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ABSTRACT

This paper addresses a multi-echelon inventory management problem with a complex network topology
where deriving optimal ordering decisions is difficult. Deep reinforcement learning (DRL) has recently
shown potential in solving such problems, while designing the neural networks in DRL remains a challenge.
In order to address this, a DRL model is developed whose Q-network is based on radial basis functions.
The approach can be more easily constructed compared to classic DRL models based on neural networks,
thus alleviating the computational burden of hyperparameter tuning. Through a series of simulation
experiments, the superior performance of this approach is demonstrated compared to the simple base-
stock policy, producing a better policy in the multi-echelon system and competitive performance in the
serial system where the base-stock policy is optimal. In addition, the approach outperforms current DRL
approaches.

1 INTRODUCTION

Supply chain management plays a crucial role in business operations, with inventory management being a
core process within it. The focus of this paper is on the multi-echelon inventory ystem which consists of
multiple stages or echelons that hold inventory (Gijsbrechts et al. 2022), because of its rising popularity in
real-world supply chains. For instance, in Alibaba’s supply chain, suppliers deliver inventory to a central
warehouse, which then allocates inventory to downstream retailers in its region. In managing such inventory
system, the manager may desire to dynamically determine the ordering decision at each period so that the
total supply chain costs is minimized. The dynamic inventory management problem can be essentially
formulated as a Markov Decision Process (MDP). To address this problem, many methods have been
developed, dating back to Clark and Scarf (1960) and Sherbrooke (1968). However, these methods are
specifically designed for multi-echelon systems with simple structure, e.g., the serial system. As pointed by
Zipkin (2000), the optimal inventory policy for the general multi-echelon system is yet unknown, due to the
complexity of systems. As a remedy, various approximation methods are proposed, while they often require
certain assumptions, such as Poisson process demand or zero lead time. Qiu et al. (2022) investigated
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an integrated optimization problem of inventory management and transportation vehicle selection. They
formulate the problem as a mixed-integer quadratically constrained program and established a convex
approximation of the proposed formulation using Cauthy inequalities. More interesting review of these
methods can be found in Simchi-Levi and Zhao (2012).

Recently, reinforcement learning (RL), also known as approximate dynamic programming (ADP), enjoys
notable success in solving MDP. In a typical RL, an agent consistently interacts with the environment,
where at each period, the agent observes the system’s state, takes an action and receives the corresponding
reward. Specifically, the action at each period is generated by optimizing the expected value of the total
reward starting from the current state, termed by the Q-function. Classic RL approaches estimate the
values of Q-function for all possible action-state pairs and store them in a lookup table named Q-table.
Obviously, these methods are not suitable for our inventory management problem, because both our state
(i.e., inventory level) and action (i.e., ordering decision) spaces can be large or even continuous. Instead,
other approaches construct function approximations for the Q-function (Powell 2011). When the neural
networks are used as the function approximator, the corresponding RL is called deep reinforcement learning
(DRL) and the constructed approximation is called Q-network. DRL have gained significant attention for
achieving human-like intelligence and even surpassing humans in some games, such as Go (Mcgrath et al.
2022) and Atari games (Mnih et al. 2013).

The appeal of the DRL approach arises from the strong approximation ability of neural networks. In
light of this, our paper seeks to adopt the DRL approaches in solving our complicated inventory management
problem.

