inexactly which are of the following form:

min
u∈X

1

2γ
‖u− y‖2 s.t. φi(u) ≤ 0, i = 1, . . . ,m, (22)

for some y ∈ R
n. Problem (22) has a strongly convex objective function with convex constraints, and

there has been variety of methods developed to solve such problems. One of the efficient methods
for solving large-scale convex constrained optimization problem with strongly convex objective
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that satisfies Assumption 2 is first-order primal-dual scheme that guarantees a convergence rate of
O(1/

√
ǫ) in terms of suboptimality and infeasibility, e.g., [7, 6]. Next, we discuss some details of

implementing such schemes as an inner algorithm for solving the subproblems in step (2) and (3)
of Algorithm 1.

Based on Corollary 1, to obtain a convergence rate of O(1/T ), one needs to find an ek- and
ǫk-approximated solution in the sense of (4). Note that since the nonsmooth part of the objective
function, h(x), in the proximal subproblem is an indicator function, (4) implies that the approximate
solution of the subproblem has to be feasible, otherwise the indicator function on the left-hand side
of (4) goes to infinity. However, the first-order primal-dual methods mentioned above find an
approximate solution which might be infeasible. To remedy this issue, let x◦ be a slater feasible
point of (22) (i.e., φi(x

◦) < 0 for all i = 1, . . . ,m) and let x̂ be the output of the inner algorithm
M such that it is ǫ-suboptimal and ǫ-infeasible, then x̃ = κx◦ + (1− κ)x̂ is a feasible point of (22)

for κ , maxi
[φi(x̂)]+

[φi(x̂)]+−φi(x◦) which is O(ǫ)-suboptimal, see the next lemma for the proof.

Algorithm 2 IPAG for constrained optimization

input: x◦, x0, y0 ∈ R
n and positive sequences {αk, γk, λk}k, and Algorithm M satisfying Assump-

tion 2;
for k = 1 . . . T do

(1) zk = (1− αk)yk−1 + αkxk−1;
(2) x ≈ ΠΘ

(
xk−1 − γk(∇f(zk) + ξ̄k)

)
(solved inexactly by algorithm M with qk iterations);

(3) y ≈ ΠΘ

(
zk − λk(∇f(zk) + ξ̄k)

)
(solved inexactly by algorithm M with pk iterations);

(4) κ = maxi
[φi(x)]+

[φi(x)]+−φi(x◦) and κ̃ = maxi
[φi(y)]+

[φi(y)]+−φi(x◦) ;

(5) xk = κx◦ + (1− κ)x;
(6) yk = κ̃x◦ + (1− κ̃)y;
end for

Output: zN where N is randomly selected from {T/2, . . . , T} with Prob{N = k} =
1

∑T
k=⌊T/2⌋

1−Lλk
16λkΓk

(
1−Lλk
16λkΓk

)

.

Lemma 5. Let x◦ be a strictly feasible point of (22) and x̂ be the output of an inner algorithm M
such that it is ǫ-suboptimal and ǫ-infeasible solution of (22). Then x̃ = κx◦ + (1− κ)x̂ is a feasible

point of (22) and an O(ǫ)-approximate solution in the sense of (4) where κ = maxi
[φi(x̂)]+

[φi(x̂)]+−φi(x◦) .

Proof. Let x∗ be the optimal solution of (22). Since x̂ is ǫ-suboptimal and ǫ-infeasible solution,
x̂ ∈ X and the following holds:

∣
∣ 1
2γ ‖x̂− y‖2 − 1

2γ ‖x
∗ − y‖

∣
∣ ≤ ǫ, and [φi(x̂)]+ ≤ ǫ, ∀i ∈ {1, . . . ,m}.

Since X is a convex set and x◦, x̂ ∈ X, then clearly κx◦+(1−κ)x̂ ∈ X for any κ ∈ [0, 1]. Moreover,

φi(x
◦) < 0 for all i, hence κ = maxi

[φi(x̂)]+
[φi(x̂)]+−φi(x◦) ∈ [0, 1] and κ ≤ ǫ

mini{−φi(x◦)} . From convexity of

φi(·), one can show the following for all i = 1, . . . ,m.

φi(x̃) ≤ κφi(x
◦) + (1− κ)φi(x̂) ≤ 0,

where we used the definition of κ. Hence, x̃ is a feasible point of (22). Next, we verify x̃ satisfies
(4).

1
2γ ‖x̃− y‖2 + IΘ(x̃)− 1

2γ ‖x
∗ − y‖2 − IΘ(x

∗)
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= 1
2γ ‖x̃− y ± x◦‖2 − 1

2γ ‖x
∗ − y‖2

≤ κ2

2γ ‖x◦ − y‖2 + (1−κ)2

2γ ‖x̂− y‖2 + κ(1−κ)
γ ‖x◦ − y‖2‖x̂− y‖2 − 1

2γ ‖x∗ − y‖2

= κ2

2γ ‖x◦ − y‖2 + κ(1−κ)
γ ‖x◦ − y‖2‖x̂− y‖2 + (1− κ2)

[
1
2γ ‖x̂− y‖ − 1

2γ ‖x∗ − y‖
]

− 1−(1−κ2)
2γ ‖x∗ − y‖2

≤ κ2

2γ ‖x
◦ − y‖2 + κ(1−κ)

γ ‖x◦ − y‖2‖x̂− y‖2 + ǫ ≤ O(ǫ),

where we used the fact that x̂, x∗ are feasible, x̂ is ǫ-suboptimal and κ ≤ ǫ
mini{−φi(x◦)} .

