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ABSTRACT

Driven by the critical needs of biomanufacturing 4.0, we introduce a probabilistic knowledge graph
hybrid model characterizing the risk- and science-based understanding of bioprocess mechanisms.
It can faithfully capture the important properties, including nonlinear reactions, partially observed
state, and nonstationary dynamics. Given very limited real process observations, we derive a poste-
rior distribution quantifying model estimation uncertainty. To avoid the evaluation of intractable
likelihoods, Approximate Bayesian Computation sampling with Sequential Monte Carlo (ABC-
SMC) is utilized to approximate the posterior distribution. Under high stochastic and model uncer-
tainties, it is computationally expensive to match output trajectories. Therefore, we create a linear
Gaussian dynamic Bayesian network (LG-DBN) auxiliary likelihood-based ABC-SMC approach.
Through matching the summary statistics driven through LG-DBN likelihood that can capture crit-
ical interactions and variations, the proposed algorithm can accelerate hybrid model inference, sup-
port latent state monitoring, and facilitate mechanism learning and robust control.

Keywords Approximate Bayesian Computation, Auxiliary Likelihood-based Summary Statistics, Cell therapy
manufacturing, Bioprocess hybrid model, Latent State

1 INTRODUCTION

The biopharmaceutical manufacturing industry is growing rapidly and it plays a critical role to ensure public health
and support economy. However, biomanufacturing often faces critical challenges, including high complexity, high
variability, and very limited process observations. As new biotherapeutics (e.g., cell and gene therapies) become more
and more personalized, it requires more advanced manufacturing protocols. For example, the seed cells, extracted
from individual patients or donors, can have different optimal culture policies. Therefore, the production process
involves a complex stochastic decision process (SDP) with output trajectory dynamics and variations influenced by
biological/physical/chemical (a.k.a. biophysicochemical) reactions occurring at molecular, cellular, and system levels.

In general, there are two main categories of biomanufacturing process modeling methodologies in the existing liter-
ature: mechanistic and data-driven approaches. The ordinary/partial differential equations (ODE/PDE) mechanistic
models are developed based on biophysicochemical mechanisms. They have good interpretability and show generally
higher extrapolation power than data-driven models. However, existing mechanistic models often fail to rigorously
account for uncertainties, i.e., inherent stochasticity and model estimation uncertainty. For example, batch-to-batch
variation, known as a major source of bioprocess uncertainty [1], is ignored in deterministic mechanistic models.
Therefore, mechanistic models may not fit well to the observations collected from real systems in many situations,
which also limits their power in terms of mechanism learning, process monitoring, and robust control to support flex-
ible on-demand manufacturing. On the other hand, data-driven approaches often use general statistical or machine
learning approaches to capture process patterns observed in data. The prediction accuracy of these models largely
depends on the the size of process data and their interpretability is limited.

Driven by the critical challenges of biomanufacturing and limitations of existing process modeling approaches, we
developed a probabilistic knowledge graph (KG) hybrid (“mechanistic and statistical”) model characterizing the risk-
∗Corresponding author: w.xie@northeastern.edu

ar
X

iv
:2

20
5.

02
41

0v
4 

 [
st

at
.M

L
] 

 3
0 

Se
p 

20
22



and science-based understanding of biophysicochemical reactions and bioprocess spatiotemporal causal interdependi-
ences [2, 3, 4]. It can leverage the information from existing mechanistic models within and between operation units,
and facilitate mechanism learning from heterogeneous online and offline measurements. [3] introduced KG-based re-
inforcement learning (RL) to guide customized decision making. Since the proposed model-based RL scheme on the
Bayesian KG, accounting for both stochastic and model uncertainties, can provide an insightful prediction on how the
effect of inputs propagates through mechanism pathways, impacting on the output trajectory dynamics and variations,
it can find optimal process control policies that are interpretable and robust against model uncertainty, and overcome
the key challenges of biopharmaceutical manufacturing.

[4] further generalized this KG hybrid model to capture the important properties of integrated biomanufacturing
processes, including nonlinear reactions, partially observed state, and nonstationary dynamics. It can faithfully rep-
resent and advance the understanding of underlying bioprocessing mechanisms. This model allows us to inference
unobservable latent states and critical pathways to support process monitoring and control; for example it enables the
estimation of metabolic states and cell response to environmental perturbations. Since the hybrid model involves latent
state variables, nonlinear reactions, and time-varying kinetic coefficients with uncertainty (such as cell growth rate and
molecular reaction rates), it is challenging to evaluate the likelihood function and derive a posterior distribution.

Approximate Bayesian Computation (ABC) is introduced in the literature to approximate posterior distributions for
process models with intractable likelihoods. It bypasses the evaluation of likelihoods by simulating model parameters,
generating synthetic data sets, and only accepting posterior samples when the sampled process outputs are “close”
enough to real observations. For complex biomanufacturing processes with high stochastic and model uncertainties,
the accept rate is very low and it is computationally challenging to generate sample trajectories close to real-world
observations. Recently, there has been much interest in formalizing an auxiliary likelihood based ABC, which uses a
simpler and related model to derive summary statistics as distance measure [5, 6, 7].