DRL have been applied to solve the inventory management MDPs in different systems. Oroojlooyjadid
et al. (2021) proposed a deep Q-network to play the beer game, which is a special serial system. The
deep Q-network can achieve near-optimal solutions when playing with teammates who follow a base-stock
policy. Wang et al. (2022) developed a double deep Q-network to the lost sales problem, which is a flexible
solution that can be applied with different cost parameter settings. Van Roy et al. (1997) derived a neural
network dynamic programming approach to solve a two-echelon system, where they manually developed
23 product features to construct the neural network. Gijsbrechts et al. (2022) exploited asynchronous
advantage actor-critic algorithm (A3C) for solving lost sales, dual sourcing, and multi-echelon problems.
The proposed A3C algorithm can match performance of state-of-the-art heuristics. Liu et al. (2022) applied
a multi-agent DRL approach to multi-echelon inventory management, demonstrating that this approach can
achieve lower costs and less significant bullwhip effects compared to single-agent DRL methods. They
designed a recurrent neural network (RNN) to utilize historical information. Despite the success of DRL in
inventory management, designing neural networks in DRL is complex, and tuning hyperparameters remains
computationally burdensome (Gijsbrechts et al. 2022).

To alleviate the hyperparameter-tuning burden, we deploy a deep Q-network approach based on a radial
basis functions (RBF) (Broomhead and Lowe 1988). The proposed RBF based deep Q-network is a special
three-layered neural network, with its hidden layer neurons representing the states of the MDP and the
activation function is kernel function. While the hidden layer neurons have a real meaning, the RBF based
deep Q-network is easy to design and implement. Our simulation study demonstrates that the proposed
RBF based deep Q-network approach achieves appealing performance compared to the base-stock policy
and current DRL approaches. For the serial system with one warehouse and one retailer, the RBF based
deep Q-network obtains a near-optimal solution (the optimal policy is the base-stock policy). For the multi-
echelon system with one warehouse and multiple retailers, the RBF based deep Q-network outperforms
the base-stock policy and current DRL approaches.

The structure of this paper is as follows. Section 2 provides the system dynamics and MDP formulation
of the multi-echelon inventory management problem considered in this paper. Section 3 introduces our
RBF based deep Q-network approach to solve the inventory problem, and Section 4 presents the numerical
results obtained from simulated scenarios. Finally, Section 5 concludes this paper.
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2 MULTI-ECHELON INVENTORY MANAGEMENT

This section introduces the multi-echelon inventory management model and its corresponding MDP. Section
2.1 presents the dynamics of multi-echelon inventory management, including events that occur and their
sequence. Based on the these events, a discrete event simulation model is established. Section 2.2 formulates
the MDP for multi-echelon inventory management, and briefly introduces a Q-learning method for solving
this MDP, based on which the approach is designed.

2.1 System Dynamics and Simulation Model

This section describes the multi-echelon system, which is a one-warehouse multiple-retailer system with K
identical retailers. At each period of the infinite periods, random demands materialize at each retailer, and
are fulfilled by inventory held at the retailers. Demands are independently and identically distributed through
time and among different retailers. The retailers are replenished by a warehouse, while the warehouse
is replenished by a supplier. There are delays in the transportation of orders both from the supplier to
the warehouse and from the warehouse to each retailer. The delays are considered to be several periods.
Hence, the system evolves in discrete time.

The inventory management is considered over an infinite number of periods. We use time points
t, t + 1, . . . to represent the beginning of each period, which also marks the end of the previous period.
Without loss of generality, we focus on the multi-echelon inventory management process of one period
between time point t and time point t + 1. At time point t, the on-hand inventory of the warehouse
and retailers is denoted by Iw

t and Ii
t , respectively (where i = 1, . . . ,K), and the pipeline inventory of the

warehouse and retailers is denoted by Qw
t = (qw

t−1, . . . ,q
w
t−lw) and Qi

t = (qi
t−1, . . . ,q

i
t−lr) (where i = 1, . . . ,K).

Figure 1 illustrates the on-hand inventory and pipeline inventory at time point t, the beginning of one
period.

Figure 1: Inventory of the multi-echelon system at time point t.

The multi-echelon inventory management process between time point t and t+1 consists of five events:
order arrival, demand fulfillment, special delivery, replenishment, and delivery and update. To provide a
more precise description, we introduce virtual time points t1, t2, t3 and t4, at which the first four events
occur. The delivery and update event occurs at time point t +1, which marks the end of the period. Each
of the five events is described in detail below.

