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Abstract
We propose a continuous optimization algorithm
for the Column Subset Selection Problem (CSSP)
and Nyström approximation. The CSSP and
Nyström method construct low-rank approxima-
tions of matrices based on a predetermined subset
of columns. It is well known that choosing the
best column subset of size k is a difficult combi-
natorial problem. In this work, we show how one
can approximate the optimal solution by defin-
ing a penalized continuous loss function which
is minimized via stochastic gradient descent. We
show that the gradients of this loss function can
be estimated efficiently using matrix-vector prod-
ucts with a data matrix X in the case of the CSSP
or a kernel matrix K in the case of the Nyström
approximation. We provide numerical results for
a number of real datasets showing that this contin-
uous optimization is competitive against existing
methods.

1. Introduction
Recent advances in the technological ability to capture and
collect data have meant that high-dimensional datasets are
now ubiquitous in the fields of engineering, economics, fi-
nance, biology, and health sciences to name a few. In the
case where the data collected is not labeled it is often de-
sirable to obtain an accurate low-rank approximation for
the data which is relatively low-cost to obtain and mem-
ory efficient. Such an approximation is useful to speed up
downstream matrix computations that are often required in
large-scale learning algorithms. The Column Subset Selec-
tion Problem (CSSP) and Nyström method are two such
tools that generate low-rank approximations based on a
subset of data instances or features from the dataset. The
chosen subset of instances or features are commonly re-
ferred to as “landmark” points. The choice of landmark
points determines how accurate the low-rank approximation
is.

The challenge in the CSSP is to select the best k columns of
a data matrix X ∈ Rm×n that span its column space. That

is, for any binary vector s ∈ {0, 1}n, compute

argmin
s∈{0,1}n

‖X−PsX‖2F , subject to ‖s‖0 ≤ k, (1)

where ‖ · ‖F is the Frobenius matrix norm, ‖s‖0 =∑n
j=1 I(sj = 1) and Ps is the projection matrix onto

span{xj : sj = 1, j = 1, . . . , n} (xj being the j-th column
of X).

Solving this combinatorial problem exactly is known to be
NP-complete (Shitov, 2021), and is practically infeasible
even when k is of moderate size. We propose a novel con-
tinuous optimization algorithm to approximate the exact
solution to this problem. While an optimization approach
via Group Lasso (Yuan & Lin, 2006) exists for the convex re-
laxation of this problem (Bien et al., 2010), to the best of our
knowledge, no continuous optimization method has been de-
veloped to solve the highly non-convex combinatorial prob-
lem (1). To introduce our approach for the CSSP, instead of
searching over binary vectors s ∈ {0, 1}n, we consider the
hyper-cube [0, 1]n and define for each t ∈ [0, 1]n a matrix
P̃(t) which allows the following well-defined penalized
continuous extension of the exact problem,

argmin
t∈[0,1]n

‖X− P̃(t)X‖2F + λ

n∑
j=1

tj .

The parameter λ > 0 plays an analogous role to that of
the regularization parameter in regularized linear regression
methods (Tibshirani, 1996) and controls the sparsity of the
solution, that is, the size of k. Two aspects of this contin-
uous extension make it useful for approximating the exact
solution. Firstly, the continuous loss agrees with the dis-
crete loss at every corner point s ∈ {0, 1}n of the hypercube
[0, 1]n, and secondly, for large datasets the gradient can be
estimated via an unbiased stochastic estimate. To obtain
an approximate solution to the exact problem, stochastic
gradient descent (SGD) is implemented on the penalized
loss. After starting at an interior point of the hyper-cube,
under SGD, the vector t moves towards a corner point, and
some of the tj’s exhibit shrinkage to zero. It is these values
that indicate which columns in X should not be selected as
landmark points.

The Nyström approximation (Williams & Seeger, 2000;
Drineas et al., 2005) is a popular variant of the CSSP for
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positive semi-definite kernel matrices. The Nyström method
also constructs a low-rank approximation K̂ ∈ Rn×n to the
true kernel matrix K ∈ Rn×n using a subset of columns.
Once the k columns are selected, K̂ (in factored form) takes
O(k3) additional time to compute, requires O(nk) space
to store, and can be manipulated quickly in downstream
applications, e.g., inverting K̂ takes O(nk2) time. In addi-
tion to the continuous extension for the CSSP, in this paper,
we provide a continuous optimization algorithm that can
approximate the best k columns to be used to construct K̂
(Section 2.2).