Following the spirit of the auxiliary likelihood-based ABC [6], we utilize a linear Gaussian dynamic Bayesian net-
work (LG-DBN) auxiliary model to derive summary statistics as a distance measure for ABC-SMC that can support
dimensional reduction and accelerate online inference on hybrid models with high fidelity characterizing complex
bioprocessing mechanisms. The proposed ABC approach in conjunction with sequential importance sampling can
efficiently approximate hybrid model posterior distribution. Therefore, the key contributions of this paper is: given
very limited real-world data, we propose a LG-DBN auxiliary likelihood based ABC-SMC sampling approach to gen-
erate posterior samples of bioprocess hybrid model parameters quantifying model uncertainty. This simple LG-DBN
auxiliary model can capture the critical dynamics and variations of bioprocess trajectory, ensure computational effi-
ciency, and enable the inference on model and latent state, which can facilitate mechanism online learning and support
robust process control. The empirical study shows that our approach can outperform the original ABC-SMC approach
especially given tight computational budget.

The remainder of the paper is organized as follows. We provide the problem description and summarize the proposed
framework in Section 2. Then, we present a probabilistic KG hybrid model capturing the important properties of
biomanufacturing processes and describe ABC for approximating the posterior distribution of model parameters in
Section 3. We derive the LG-DBN auxiliary likelihood based summary statistics to accelerate Bayesian inference on
the hybrid models with high fidelity in Section 4. We conduct the empirical study on cell therapy manufacturing in
Section 5 and conclude the paper in Section 6.

2 PROBLEM DESCRIPTION AND PROPOSED FRAMEWORK

Driven by the needs of biomanufacturing process online learning, monitoring, and control, we create a probabilistic KG
hybrid model characterizing underlying mechanisms and causal interdependencies between critical process parameters
(CPPs) and critical quality attributes (CQAs). It models how the effect of state and action at any time t, denoted
by {ssst ,aaat}, propagates through mechanism pathways impacting on the output trajectory dynamics and variations.
Here we use cell culture process for illustration. The process state transition model is denoted by p(ssst+1|ssst ,aaat ;θθθ)
where ssst ∈S ⊂Rd denotes the partially observable bioprocess state (i.e., extra- and intra-cellular enzymes, proteins,
metabolites, media), aaat ∈ A denotes action (i.e., agitation rate, oxygen/nutrient feeding rates), A is a finite set of
actions, and t ∈H ≡ {1,2, . . . ,H + 1} denotes the discrete time index. At any time t, the agent partially observes
the state ssst and takes an action aaat . Thus, given model parameters θθθ , the joint distribution of process trajectory τττ =
(sss1,aaa1, . . . ,sssH ,aaaH ,sssH+1) becomes,

p(τττ|θθθ) = p(sss1)
H

∏
t=1

p(ssst+1|ssst ,aaat ;θθθ)p(aaat).
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Due to the nature of biopharmaceutical manufacturing, the state transition model p(ssst+1|ssst ,aaat ;θθθ) is highly complex,
non-linear, and nonstationary. The state transition p(ssst+1|ssst ,aaat ;θθθ) is modeled by a hybrid (“mechanistic + statistical”)
model. Its structure takes existing mechanistic models as prior. For example, since the key factors influencing process
dynamics and variability in the cell culture process are induced by cellular metabolisms [8], the probabilistic state tran-
sition of this KG hybrid model can incorporate cell metabolic/gene regulatory networks and account for cell-to-cell
variations. Therefore, there are key properties in biomanufacturing process, specially for personalized cell/gene ther-
apies, including (1) partially observed state (ssst ) that means only limited proportion of state observable; (2) stochastic
state transition model p(ssst+1|ssst ,aaat ;θθθ) involves high inherent stochasticity; and (3) very limited and heterogeneous
online and offline measurement data.

Given limited historical observations, we focus on hybrid model Bayesian inference to support online mechanism
learning, monitoring, and reliable interpretable prediction, accounting for both inherent stochasticity and model un-
certainty. The posterior distribution will be derived to quantify model uncertainty.

2.1 Hybrid Modeling for Bioprocess with Partially Observed State

At any time t, the process state is composed of observable and latent state variables, i.e., ssst = (xxxt ,zzzt) with xxxt ∈Sx and
latent variables zzzt ∈Sz, where Sx ⊂ Rdx and Sz ⊂ Rdz with S = Sx×Sz and d = dx +dz. Denote the partially ob-
served state trajectory as τττx ≡ (xxx1,aaa1, . . . ,xxxH ,aaaH ,xxxH+1). Given model parameters θθθ , by integrating out latent variables
(zzz1, . . . ,zzzH+1), the likelihood evaluation of any observation τττx, i.e.,

p(τττx|θθθ) =
∫
· · ·
∫

p(τττ|θθθ)dzzz1 · · ·dzzzH+1,

is intractable especially when the dimensions of model parameters and latent states are high. This hybrid model charac-
terizes the risk- and science-based understanding of underlying bioprocess mechanisms and quantifies spatial-temporal
causal interdependencies of CPPs/CQAs. It can connect heterogeneous online and offline measures to infer unobserv-
able state (such as metabolic state determining cell product functional behaviors and critical quality attributes), support
process monitoring, and facilitate real-time release.