Orders Arrival: At time point t1, the warehouse and K retailers receive delayed orders that were
placed lw and lr periods ago, denoted as qw

t−lw and qi
t−lr , i = 1, . . . ,K, respectively. These orders are then

added to the on-hand inventory of the warehouse and retailers, denoted as Iw
t and Ii

t :

Iw
t1 = Iw

t +qw
t−lw ,

Ii
t1 = Ii

t +qi
t−lr ,1, . . . ,K.

Demand Fulfillment: At time point t2, each retailer i (where i = 1, . . . ,K) samples its demand di
t from

a normal distribution with mean µ and standard deviation σ . The retailer then fulfills its demand using its
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on-hand inventory Ii
t1 . The on-hand inventory of the warehouse remains unchanged from its value at time

point t1 as Iw
t2 = Iw

t1 . While the on-hand inventory of the retailers is updated according to the inventory used
to fulfill the demand:

Ii
t2 = (Ii

t1 −di
t)
+,1, . . . ,K.

Special Delivery: At time point t3, the special delivery event occurs only when the on-hand inventory
of a retailer i is insufficient to meet the demand, i.e., di

t > Ii
t1 . In such a case, each unfulfilled demand either

waits for a special delivery from the warehouse with probability Pw (if the warehouse on-hand inventory
Iw
t2 is not 0) or is lost with probability 1−Pw, resulting in lost sales. The total number of special deliveries

at retailer i, denoted as Bi
t , follows a binomial distribution B

(
(di

t − Ii
t1)

+,Pw
)
. The total number of special

deliveries for all retailers is Bt = ∑
K
i=1 Bi

t . During the special delivery event, the on-hand inventory of the
retailers remains unchanged, i.e., Ii

t3 = Ii
t2 for i = 1, . . . ,K. while the on-hand inventory of the warehouse

is updated as follows:

Iw
t3 = Iw

t2 −Bt .

Any demands that are not fulfilled by the retailers’ or warehouse’s on-hand inventory leads to a shortage
cost with a cost rate of p. Additionally, special deliveries from the warehouse incur an ordering cost with
a cost rate of cw. Therefore, the shortage cost and ordering cost at the period can be calculated as follows:

shortage cost: p[
K

∑
i=1

(di
t − Ii

t1)
+−Bt ], (1)

ordering cost: cwBt . (2)

Replenishment: At time point t4, the warehouse places an order qw
t , and each retailer i, i= 1, . . . ,K places

an order qi
t . The total order quantities of the retailers cannot exceed the on-hand inventory of the warehouse,

i.e., ∑
K
i=1 qi

t ≤ Iw
t3 . Note that both the warehouse and retailers have limited capacities: (1) the maximum order

quantity of the warehouse is Cm, (2) the warehouse inventory position Zw
t4 = Iw

t3 +∑
lw
j=1 qw

t− j+1 cannot exceed
Cw, and (3) each retailer inventory position Zi

t4 = Ii
t3 +∑

lr
j=1 qi

t− j+1, i = 1, . . . ,K, cannot exceed Cr. These
limited capacities result in a restriction on the order quantities of the warehouse and retailers. Additionally,
at time point t4, the orders of the warehouse and retailers are not delivered, so the on-hand inventory and
pipeline inventory of the warehouse and retailers do not change, i.e., Iw

t4 = Iw
t3 , Ii

t4 = Ii
t3 , i = 1, . . . ,K.

Delivery and Update: At the end of the period, denoted by the virtual time point t + 1, the orders
placed during this period enter the pipeline inventory, and the pipeline inventory advances by one period.
The on-hand inventory and pipeline inventory of the warehouse and retailers are then updated as follows:

Iw
t+1 = Iw

t4 −
K

∑
i=1

qi
t ,

Ii
t+1 = Ii

t4 , i = 1, . . . ,K,

Qw
t+1 = (qw

t−lw+1, . . . ,q
w
t ),

Qi
t+1 = (qi

t−lr+1, . . . ,q
i
t), i = 1, . . . ,K.