The continuous algorithm for the CSSP formulated in this
paper utilizes SGD where at each iteration one can esti-
mate the gradient with a cost of O(mn). We show that
the gradients of the penalized continuous loss can be esti-
mated via linear solves with random vectors that are approxi-
mated with the conjugate gradient algorithm (CG) (Golub &
Van Loan, 1996), which itself is an iterative algorithm that
only requires matrix-vector multiplications (MVMs) with
the m× n matrix X. Similarly, for the Nyström method we
show that at each step of the gradient descent, the gradient
can be estimated inO(n2) time requiring only matrix-vector
multiplications with the kernel matrix K. This is especially
useful in cases where we only have access to a black-box
MVM function. The fact that both these algorithms require
only matrix-vector multiplications to estimate the gradi-
ents lends itself to utilizing GPU hardware acceleration.
Moreover, the computations in the proposed algorithm can
exploit the sparsity that is achieved by working only with
the columns of X that are selected by the algorithm at any
given iteration.

1.1. Related Work

There exists extensive literature on random sampling meth-
ods for the approximation of the exact CSSP and Nyström
problem. Sampling techniques such as adaptive sampling
(Deshpande & Vempala, 2006), ridge leverage scores (Git-
tens & Mahoney, 2013; Musco & Musco, 2017; Alaoui &
Mahoney, 2015) attempt to sample “important” and “di-
verse” columns. In particular, recent attention has been
paid to Determinantal Point Processes (DPPs) (Hough et al.,
2006; Derezinski & Mahoney, 2021). DPPs provide strong
theoretical guarantees (Derezinski et al., 2020) for the CSSP
and Nyström approximation and are amenable to efficient
numerical implementation (Li et al., 2016; Derezinski et al.,
2019; Calandriello et al., 2020; Dereziński, 2019). Out-
side of sampling methods, iterative methods such as Greedy
selection (Farahat et al., 2011; 2013) have been shown to
perform well in practice and exhibit provable guarantees
(Altschuler et al., 2016).

Column selection has been extensively studied in the super-
vised context of linear regression (more commonly referred

to as feature or variable selection). Penalized regression
methods such as the Lasso (Tibshirani, 1996) have been
widely applied to select columns of a predictor matrix that
best explain a response vector. The canonical k-best sub-
set or l0-penalized regression problem is another penalized
regression method, where the goal is to find the best sub-
set of k predictors that best fit a response y (Beale et al.,
1967; Hocking & Leslie, 1967). The recently proposed
Continuous Optimization Method Towards Best Subset Se-
lection (COMBSS) algorithm (Moka et al., 2022) attempts
to solve the l0-penalized regression problem by minimizing
a continuous loss that approximates the exact solution. The
algorithm we propose for the CSSP in this paper can be
viewed as an adaptation of COMBSS to the unsupervised
setting. In this setting, the goal is to find the best subset of
size k for a multiple multivariate regression model where
both the response and predictor matrix are X. Interestingly,
this framework can be extended to include a continuous
selection loss for the Nyström approximation.

The rest of the paper is structured as follows. In Section 2
we describe the continuous extension for the CSSP and
the Nyström method. In Section 3 we provide steps for
the efficient implementation of our proposed continuous
algorithm on large matrices and in Section 4 we provide
numerical results on a variety of real datasets.

2. Continuous Loss for Landmark Selection
In this section, we formally define the CSSP and the best
size k-Nyström approximation. Then, we provide the math-
ematical setup for the continuous extension of the exact
problem.

2.1. Column Subset Selection

Let X ∈ Rm×n and for any binary vector s =
(s1, . . . , sn)

> ∈ {0, 1}n, let X[s] denote the matrix of size
m× ‖s‖0 keeping only columns j of X where sj = 1, for
j = 1, . . . , n. Then for every integer k ≤ n the CSSP finds

argmin
s∈{0,1}n

‖X−PsX‖2F , subject to ‖s‖0 ≤ k, (2)

where Ps := X[s]X
†
[s] († denotes Moore–Penrose inverse)

is the projection matrix onto span{xj : sj = 1} and xj is
the j-th column of X. By expanding the Frobenius norm
it is easy to see that the discrete problem (2) can be re-
formulated as,

argmin
s∈{0,1}n

− tr
[
X>PsX

]
, subject to ‖s‖0 ≤ k.