We model the bioprocess state transition with a hybrid (“mechanistic and statistical”) model. Given the existing
ODE-based mechanistic model, dsss/dt = fff (sss,aaa;φφφ) , by using the finite difference approximation for derivatives, i.e.,
dsss≈ ∆ssst = ssst+1−ssst , and dt ≈ ∆t, we construct the hybrid model for state transition,

xxxt+1 = xxxt +∆t · fff x(xxxt ,zzzt ,aaat ;φφφ)+eeex
t+1 and zzzt+1 = zzzt +∆t · fff z(xxxt ,zzzt ,aaat ;φφφ)+eeez

t+1,

with unknown kinetic coefficients φφφ ∈Rdφ (e.g., cell growth and inhibition rates). The function structures of fff x(·) and
fff z(·) are the parts of fff (·) associated to the observable state output xxxt+1 and the latent state output zzzt+1. By applying
the central limit theorem, the residual terms, accounting for inherent stochasticity and other factors, are modeled by
multivariate Gaussian distributions eeex

t+1 ∼N (0,V x) and eeez
t+1 ∼N (0,V z) with zero means and covariance matrices

V x and V z. Then, the state transition distribution becomes,

xxxt+1|xxxt ,zzzt ,aaat ∼N
(

xxxt +∆t · fff x(xxxt ,zzzt ,aaat),V x
t+1

)
and zzzt+1|xxxt ,zzzt ,aaat ∼N

(
zzzt +∆t · fff z(xxxt ,zzzt ,aaat),V z

t+1

)
.

Thus, the stochastic state transition model, specified by parameters θθθ = (φφφ ,V x,V z)>, characterizes the bioprocess
inherent stochasticity, dynamics, and mechanisms (such as biophysicochemical reactions).

2.2 Challenges of Hybrid Model Inference Under High Stochasticity and Limited Data

Given limited real-world data with size m, denoted by D = {τττ(i)x : i = 1,2, . . . ,m}, the model uncertainty is quantified
by a posterior distribution derived through applying the Bayes’ rule,

p(θθθ |D) ∝ p(θθθ)p(D |θθθ) = p(θθθ)
m

∏
i=1

p
(

τττ
(i)
x

∣∣∣θθθ) , (1)

where p(θθθ) represents the prior distribution. It is challenging to directly derive or computationally assess the posterior
distribution p(θθθ |D) in eq. (1). First, there often exist large-dimensional latent state variables zzzt , especially for multi-
scale bioprocess model characterizing the scientific understanding of individual cell response to micro-environmental
perturbation and accounting for cell-to-cell variation in metabolic/gene networks. It is computationally expensive to
assess the likelihood for each observation, p(τττ(i)x |θθθ) =

∫
· · ·
∫

p(τττ(i)|θθθ)dzzz1 · · ·dzzzH+1 with i = 1,2, . . . ,m, especially for
bioprocess with optical sensor online monitoring (that means the value of H is large). Second, the mechanistic model
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fff (sss,aaa;φφφ) can be a nonlinear function of state sss and parameters φφφ . The random kinetic coefficients often have batch-
to-batch variations. For example, the kinetic coefficients (such as cell growth rate, oxygen/nutrient uptake rates, and
metabolic waste excretion rate) can depend on the gene expression of seed cells and cell culture environments. Third,
the amount of real-world process observations can be very limited (especially for personalized bio-drug manufactur-
ing) even though inherent stochasticity and model uncertainty are high.

Thus, in Section 3, ABC approach is considered to approximate the posterior distribution of KG hybrid model with
high fidelity that can capture the key features of biomanufacturing processes. Since it is computationally expensive
especially under the situations with high stochastic and model uncertainties, LG-DBN auxiliary ABC-SMC is created
to facilitate the Bayesian inference. Based on Taylor series approximation of the hybrid model, this linear auxiliary
model can be accurate for biomanufacturing process with optical sensor (e.g., fluorescent probe and Raman sensors)
online monitoring.

3 SEQUENTIAL IMPORTANCE SAMPLING FOR BAYESIAN INFERENCE

When the evaluation of likelihood for each observation is computationally intractable, i.e., p(τττ(i)x |θθθ) =∫
· · ·
∫

p(τττ(i)|θθθ)dzzz1 · · ·dzzzH+1 for i= 1,2, . . . ,m, the ABC approach is recommended to approximate the posterior distri-
bution [7]. In the naive ABC implementation, we draw a candidate sample from the prior θθθ ∼ p(θθθ) and then generate
a simulation dataset D? from the hybrid model. If the simulated dataset D? is “close” to the observed real-world
observations D , we accept the sample θθθ ; otherwise reject it. Thus, we approximate the posterior distribution p(θθθ |D)
with p(θθθ |d (D ,D?) ≤ h), where d(·) is a distance metric (e.g., Euclidean distance, likelihood distance) and h is an
approximation tolerance level.

However, for any given small tolerance level h, we often face very low accept rate for complex biomanufacturing
processes with high stochastic and model uncertainties. The random discrepancy between process trajectories D and
D? can be large even when the parameter sample θθθ equals to θθθ c. In addition, given very limited real-world data for
the complex hybrid model, the dimension of model parameters θθθ is large and the model uncertainty can be high.

To increase the accept rate and ensure the computational efficient generation of samples θθθ with good approximation
on the critical features occurring in the real-world data, we will design the distance measure d(·) based on designed
lower dimensional summary statistics, denoted by η(D), in Section 4. It means that we accept samples θθθ which lead
to the summary statistics of simulated data, denoted by η? = η(D?), close to that of observations ηobs = η(D). Thus,
the standard ABC framework [7] becomes

pABC(θθθ |ηobs) ∝

∫
1(d(η?,ηobs)≤ h)p(η?|θθθ)p(θθθ)dη

?. (2)

As the distance tolerance h gradually decreases, we have

lim
h→0

pABC(θθθ |ηobs) ∝

∫
δηobs(η

?)p(η?|θθθ)p(θθθ)dη
? = p(ηobs|θθθ)p(θθθ) ∝ p(θθθ |ηobs),

where δX (x) denotes the Dirac measure, defined as δX (x) = 1 if x = X and δX (x) = 0 otherwise.