Inventory held at the warehouse or retailers incurs a holding cost with a cost rate of hw and hr,
respectively. The total holding cost at period t can be calculated as follows:

holding cost: hwIw
t+1 +hr

K

∑
i=1

Ii
t+1. (3)

To implement the simulation model, the sequence of these events is specified, and they occur in the
following order at each period: t < t1 < t2 < t3 < t4 < t + 1. The procedure of multi-echelon inventory
management simulation for one period are illustrated in Figure 2.
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Figure 2: The procedure of multi-echelon inventory management simulation for one period between time
point t and t +1.

2.2 Markov Decision Process

The multi-echelon system’s dynamics can be formulated as a MDP. In this MDP, state st = (Iw
t ,Q

w
t , I

r
t ,Q

r
t ),

where (Iw
t ,Q

w
t ) are warehouse on-hand and pipeline inventory at period t, and (Ir

t ,Q
r
t ) are retailers on-hand

and pipeline inventory at period t. Action at = (qw
t ,q

r
t ), where (qw

t ,q
r
t ) are warehouse and retailers order

quantities at time t. The reward in this MDP is represented by the cost, denoted as ct(st ,at). The cost
can be broken down into three parts, shortage cost, ordering cost, and holding cost, which are defined in
(1), (2) and (3), respectively. The objective of this MDP is to minimize the expected cumulative costs by
controlling actions from period t to infinity:

min
at+ j, j=0,1,...

∞

∑
j=0

γ
jE[ct+ j(st+ j,at+ j)], (4)

where γ is a discount rate. With a transition probability P(st+1 | st ,at), which describes the probability of
the system to transit from state st to state st+1 when picking action at , the Objective (4) can be achieved
using linear programming or dynamic programming (Sutton and Barto 2018).

Q-learning is an another approach for solving the problem. In Q-learning, the action-value function
Q(st ,at) represents the future expected cost of taking action at at state st and then following the optimal
control from state st+1. For any state st ∈ S, the action-value function can be written as:

Q(st ,at) = E[ct(st ,at)]+ min
at+ j, j=1,2,...

∞

∑
j=1

γ
jE[ct+ j(st+ j,at+ j)].

The Objective (4) can be achieved equivalently by minimizing Q(st ,at). Thus the optimal action can
be calculated by:

a⋆t = argmin
at

Q(st ,at).

The Q-learning approach begins by assigning an initial Q-value, typically set to 0, to all states and
actions. It then iteratively update the Q-values using the following formula:

Qt+1(st ,at) = (1−α)Qt(st ,at)+αE[ct(st ,at)+ γ min
a

Qt(st+1,a)],
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where α is the learning rate. The agent chooses actions using the ε-greedy method, which implies that the
agent chooses an action randomly with a probability ε , and selects the action with the smallest Q-value
with a probability of 1− ε .

In a typical Q-learning process, the values of Q(st ,at) are stored in a lookup table, called Q-table.
Solving MDP with a large state-action space by updating the Q-table values is impossible, which is known
as the curse of dimensionality. To address this, Mnih et al. (2015) developed a deep Q-network (DQN)
algorithm that uses a neural network as an approximation function Q̂(st ,at ;Wt) of action-value function
Q(st ,at). Figure 3 shows the structure of a typical deep Q-network, which has |A| outputs in the output
layer representing the approximated values of Q(st ,at) for every possible action at ∈ A. Based on this
structure, we propose a specialized and easy-to-design deep Q-Network for solving the multi-echelon
inventory management MDP.