We now define a new matrix function on t ∈ [0, 1]n which
acts as a continuous generalization of Ps.
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Definition 2.1. For t = (t1, . . . , tn)
> ∈ [0, 1]n, define

T := Diag(t) as the diagonal matrix with diagonal ele-
ments t1, . . . , tn and

P̃(t) := XT
[
TX>XT+ δ(I−T2)

]†
TX>,

where δ > 0 is a fixed constant.

Although not explicitly stated in (Moka et al., 2022), P̃(t)
is used as the continuous generalization for the hat matrix
Ps to solve the l0-penalized regression problem.

The main difference between this definition and traditional
sampling methods is that instead of multiplying X by a
sampling matrix to obtain X[s] we compute the matrix XT
which weights column j of X by the parameter tj ∈ [0, 1].
Intuitively, the matrix TX>XT+ δ(I−T2) can be viewed
as a convex combination of the matrices X>X and δI.

From an evaluation standpoint, the pseudo-inverse need not
be evaluated for any interior point in this newly defined
function. We remark that for any t ∈ [0, 1)n the matrix
inverse in Definition 2.1 exists and therefore,

P̃(t) = XT
[
TX>XT+ δ(I−T2)

]−1
TX>.

We now state two results for the function P̃(t) and its re-
lationship with the projection matrix Ps. The following
Lemmas (2.2 and 2.3) are extensions of the results stated in
(Moka et al., 2022).
Lemma 2.2. For any binary vector s ∈ {0, 1}n, P̃(s) ex-
ists and

P̃(s) = Ps = X[s]X
†
[s].

Lemma 2.3. P̃(t) is continuous element-wise over [0, 1]n.
Moreover, for any sequence t(1), t(2) · · · ∈ [0, 1)n converg-
ing to t ∈ [0, 1]n, the limit liml→∞ P̃(t(l)) exists and

lim
l→∞

P̃(t(l)) = P̃(t).

We note that the proof of Lemma 2.3 follows identically to
the proof of Theorem 3 in (Moka et al., 2022) where it is
stated that the function ‖y − P̃(t)y‖22 is continuous over
[0, 1]n for any fixed vector y ∈ Rn.

Given P̃(t) is continuous on [0, 1]n and agrees with Ps at
every corner point we can define the continuous generaliza-
tion of the exact problem (2),

argmin
t∈[0,1]n

− tr
[
X>P̃(t)X

]
, subject to

n∑
j=1

tj ≤ k.

Instead of solving this constrained problem, for a tunable
parameter λ, we consider minimizing the Lagrangian func-
tion,

argmin
t∈[0,1]n

fλ(t), fλ(t) := − tr
[
X>P̃(t)X

]
+ λ

n∑
j=1

tj .

In Section 3 we reformulate this box-constrained problem
into an equivalent unconstrained problem via a nonlinear
mapping t = t(w) for w ∈ Rn that forces t to be in the
hypercube [0, 1]n. We solve this optimization via continu-
ous gradient descent. To this end, we need to evaluate the
gradient ∇fλ(t) for any interior point.

Lemma 2.4. Let K = X>X, Z = K − δI and Lt =
TZT+ δI. Then, for t ∈ (0, 1)n,

∇fλ(t) = 2Diag
[
L−1t TK2

(
TL−1t TZ− I

)]
+ λ1.

Evaluating ∇fλ(t) has a computational complexity of
O(n3) due to the required inversion of Lt. In Section 3
we detail an unbiased estimate for ∇fλ(t) which utilizes
the CG algorithm, where the most expensive operations in-
volved are matrix-vector multiplications with X and X>,
which reduces the computational complexity to O(mn).

2.2. Nyström Method

We now turn our attention to defining a continuous objective
for the landmark points in the Nyström approximation. We
consider optimizing the landmark points first with respect
to the trace matrix norm and then to the Frobenius matrix
norm.

In many applications, we are interested in obtaining a low-
rank approximation to a kernel matrix K ∈ Rn×n. Consider
an input spaceX and a positive semi-definite kernel function
h : X ×X → R. Given a set of n input points x′1, ...,x

′
n ∈

X , the kernel matrix K ∈ Rn×n is defined by Ki,j =
h(x′i,x

′
j) and is positive semi-definite.

For any binary vector s ∈ {0, 1}n let K[s] be the n× ‖s‖0
matrix with columns indexed by {j : sj = 1} and K[s,s] be
the ‖s‖0 × ‖s‖0 principal sub-matrix indexed by {j : sj =
1}. The Nyström low-rank approximation for K is given by,

K̂s := K[s]K
†
[s,s]K

>
[s].