A good design of ABC summary statistics η should balance complexity v.s. informativeness. If the summary statistics
η are sufficient for θθθ , then p(θθθ |ηobs) will be equivalent to p(θθθ |D). With small threshold h, the ABC approximate
pABC(θθθ |ηobs) in (2) can provide a good approximation of the true posterior. However, in the most situations, it is chal-
lenging to specify sufficient statistics since the KG hybrid model is built based on mechanistic models and it accounts
for the key features including (1) partially observed state; (2) heterogeneous offline and online measures; (3) nonlinear
mechanisms and dynamics; and (4) batch-to-batch variations on mechanistic coefficients. Therefore, in Section 4, we
project the bioprocess KG hybrid model into linear Gaussian dynamic Bayesian Network (LG-DBN) auxiliary model
space that has tractable likelihood. It can capture first two moments of bioprocess dynamics and variations to sup-
port robust and optimal control. We will use the LG-DBN likelihood to derive summary statistics accelerating the
generation of critical samples θθθ . Our study also shows that complex KG hybrid models will asymptotically converge
to a LG-DBN model as time interval ∆t becomes “smaller and smaller” by applying Taylor approximation [3]. Thus,
this LG-DBN approximation holds well for many cases with online sensor monitoring and bioprocess (e.g., biological
state of cells) that does not change quickly.

The basic ABC generates candidate samples from the prior p(θθθ) and uses the accept/reject approach to retain those
samples satisfying the approximation threshold requirement. This can be extremely ineffective especially for the sit-
uations using noninformative prior that has a wide sampling space. The ABC-sequential Monte Carlo (ABC-SMC)
methods derived from the sequential importance sampling [9, 10] can improve the sampling efficiency through gen-
erating candidate samples from updated posterior approximates. In specific, let g denote the index of ABC iterations
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used to improve the approximation of the posterior distribution p(θθθ |D). We select a sequence of intermediate target
distribution, denoted by {πg} for g = 1,2, . . . ,G, converging to p(θθθ |D) as we gradually reduce the tolerance level hg,

πg(θθθ) = p(θθθ)1(d(η?,ηobs)≤ hg) . (3)

Direct sampling from p(θθθ) and having the accept/reject based on the condition 1(d(η?,ηobs)≤ hg) in (3) is not
simulation efficient. The accept rate can be low as hg becomes smaller and smaller.

Thus, we use the sequential importance sampling (SIS) and select a sequence of proposal distribution, denoted by {ζg}
for g = 1,2, . . . ,G, to improve the sampling efficiency, i.e.,

ζg(θθθ) = 1(πg(θθθ)> 0)
∫

πg−1(θθθ
′)K(θθθ ′,θθθ)dθθθ

′, (4)

where K(θθθ ′,θθθ) is a Markov kernel. The proposal distribution ζg(θθθ) is defined as the perturbed previous intermediate
distribution πg−1 through the perturbation kernel K. After generating N sample particles from the proposal distribution
θθθ n ∼ ζg(θθθ) for n = 1,2, . . . ,N, we weight it by w(g)

n = πg(θθθ n)/ζg(θθθ n). The condition, 1(πg(θθθ) > 0), in (4) is used
to satisfy the importance sampling condition, i.e., {θθθ : πg(θθθ) > 0} ⊂ {θθθ : ζg(θθθ) > 0}. This can avoid the weight
becoming infinite, which will lead to high variance on the SIS estimator. We set the first proposal distribution to be
the prior distribution, i.e., ζ1(θθθ) = p(θθθ).

Algorithm 1: DBN auxiliary based ABC-SMC for hybrid model Bayesian inference.

Input: the prior distribution p(θθθ); the number of particles N; process observations D = {τττ(i)x }m
i=1; the

perturbation kernel function K(·); the number of particles to keep at each iteration Nα = bαNc with
α ∈ [0,1]; and the minimal acceptance rate paccmin .

Output: posterior distribution approximate p̂(θθθ |D).
for n = 1, . . . ,N do

1. Sample θθθ
(0)
n ∼ p(θθθ);

2. Generate m×L predicted trajectories D? = {τττ?(i)x }mL
i=1 using θθθ

(0)
n ;

3. Set q(0)n = d(η(D),η(D?)) and w(0)
n = 1;

4. Let h1 be the first α-quantile of q(0) = {q(0)n }N
n=1;

5. Let {(θθθ (1)
n ,w(1)

n ,q(1)n )}= {(θθθ (0)
n ,w(0)

n ,q(0)n )|q(0)n ≤ h1,1≤ n≤ N}, pacc = 1 and g = 2;
while pacc > paccmin do

for n = Nα +1, . . . ,N do

6. Sample θθθ ?
n from θθθ

(g−1)
k with probability w(g−1)

k

∑
Nα
j=1 w(g−1)

j

, 1≤ k ≤ Nα ;

7. Perturb the particle to obtain θθθ
(g−1)
n ∼ K(θθθ |θθθ ?

n) = N (θθθ ?
n,∑);

8. Generate m×L predicted trajectories D? = {τττ?(i)x }mL
i=1 using θθθ

(g−1)
n :

9. Set q(g−1)
n = d(η(D),η(D?));

10. Set w(g−1)
n =

p(θθθ (g−1)
n )1(d(η(D),η(D?))≤hg−1)

∑
Nα
j=1

w(g−1)
j

∑
Nα
k=1 w(g−1)

k

K(θθθ
(g−1)
n |θθθ (g−1)

j )

;

11. Set pacc =
1

N−Nα
∑

N
k=Nα+11(q

(g−1)
k ≤ hg−1);

12. Let hg be the first α-quantile of q(g−1) = {q(g−1)
n }N

n=1;
13. Let {(θθθ (g)

n ,w(g)
n ,q(g)n )}= {(θθθ (g−1)

n ,w(g−1)
n ,q(g−1)

n )|q(g−1)
n ≤ hg,1≤ n≤ N} and g = g+1;

14. Return the approximated posterior distribution, p̂(θθθ |D) = 1
∑

Nα

n′=1
w(g−1)

n′
∑

Nα

n=1 w(g−1)
n δ

θθθ
(g−1)
n

(θθθ).