Figure 3: Structure of a deep Q-network. In RBF based deep Q-network, ρi(st) = ∥st − si∥ is Euclidean
distance and activation function ϕ[ρi(st)] = k(∥st − si∥) is kernel function. While in deep Q-network
constructed by other neural networks, ρi(st) = θ T

i st + bh
i is a linear transformation of its inputs st and

activation function is typically the sigmoid function or the Rectified Linear Unit (ReLU) function.

3 DEEP Q-NETWORK BASED ON RADIAL BASIS FUNCTIONS

A radial basis function (RBF) network is used to construct the deep Q-network. The RBF based deep
Q-network is a special three-layers network with N hidden neurons corresponding to states {s1,s2, . . . ,sN}.
As illustrated in Figure 3, the output of each hidden neuron is given by ρi(st) = ∥st − si∥, which is the
Euclidean distance between the current state st and the hidden neuron si. This is a key difference between
the RBF based deep Q-network and Q-networks with other neural network architectures, such as fully
connected neural networks (FCNs) or convolutional neural networks (CNNs), where the output of each
hidden neuron is typically a linear transformation of its inputs st , given by ρi(st) = θ T

i st + bh
i . Because

the hidden layer neurons in the RBF based deep Q-network correspond to states, we can select lattice
points from the minimum state to the maximum state to cover the entire state space. This makes the RBF
based deep Q-network easy to design and implement in two ways. First, we don’t need to determine the
structure of hidden layers, such as the number of hidden layers and the number of neurons per hidden
layer. Second, the real meaning of hidden layer neurons provides guidance for construction, in contrast
to other neural network architectures which are primarily constructed based on intuition and experience.
Overall, by using an RBF network to construct the deep Q-network, we aim to simplify the design and
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implementation process while leveraging the unique properties of RBF networks to effectively approximate
the action-value function in the multi-echelon inventory management MDP.

Another key difference between RBF based deep Q-network and deep Q-networks with other neural
network architectures is the activation function. In RBF based deep Q-network, the activation function
ϕ[ρi(st)] = k(∥st − si∥) is a kernel function that converts the Euclidean distance ∥st − si∥ to a high dimensional
space distance, while common activation functions used in other deep Q-networks are the sigmoid function
or the Rectified Linear Unit (ReLU) function. Thus, each output of the RBF based deep Q-network, as
shown in Figure 3, is a linear combination of N kernel functions, where each kernel function measures the
high dimensional space distance between the current state st and the hidden neuron si. The most widely
used kernel function is the radial basis kernel function, which is why it is called an "radial basis kernel"
network. The radial basis kernel function is defined as:

k(st ,si) = exp(−∥st − si∥2

2η2 ).

The literature also suggests other kernel functions, for example, the Matérn(ν) kernel function. With
gamma function Γ(·) and the modified Bessel function Kν(·), the Matérn(ν) kernel function is:

kMatérn (ν) (st ,si) :=
1

2ν−1Γ(ν)

(√
2ν

∥∥∥η
⊤ (st ,si)

∥∥∥)ν

Kν

(√
2v
∥∥∥η

⊤ (st ,si)
∥∥∥) .

The Matérn kernel has a simplified form if ν is a half-integer: ν = p+ 1
2 for some non-negative integer p,

and the Matérn kernel becomes more differentiable as p increases. For instance, Matérn(5
2) kernel function

is second-order differentiable:

kMatérn ( 5
2 )
(st ,si) :=

(
1+

√
5∥st − si∥

η
+

5∥st − si∥2

3η2

)
exp

(
−
√

5∥st − si∥
η

)
. (5)

η is a hyperparameter that determines the RBF based deep Q-network’s smoothness. A smaller η results
in a less smooth RBF based deep Q-network.