In the following corollary, we show that the output of Algorithm 2 is feasible to problem (1)
and satisfies ǫ-first-order optimality condition.

Corollary 3. Consider problem (1). Suppose Assumption 1 and 2 hold and let {yk, xk, zk} be
generated by Algorithm 2 such that the stepsizes and parameters are chosen as in Corollary 1.
Then the iterates are feasible and E

[
‖zN −ΠΘ (zN − λN∇f(zN )) ‖2

]
≤ O(ǫ) holds with an oracle

complexity O(1/ǫ2).

Proof. From Lemma 5 we know that the iterates are feasible and from Corollary 1, we conclude
that E[‖̂yrN − zN‖2] ≤ ǫ with an oracle complexity O(1/ǫ2). Considering problem (1), definition of
ŷrN is equivalent to ŷrN = ΠΘ (zN − λN∇f(zN )) which implies the desired result.

3 NUMERICAL EXPERIMENTS

The goal of this section is to present some computational results to compare the performance of the
IPAG method with another competitive scheme. For Algorithm 2, we consider accelerated primal-
dual algorithm with backtracking (APDB) method introduced by [6] as the inner algorithm M. In
particular, APDB is a primal-dual scheme with a convergence guarantee of O(1/T 2) in terms of
suboptimality and infeasibility when implemented for solving (22) which satisfies the requirements
of Corollary 3, i.e., produces approximate solutions for the proximal subproblems.

Example. The IPAG method is benchmarked against the inexact constrained proximal point
algorithm (ICPP) introduced by [2]. Consider the following stochastic quadratic programming
problem:

min
−10≤x≤10

f(x) , − ǫ
2‖DBx‖2 + τ

2E[‖Ax− b(ξ)‖2]

s.t. 1
2x

TQix+ dTi x− ci ≤ 0, ∀i = 1 . . . m,

where A ∈ R
p×n, p = n/2, B ∈ R

n×n,D ∈ R
n×n is a diagonal matrix, b(ξ) = b + ω ∈ R

p×1,
where the elements of ω have an i.i.d. standard normal distribution. The entries of matrices A,
B, and vector b are generated by sampling from the uniform distribution U [0,1] and the diagonal
entries of matrix D are generated by sampling from the discrete uniform distribution U{1,1000}.
Moreover, (δ, τ) ∈ R

2
++ , Qi ∈ R

n×n, di ∈ R
n×1 and ci ∈ R for all i ∈ {1, . . . ,m}. We chose scalers

δ and τ such that λmin(∇2f) < 0, i.e., minimum eigenvalue of the Hessian is negative. Note that
Assumption 1(i) holds for x◦ = 0, where 0 is the vector of zeros.

In Table 1 (left), we compared the objective value, CPU time, and infeasibility (Infeas.) of
our proposed method with ICPP [2] and in Table 1 (right) we compared the methods for different
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IPAG ICPP
n m f(xT ) Infeas. CPU(s) f(xT ) Infeas. CPU(s)
100 25 -6.78e+5 0 12.10 -4.85e+4 3.56e-1 32.99
100 50 -8.53e+5 0 31.76 -2.42e+4 3.23e-1 65.79
100 75 -4.18e+5 0 52.43 -2.16e+4 3.75e-1 110.53
200 25 -3.22e+6 0 65.56 -1.81e+5 2.56e-1 132.18
200 50 -1.85e+6 0 90.49 -8.45e+4 4.54e-1 208.84
200 75 -1.33e+6 0 138.75 -7.78e+4 3.93e-1 287.20

IPAG ICPP
n m std. f(xT ) f(xT )
100 25 1 -6.7866e+5 -4.8563e+4
100 25 5 -6.5288e+5 -4.8596e+4
100 25 10 -6.2336e+5 -4.8528e+4
200 50 1 -1.8552e+6 -8.4550e+4
200 50 5 -1.8452e+6 -8.5264e+4
200 50 10 -1.8383e+6 -8.6096e+4

Table 1: Comparing IPAG and ICPP.

choices of standard deviation (std.) of ω. To have a fair comparison, we fixed the oracle complexity
(i.e. the number of computed gradients is equal for both methods). As it can be seen in the table,
for different choices of m and n, IPAG scheme outperforms ICPP. For instance, when we have 25
constraints and n = 100, the objective value for our scheme reaches f(xT ) = −6.78e + 5 which is
significantly smaller than −4.85e+4 for ICPP method. Note that our scheme, in contrast to ICPP,
obtains a feasible solution at each iteration. Similar behavior can be observed for different choices
of the standard deviation in Table 1 (right). standard deviation.
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