The proposed LG-DBN auxiliary likelihood-based ABC-SMC sampling procedure is summarized in Algorithm 1. It
incorporates an adaptive selection approach on the threshold hg from [9, 11, 12]. The initial set of parameter samples
{θθθ (0)

n }N
n=1 is generated from the prior distribution p(θθθ) in Step 1. The associated weights {w(0)

n }N
n=1 and distances

{q(0)n }N
n=1 are calculated in Steps 2-3. Considering the impact from stochastic uncertainty, we generate mL predicted

trajectories denoted by D? = {τττ?(i)x }mL
i=1, compute the LG-DBN auxiliary based summary statistics η(D?), and then
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calculate the distance q(0)n . The tolerance level hg in any g-th iteration is determined online as the α-quantile of the
{q(g)n }N

n=1. The particles, satisfying this tolerance denoted by {θθθ n}Nα

n=1, constitute the weighted empirical distribution to
approximate the posterior distribution in Steps 5 and 13, where Nα = bαNc. The approximation accuracy is measured
by the corresponding distances {qn}Nα

n=1. Then, N−Nα new particles are drawn from the proposal distribution ζg(θθθ)
in Steps 6-7. The associated weights and distances are calculated in Steps 8-10. The tolerance level hg and the
posterior distribution approximate πg(θθθ) are updated in Steps 12-13. We repeat Steps 6-13 until the proportion of
particles satisfying the tolerance level hg−1 among the N −Nα new particles is below the pre-specified threshold
paccmin . Finally, the ABC-SMC algorithm returns the weighted empirical distribution, denoted by p̂(θθθ |D), as posterior
distribution approximate in Step 14.

4 LG-DBN AUXILIARY LIKELIHOOD-BASED SUMMARY STATISTICS

Motivated by the studies [6, 5], in this section, we derive LG-DBN auxiliary likelihood-based summary statistics for
ABC-SMC to capture the crucial features of the bioprocess trajectory on dynamics and variations. Given a set of
observations D = {τττ(i)x : i = 1,2, . . . ,m}, we derive the MLE of LG-DBN auxiliary model, i.e., maximizing the log-
likelihood β̂ββ (D) = argmaxβββ `(βββ |D). Then we use it as the summary statistics η , β̂ββ to calculate the distance measure

q ≡ d(β̂ββ ,β̂ββ
?
), where β̂ββ

?
is the summary statistics of simulated data. In the following, we first develop the LG-DBN

model with only observable state transition in Section 4.1 and then discuss the parameter estimation in Section 4.2.

4.1 The development of LG-DBN Auxiliary Model

Let xk
1 ∼N (µx,k

1 ,(vx,k
1 )2) with k = 1,2 . . . ,d model the variation in the k-th initial observed state. In practice, to ensure

product quality, CPPs are strictly regulated by the specifications of ranges of values. Thus, we model aaat as a random
variable, i.e., ak

t ∼ N (λ x,k
t ,(σ x,k

t )2) with k = 1,2 . . . ,da and t = 1,2 . . . ,H. At any time t, the LG-DBN auxiliary
model has the state transition model,

xxxt+1 = µµµ
x
t+1 +ψψψ

x
t (xxxt −µµµ

x
t )+ψψψ

a
t (aaat −µµµ

a
t )+(V x

t+1)
1
2 ωωω, (5)

where µµµx
t = (µ1

t , . . . ,µ
dx
t ), µµµa

t = (λ 1
t , . . . ,λ

da
t ), ωωω is an dx-dimensional standard normal random vector, and V x

t+1 =

diag((vx,k
t+1)

2) is a diagonal covariance matrix. The coefficients ψψψx
t and ψψψa

t measure the main effects of current observed
state xxxt and action aaat on the next observed state xxxt+1. Let σσσ t = (σ1

t , . . . ,σ
da
t ) and vvvx

t = (vx,1
t , . . . ,vx,dx

t ). Thus, the LG-
DBN model, specified by parameters βββ = (µµµx,µµµa,ψψψx,ψψψa,σσσ ,vvvx) = {(µµµx

t ,µµµ
a
t ,ψψψ

x
t ,ψψψ

a
t ,σσσ t ,vvvx

t )|1 ≤ t ≤ H}, has the joint
distribution of bioprocess trajectory: p(τττx) = p(xxx1,aaa1, . . . ,xxxH ,aaaH ,xxxH+1) = p(xxx1)∏

H
t=1 p(xxxt+1|xxxt ,aaat)p(aaat).

Let µµµτ = [µµµx
1,µµµ

a
1, . . . ,µµµ

x
H ,µµµ

a
H ,µµµ

x
H+1]

>. Following [13], we rewrite (5) in the following form
τττx−µµµτ = B(τττx−µµµτ)+Σ

1
2
τ ωωωτ (6)

where ωωωτ is an ((H +1)dx +Hda)-dimensional standard normal random vector, Σ
1
2
τ = diag(vvvx

1,σσσ1, . . . ,vvvx
H ,σσσH ,vvvx

H+1)
is the diagonal matrix of the conditional standard deviations of observed state and actions, and the coefficient matrix
of observed trajectory is written as

B =



0 0 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 · · · 0 0 0 0

ψψψx
1 ψψψa

1 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 · · · 0 0 0 0
0 0 ψψψx

2 ψψψa
2 0 0 · · · 0 0 0 0

0 0 0 0 0 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · ψψψx
H ψψψa

H 0 0


.