After constructing the RBF based deep Q-network, we train it by minimizing loss function L(W ),
which is derived from Q-learning:

L(W ) =
(

E[ct(st ,at)]+ γ min
a

Q̂(st+1,a;W )− Q̂(st ,at ;W )
)2

. (6)

The loss function measures the difference between the current action value Q̂(st ,at ;W ) and the predicted
action value E[ct(st ,at)]+ γ mina Q̂(st+1,a;W ). The loss function is minimized via the gradient descent
method. Considering a learning rate α , the weight vector W is updated by:

Wt+1 =Wt +α

(
E[ct(st ,at)]+ γ min

a
Q̂(st+1,a;Wt)− Q̂(st ,at ;Wt)

)
∇Q̂(st ,at ;Wt). (7)

where ∇Q̂(st ,at ;Wt) is the gradient of Q̂(st ,at ;Wt). As each output of RBF based deep Q-network is a
combination of N kernel functions, it is easy to derive that the gradient is (k(st ,s1),k(st ,s2), . . . ,k(st ,sN)),
a vector of N kernel function values.

Once the RBF based deep Q-network Q̂(st ,at ;W ) is trained, the optimal order quantities at state st are
selected by minimizing Q̂(st ,at ;W ):

a⋆t = argmin
at

Q̂(st ,at ;W ) (8)
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4 SIMULATION STUDY

This section evaluates the performance of the proposed RBF based deep Q-network in three numerical
experiments. The first experiment is a simple serial system with one warehouse and one retailer, while
the other two experiments are complex systems involving multiple retailers. The difference between the
two complex systems is that the third system’s demands are more unstable than the second system, with
a larger demand standard deviation and longer lead times. Previous studies have explored these systems
using different DRL approaches: Van Roy et al. (1997) developed a neuro-dynamic programming approach
for all three systems, and Gijsbrechts et al. (2022) applied the A3C algorithm to study the two complex
systems. We adopt the same settings as these studies to compare with their DRL approaches.

Similar to Van Roy et al. (1997) and Gijsbrechts et al. (2022), we apply a baseline method and compare
our approach’s improvements against it. The baseline method is the base-stock policy, which means that
for an installation (warehouse or retailer) with a base-stock level s, if the inventory position is less than
s, the installation places orders to increase the inventory position to s as close as possible. It should be
noted that in a serial system, the base-stock policy is optimal (Clark and Scarf 1960), while in a complex
multi-echelon system, the optimal policy is unknown.

We select lattice states from the minimum state to the maximum state in hidden layers. The higher
the state dimension, the more hidden layer neurons are used. Therefore, we reduce the state’s dimension
to reduce the hidden layer neurons. We set the state st = (Zw

t ,Z
r
t ), where Zw

t = Iw
t +∑

lw
j=1 qw

t− j is the
warehouse’s inventory position, and Zr

t = ∑
K
i=1(I

i
t +∑

lr
j=1 qi

t− j) is the total inventory position of all retailers.
Thus, we reduce the states to two dimensions. We also reduce actions to two dimensions in a similar
way. Actions are at = (qw

t ,q
r
t ), where qw

t is the warehouse’s order quantity, and qr
t is every retailer’s order

quantity, which are the same for all retailers.
The kernel function in our RBF based deep Q-network is the Matérn(5

2) kernel given by (5). The
hyperparameter η that determines the RBF based deep Q-network’s smoothness is set to 1 for all three
experiments, suggesting that the RBF based deep Q-network is very unsmooth.

The simulation programs for the three experiments are implemented in C++. Details of the procedures
are discussed in Section 2.1. The programs for the RBF-based deep Q-network algorithm are implemented
in Python, and the ctypes library is used to call the C++ simulation programs. All experiments run on a
64-bit Linux machine with a 20×2.50GHz CPU and 12×16GB RAM.

4.1 Experiment With One Warehouse One Retailer Serial System

In the first experiment, the system consists of only one warehouse and one retailer. Furthermore, there is
no lead time for the warehouse, and the retailer has only one period lead time. A detailed list of parameters
is presented in Table 1.

Table 1: Settings of a serial system with one warehouse and one retailer.