Thus, by rearranging (6) and letting τττx−µµµτ = (I−B)−1Σ
1
2
τ ωωωτ , we have τττx ∼N (µµµτ ,(I−B)−1Στ(I−B)−>) with

mean E[τττx] = µµµτ and covariance matrix Cov(τττx−µµµτ) = (I−B)−1Στ(I−B)−>.

4.2 Linear Gaussian Dynamic Bayesian Network based Summary Statistics

Let τ̃ττx ≡ (x̃xx1,ãaa1, . . . ,x̃xxH ,ãaaH ,x̃xxH+1) = τττx−µµµτ , where x̃xxt and ãaat denote centered observable state and decision. Given m
observations D = {τττ(i)x }m

i=1, the unbiased estimator µ̂µµτ =
1
m ∑

m
i=1 τττ

(i)
x can be easily obtained by using the fact E[τττx] =
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µµµτ . The log-likelihood of the centered trajectory observations {τ̃ττ(i)x }m
i=1 becomes,

max
ψψψx,ψψψa,V

`
(

τ̃ττ
(1)
x , . . . , τ̃ττ

(m)
x ;ψψψx,ψψψa,V

)
= max

ψψψx,ψψψa,V
log

m

∏
i=1

p
(

τ̃ττ
(i)
x

)
= max

V1

m

∑
i=1

log p(x̃xx(i)1 )

[
H

∑
t=1

max
σt

m

∑
i=1

log p(ãaa(i)t )

][
H

∑
t=1

max
ψψψx

t ,ψψψ
a
t ,vvv

x
t+1

m

∑
i=1

log p(x̃xx(i)t+1|x̃xx
(i)
t ,ãaa(i)t )

]
.

Since both initial state x̃xx1 and actions ãaat for t = 1, . . . ,H are normally distributed with mean zero, the MLEs of
their variance are sample covariances: v̂x,k

1 = 1
m ∑

m
i=1(x̃

k(i)
1 )2 with k = 1,2, . . . ,dx and σ̂ k

t = 1
m ∑

m
i=1(ã

k(i)
t )2 with k =

1,2, . . . ,da. In addition, at any time t, we have the log-likelihood of a sample τ̃ττ
(i)
x

log p(x̃xx(i)t+1|x̃xx
(i)
t ,ãaa(i)t ) ∝−m

2
log |V x

t+1|−
1
2

(
x̃xx(i)t+1−ψψψ

x
t x̃xx

(i)
t −ψψψ

a
t ãaa(i)t

)>
V x

t+1

(
x̃xx(i)t+1−ψψψ

x
t x̃xx

(i)
t −ψψψ

a
t ãaa(i)t

)
.

Let x̃xx(i)t+1 and (x̃xx(i)t ,ãaa(i)t ) denote the i-th rows of output matrix Y and input matrix X . Let Bt = (ψψψx
t ,ψψψ

a
t )
> denote the

coefficient vector. As a result, the MLEs of ψψψx
t and ψψψa

t are

(ψ̂ψψx
t ,ψ̂ψψ

a
t )
> = B̂t = argmax

Bt
−1

2
(Y −XBt)

> (V x
t+1)

−1 (Y −XBt) = (X>(V x
t+1)

−1X)−1X>(V x
t+1)

−1Y.

The MLE of each standard deviation can be computed by v̂x,k
t =

√
1
m ∑

m
i=1

(
x̃k(i)

t

)2
[14]. In sum, given observations

D , the MLE of LG-DBN auxiliary model is β̂ββ = (µ̂µµx, µ̂µµa,ψ̂ψψx,ψ̂ψψa,σ̂σσ ,v̂vvx).

5 EMPIRICAL STUDY

In this section, we use the erythroblast cell therapy manufacturing example presented in [15] to assess the performance
of the proposed LG-DBN auxiliary likelihood-based ABC-SMC approach.

5.1 Hybrid Modeling for Cell Therapy Manufacturing Process

The cell culture process of erythroblast exhibits two phases: a relatively uninhibited growth phase followed by an
inhibited phase. [15] identified that this reversible inhibition is caused by an unknown cell-driven factor rather than
commonly known mass transfer or metabolic limitations. They developed an ODE-based mechanistic model describ-
ing the dynamics of an unidentified autocrine growth inhibitor accumulation and its impact on the erythroblast cell
production process, i.e.,

dρt

dt
= rgρt

(
1−
(

1+ eks(kc−It )
)−1

)
and

dIt
dt

=
dρt

dt
− rdIt ,

where ρt and It represent the cell density and the inhibitor concentration (i.e., latent state) at time t. The kinetic
coefficients φφφ = {rg,ks,kc,rd} denote the cell growth rate, the inhibitor sensitivity, the inhibitor threshold, and the
inhibitor decay. Then, we construct the hybrid model, i.e.,

ρt+1 = ρt +∆t · rgρt

(
1−
(

1+ eks(kc−It )
)−1

)
+ eρ

t and It+1 = It +∆t ·

(
ρt+1−ρt

∆t
− rdIt

)
+ eI

t , (7)

where the residuals follow the normal distributions eρ

t ∼N (0,v2
ρ) and eI

t ∼N (0,v2
I ) by applying CLT. Therefore,

the hybrid model is specified by parameters θθθ = (rg,ks,kc,rd ,vρ ,vI). The prediction is made on the interval of three
hours ∆t = 3 from 0 to 30 hours (corresponding to time step t = 1,2, . . . ,11).