µ σ lw lr K hw hr cw p Pw Cm Cw Cr

Setting 1 5 8 0 1 1 1 2 10 50 1 10 50 50

We selected lattice states as {(Zw
i ,Z

r
i ) : Zw

i = 0,5, . . . ,50,Zr
i = 0,5, . . . ,50}. Since they are also hidden

layer neurons, the hidden layers have N = 121 neurons. Regarding actions, we set the warehouse order
quantity qw

t ∈ [0,10] and retailer order quantity qr
t ∈ [0,10]. There are 121 possible actions in total, implying

that the output layer’s dimension is 121.
Figure 4 displays the average cost evolution during the training process, which takes a total of 1,837

seconds. As shown, the average cost of the RBF based deep Q-network (blue solid line) decreases in the
first 2,000,000 periods and stabilizes near the cost of the base-stock policy (red dashed line). There is a
slight gap between the RBF based deep Q-network and the base-stock policy in the serial system, where
the base-stock policy is optimal.
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Figure 4: Average cost evolution during training.

We also compare the on-hand inventory of base-stock policy and RBF based deep Q-network. Table
2 report the average warehouse and retailer on-hand inventory of base-stock policy (Īw

BS, Ī
r
BS) and the

average warehouse and retailer on-hand inventory of RBF based deep Q-network (Īw
RBF, Ī

r
RBF), respectively.

As shown in the table, their on-hand inventory is similar, especially for the retailer on-hand inventory.
Moreover, the average relative difference between their on-hand inventory is also reported in Table 2, and
the difference is small. This indicates that the RBF based deep Q-network approach not only reduces costs
to a near-optimal level but also orders and controls on-hand inventory like the base-stock policy. Thus, the
RBF based deep Q-network learns a near-optimal solution in the serial system.

Table 2: Average on-hand inventory of base-stock policy and RBF based deep Q-network, and average
relative difference between their on-hand inventory.

Īw
BS Īw

RBF Īr
BS Īr

RBF Average of |Iw
BS−Iw

RBF|
Iw
BS

Average of |Ir
BS−Ir

RBF|
Ir
BS

4.71 6.05 13.28 12.28 34.88 % 9.66 %

We calculate relative gap between RBF based deep Q-network and base-stock policy, and compare the
result with Van Roy et al. (1997). Their approach has a 1.74% gap to base-stock policy, while our gap is
2.87%. It should be noted that Van Roy et al. (1997) manually developed three features of the system as
state, while our approach can achieve a similar near-optimal solution without manual feature engineering.

4.2 Experiment With One Warehouse Multiple Retailers Multi-echelon System

Next, we evaluate our approach in two systems, both with one warehouse and K identical retailers. Table
3 lists the parameter settings. In the system with Setting 2, the demands are more stable, with a smaller
demand standard deviation and shorter lead times. In the system with Setting 3, the demands are very
unstable, with a demand mean of zero and a very large demand standard deviation.

Table 3: Settings of one warehouse and multiple retailers system.

µ σ lw lr K hw hr cw p Pw Cm Cw Cr

Setting 2 5 14 2 2
10 3 3 0 60 0.8 100 1,000 100

Setting 3 0 20 5 3
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The selected lattice states (hidden neurons) for Setting 2 are {(Zw
i ,Z

r
i ) : Zw

i = 200,220, . . . ,400,Zr
i =

100,120, . . . ,400}, and for Setting 3 are {(Zw
i ,Z

r
i ) : Zw

i = 300,320, . . . ,600,Zr
i = 100,120, . . . ,300}. Each

setting has N = 176 neurons in the hidden layer. The action ranges are set to qw
t ∈ [50,100] and qr

t ∈ [0,15]
in Setting 2, while qw

t ∈ [40,100] and qr
t ∈ [0,15] in Setting 3. The output layer’s dimensions are 816 and

976 in Setting 2 and Setting 3, respectively.
Figure 5 illustrates the average cost evolution of Setting 2 and Setting 3 during training, which takes

a total of 3,832 seconds and 4,656 seconds, respectively. In both figures, the average costs of the RBF
based deep Q-network (blue solid lines) initially reduce, then stabilize, and finally become lower than the
base-stock policy costs (red dashed lines). This implies that the base-stock policy is no longer optimal for
complex multi-echelon systems with multiple retailers.

(a) Average cost of Setting 2 (b) Average cost of Setting 3

Figure 5: Average cost evolution during training.

We also compare the on-hand inventory of base-stock policy and RBF based deep Q-network. Table
4 reports the average warehouse and retailer on-hand inventory of base-stock policy (Īw

BS, Ī
r
BS) and the

average warehouse and retailer on-hand inventory of RBF based deep Q-network (Īw
RBF, Ī

r
RBF) in Setting 2

and Setting 3. In both settings, the average warehouse on-hand inventory of RBF based deep Q-network is
lower than the base-stock policy. This implies warehouses controlled by RBF based deep Q-network order
less and can achieve lower warehouse holding costs. Regarding the average retailer on-hand inventory,
in Setting 2, the RBF based deep Q-network and base-stock policy are the same, while in Setting 3, the
base-stock policy is lower.

Table 4: Average on-hand inventory of base-stock policy and RBF based deep Q-network in two settings.

Īw
BS Īw

RBF Īr
BS Īr

RBF
Setting 2 157 109 106 106
Setting 3 154 123 110 134

It is worth noting that we find in both Setting 2 and Setting 3, the larger the warehouse on-hand
inventory, the more retailers will order. This reduces warehouse holding costs because once the warehouse
on-hand inventory is large, the retailers will order more to reduce warehouse on-hand inventory. This also
implies that a retailer controlled by RBF based deep Q-network considers both the warehouse and retailer
inventory when making decisions, while a retailer following the base-stock policy only considers its own
inventory to make decisions. Hence, the RBF based deep Q-network achieves lower costs by learning more
information.

Furthermore, we calculate the relative improvement of RBF based deep Q-network compared to the
base-stock policy and compare our relative improvement with current DRL approaches. Table 5 shows the
relative improvement of different DRL approaches. The RBF based deep Q-network is slightly better than
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both neuro-dynamic programming and A3C in Setting 2 and is as good as A3C in Setting 3. It’s worth
noting that Van Roy et al. (1997) manually developed 23 features for the neuro-dynamic programming
approach, while both the RBF based deep Q-network and A3C do not require manual feature engineering.
Additionally, the process of designing the neural network in A3C is complex. As pointed out by Gijsbrechts
et al. (2022), tuning to select the number of hidden layers and neurons per layer remains computationally
burdensome. The tuning and training time for A3C can be days or even weeks. In contrast, the RBF based
deep Q-network does not require special design for the neural network structure. Thus, the RBF based
deep Q-network is easier to implement. The training process for Setting 2 and Setting 3 takes only 3832
seconds and 4656 seconds, respectively, which is significantly less than the A3C algorithm.

Table 5: Relative improvement of different DRL approaches.

RBF Based Deep Q-network
Neuro-dynamic Programming

(Van Roy et al. 1997)
A3C

(Gijsbrechts et al. 2022)
Setting 2 12 % 10 % 9 %
Setting 3 12 % 10 % 12 %

5 CONCLUSION

This paper proposes a deep Q-network approach based on RBF to solve dynamic inventory management for
general multi-echelon systems. The RBF based deep Q-network has a simple structure and can be easily
constructed. Simulation studies show that our method performs better than the base-stock policy in multi-
echelon systems with multiple retailers. Meanwhile, we also compared the RBF based deep Q-network
with current DRL approaches and find that the RBF based deep Q-network has appealing performance
compared to existing DRL approaches and is easier to design. These demonstrate the potential use of our
RBF based deep Q-network for solving practical inventory management problems.
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