We denote the “true” hybrid model with underlying parameters θθθ c. Following [15], we specify the true mechanistic
parameter values as φφφ c = {rg,ks,kc,rd} = {0.057,3.4,2.6,0.005}. We set the bioprocess noise level v = vρ = vI , the
initial cell density 3 ×106 cells/mL (i.e., ρ1 = 3), and no initial inhibition (i.e., I1 = 0). Based on the simulation
data generated by the true hybrid model, we assess the performance of the proposed LG-DBN auxiliary ABC-SMC
algorithm under different levels of bioprocess noise v = {0.1,0.2} and model uncertainty induced with the different
data size, i.e., m = 3,6,20 batches.
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5.2 LG-DBN Auxiliary Sequential Importance Sampling Performance Assessment

We compare the performance of LG-DBN auxiliary ABC-SMC with naive ABC-SMC in terms of: (1) prediction
accuracy, (2) computation time, and (3) posterior concentration. The distance metrics of naive ABC-SMC is d (D ,D?).
The results are estimated based 30 macro-replications. We set the number of particles N = 400, the ratio α = 0.5, the
number of replications L = 60, and the minimal accept rate Paccmin = 0.15. The prior distributions of model parameters
are set as: rg ∼U(0,0.5), ks ∼U(0,5), kc ∼U(0,5), rd ∼U(0,0.05), vρ ∼U(0,0.2), and vI ∼U(0,0.2).

One of the major benefits induced by the LG-DBN auxiliary likelihood is that it provides an efficient way to mea-
sure the distance between simulated and observed samples, which quickly leads to posterior samples fitting well on
dynamics and variations. To show the advantage of LG-DBN auxiliary ABC-SMC, we first study its computational
efficiency. For each r-th macro replication, let T (r)

w and T (r)
wo represent the computation cost of the ABC-SMC al-

gorithm with and without LG-DBN auxiliary. The computational efficiency improvement is evaluated as the time
consuming ratio defined as C(r) = T (r)

wo /T (r)
w . We record the 95% confidence interval (CI) for improvement, denoted by

C̄±1.96×SC/
√

30, where C̄ = 1
30 ∑

30
r=1 T (r)

wo /T (r)
w and SC = [∑30

r=1(T
(r)

wo /T (r)
w −C̄)2/29]1/2; see the results in Table 1.

With the LG-DBN auxiliary, the ABC-SMC algorithm shows significant improvement in computational efficiency.
In all different settings, the mean computation cost of naive ABC-SMC is higher than the LG-DBN auxiliary based
ABC-SMC by 27% (at low variance and small sample size) to 163% (at high variance and relative larger sample size).

Table 1: Computational efficiency improvement ratio.

Process Noise m = 3 m = 6 m = 20

v = 0.1 1.27 ± 0.11 1.43 ± 0.11 2.44 ± 0.15

v = 0.2 1.39 ± 0.08 1.52 ± 0.17 2.63 ± 0.20

Then, we compare the prediction accuracy
of the posterior predictive distribution ob-
tained from ABC-SMC with and without LG-
DBN auxiliary. We estimate the parameters
θθθ = (rg,ks,kc,rd ,vρ ,vI). Specifically, in each
macro replication, we generate posterior sam-

ples
{

θθθ (i)
}Nα

i=1
by LG-DBN auxiliary and naive

ABC-SMC approaches to approximate the posterior predictive distribution,

p(ρt , It |ρ1, I1,D) =
∫

p(ρt , It |θθθ ,ρ1, I1)p(θθθ |D)dθθθ =
1

Nα

Nα

∑
i=1

p
(

ρt , It |ρ1, I1,θθθ
(i)
)
,

where the probability density p(ρt , It |ρ1, I1,θθθ
(i)) is computed by the hybrid model (7) for i = 1,2, . . . ,Nα . Given

the “true” model parameters θθθ c, we can also construct the predictive distribution p(ρt , It |ρ1, I1,θθθ
c) from the model

(7). Figure 1 shows posterior predictive distributions of cell density and inhibitor concentration at the 30-th hour or
timestep t = 11 given a fixed initial state (ρ1, I1) = (3,0). The black dashed line represents the predictive distribution
of “true” model p(ρ11, I11|ρ1, I1,θθθ

c).

Table 2: The K-S statistics of cell density and inhibitor accumulation at the 30-th hour (i.e., t = 11).

ABC-SMC with LG-DBN auxiliary ABC-SMC without LG-DBN auxiliary

State Process Noise m = 3 m = 6 m = 20 m = 3 m = 6 m = 20

ρt

v = 0.1 0.34 ± 0.04 0.31 ± 0.03 0.25 ± 0.02 0.26 ± 0.05 0.24 ± 0.04 0.23 ± 0.03

v = 0.2 0.25 ± 0.05 0.22 ± 0.04 0.19 ± 0.02 0.36 ± 0.04 0.32 ± 0.03 0.28 ± 0.02

It
v = 0.1 0.45 ± 0.04 0.46 ± 0.03 0.44 ± 0.02 0.68 ± 0.04 0.69 ± 0.03 0.67 ± 0.02

v = 0.2 0.38 ± 0.05 0.37 ± 0.05 0.36 ± 0.04 0.53 ± 0.07 0.55 ± 0.06 0.56 ± 0.04

By comparing Figure 1(a)-(b) to Figure 1(c)-(d), we observe that LG-DBN auxiliary ABC-SMC shows more robust
performance across macro-replications and the posterior predictive distributions are generally closer to the “true” pre-
dictive distribution than naive ABC-SMC. We further investigate Panel (a) and (c). In low noise level v = 0.1, the
auxiliary based ABC-SMC tends to overestimate the variance vρ causing the estimated posterior predictive distribu-
tions more flat than the “true” predictive distribution. However, in high noise level, the posterior predictive distribution
of LG-DBN auxiliary ABC-SMC is more accurate than that from naive ABC-SMC which consistently underestimates
the variance vρ . The LG-DBN auxiliary ABC-SMC consistently shows better prediction on inhibitor concentration;
see Figure 1(b) and 1(d).

We further use the Kolmogorov–Smirnov(K-S) statistics to assess the performance of LG-DBN auxiliary ABC-SMC
and naive ABC-SMC. The K-S statistics quantifies the distance between posterior predictive distribution and predictive
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(b) Inhibitor concentration (with LG-DBN auxiliary)
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(c) Cell density (without LG-DBN auxiliary)
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(d) Inhibitor concentration (without LG-DBN auxiliary)

Figure 1: Posterior predictive distributions of cell density and inhibitor concentration at the 30-th hour (t = 11)
p(pt , It |ρ1, I1) obtained from 6 macro-replications (simulated with common random numbers). The color filled ar-
eas under the probability density curve represent estimated posterior predictive distributions from different macro-
replications. The black dashed line represents the predictive distribution of the “true” model, i.e. p(ρt , It |ρ1, I1,θθθ

c).
The rows of each panel are related to noise levels (i.e. v = 0.1,0.2) while the columns of each panel are sample sizes
of observations (i.e., m = 3,6,20).

distribution of “true” model. The K-S statistics is D= sups |Fc(s)−F p(s)| for s∈{ρ, I}, where Fc(s) and F p(s) are the
empirical distribution functions of the samples from predictive distribution of “true” model and posterior predictive
distribution respectively. The smaller value of K-S statistic means better approximation performance of posterior
predictive distribution. The number of samples used to construct the empirical distribution is K = 2000 in each macro-
replication. We summarize 95% CIs of distances for both cell density and inhibitor accumulation at the 30-th hour,
denoted by D̄±1.96×SD/

√
30 in Table 2, where D̄ = 1

30 ∑
30
r=1 D(r) and SD = [∑30

r=1(D
(r)− D̄)2/29]1/2.

As shown in Table 2, the LG-DBN auxiliary ABC-SMC algorithm has better performance in inhibitor concentration
prediction – latent state estimation – at all levels of model estimation uncertainty and stochastic uncertainty. It
also provides better prediction on cell density under high stochastic uncertainty. The results are consistent with the
observations obtained from Figure 1. The performance improvement can be further observed from the estimated
posterior distribution of hybrid model parameters; see the representative plots of cell growth rate rg and inhibitor decay
rate rd in Figure 2. The posterior distribution estimated by the LG-DBN auxiliary ABC-SMC has better concentration,
defined as the posterior mass around the true parameter [16], than naive ABC-SMC in all noise levels and sample sizes.

Notice that due to the structure of the kinetic model in (7) and a small value rc
d = 0.005, the observable state ρt is not

so sensitive to the changes in the inhibitor decay rate rd and the inhibitor concentration It . Even thought it is more
challenging to estimate the latent state It and its mechanistic model parameter rd , the LG-DBN auxiliary ABC-SMC
tends to perform better.

In sum, compared with naive ABC-SMC, the proposed LG-DBN auxiliary ABC-SMC algorithm tends to have bet-
ter prediction accuracy and computational efficiency especially under the situations with high stochastic and model
uncertainties. This can benefit bioprocess mechanism learning and robust control.
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(a) rg (with LG-DBN auxiliary)
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(b) rg (without LG-DBN auxiliary)
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(c) rd (with LG-DBN auxiliary)
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(d) rd (without LG-DBN auxiliary)
Figure 2: Posterior distributions of rg and rd of 6 macro-replications. The posterior distributions estimated by auxiliary
based ABC-SMC are shown in Panels (a), (c). The posterior distributions estimated by naive ABC-SMC are shown in
Panels (b), (d). The black dashed lines represent the “true” value of parameters.

.

6 CONCLUSION

To leverage the information from existing mechanistic models and facilitate learning from real-world data, we develop
a probabilistic knowledge graph (KG) hybrid model that can faithfully capture the important properties of biopro-
cesses, including nonlinear reactions, partially observed state, and nonstationary dynamics. Since the likelihood is
intractable, approximate Bayesian computation (ABC) sampling strategy is used to generate samples to approximate
the posterior distribution. For complex biomanufacturing processes with high stochastic and model uncertainties, it
is computationally challenging to generate simulated trajectories close to real-world observations. Therefore, in this
paper, we utilize a simple linear Gaussian dynamic Bayesian network (LG-DBN) auxiliary model to design summary
statistics for ABC-SMC, which can accelerate Bayesian inference on the probabilistic KG hybrid model with high
fidelity characterizing complex bioprocessing mechanisms. The empirical study demonstrates that the proposed LG-
DBN auxiliary ABC-SMC can improve computational efficiency and prediction accuracy. In the future research, we
will extend this research to multi-scale bioprocess hybrid model in order to facilitate underlying mechanism learning,
support process monitoring, and guide robust control at both cellular and system levels.
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