The following observation appearing in (Derezinski et al.,
2020) connects the CSSP and the Nyström approximation
with respect to the trace matrix norm.

Suppose we have the decomposition of the kernel matrix
K = X>X where X ∈ Rm×n. Then, the Nyström approx-
imation is given by K̂s = (PsX)

>
PsX and

‖K− K̂s‖∗ = ‖X−PsX‖2F .

where ‖A‖∗ =
∑min{m,n}
i=1 σi(A) for A ∈ Rm×n is the

trace matrix norm. This connection is used in (Derezinski
et al., 2020) to provide shared approximation bounds for
both the CSSP and Nyström approximation. Given that the
kernel matrix is always positive semi-definite, the decom-
position K = X>X always exists and one can solve the
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CSSP for X to obtain the best k-landmark Nyström approx-
imation with respect to the trace norm. We note that such
a decomposition is not unique, e.g., it can be the Cholesky
decomposition or the symmetric square-root decomposition.

The matrix X does not need explicit evaluation in order
to perform CSSP as one can attain ∇fλ(t) with the ma-
trix K instead (see, Lemma 2.4). Therefore, finding the
decomposition K = X>X is not required, and one can
approximately solve the CSSP by minimizing ∇fλ(t) with
the kernel matrix K.

Suppose instead we want to use the Frobenius matrix norm
to find the best choice of columns of the matrix K to con-
struct the Nyström approximation. This problem is formu-
lated as

argmin
s∈{0,1}n

‖K− K̂s‖2F , subject to ‖s‖0 ≤ k. (3)

Similar to P̃(t) we can weight each column j of K by tj ∈
[0, 1] instead of sampling the columns K[s] for the Nyström
approximation. We define continuous generalization for the
Nyström approximation,
Definition 2.5. For t = (t1, . . . , tn)

> ∈ [0, 1]n let T :=
Diag(t) and

K̃(t) := KT
[
TKT+ δ(I−T2)

]†
TK,

where δ > 0 is a fixed constant. Similar to P̃(t), for any
t ∈ [0, 1)n the matrix TKT+ δ(I−T2) is invertible.

In the following two results, we state that K̃(t) is a continu-
ous function on [0, 1]n and agrees with the exact Nyström
approximation at every corner point.
Lemma 2.6. For any corner point s ∈ {0, 1}n, K̃(s) exists
and

K̃(s) = K̂s = K[s]K
†
[s,s]K

>
[s].

Lemma 2.7. K̃(t) is continuous element-wise over [0, 1]n.
Moreover, for any sequence t(1), t(2) · · · ∈ [0, 1)n converg-
ing to t ∈ [0, 1]n, the limit liml→∞ K̃(t(l)) exists and

lim
l→∞

K̃(t(l)) = K̃(t).

We therefore have the continuous generalization of the exact
problem (3),

argmin
t∈[0,1]n

‖K− K̃(t)‖2F , subject to
n∑
j=1

tj ≤ k.

Instead of solving this constrained problem, for a tunable
parameter λ, we consider minimizing the Lagrangian func-
tion,

argmin
t∈[0,1]n

gλ(t), gλ(t) := ‖K− K̃(t)‖2F + λ

n∑
j=1

tj .

As with the continuous extension for CSSP we use a gradient
descent method to solve the above problem. The following
result provides an expression for∇gλ(t) for t ∈ (0, 1)n.

Lemma 2.8. Let Z = K − δI, Lt = TZT + δI and
D = K̃(t)−K. Then, for t ∈ (0, 1)n,

∇gλ(t) = 4Diag
[
L−1t TKDK

(
I−TL−1t TZ

)]
+ λ1.

Evaluating ∇gλ(t) has a computational complexity of
O(n3) due to the required inversion of L and evaluation
of K(t). As with∇fλ(t) we detail an unbiased estimate for
∇gλ(t) in Section 3 which utilizes matrix-vector multipli-
cations with K and that helps in reducing the computational
cost.

3. Implementation
In this section, we detail how to efficiently solve the contin-
uous problems posed in Section 2. In particular, we detail a
non-linear transformation that was also used in (Moka et al.,
2022) to make both the CSSP and Nyström approximation
optimization problems unconstrained. We then show how
one can estimate the gradients using MVMs with X and K.

3.1. Handling Box Constraints (Moka et al., 2022)

The continuous extension of the CSSP and Nyström approx-
imation requires minimizing the functions fλ(t) and gλ(t)
over t ∈ [0, 1]n. We now consider a non-linear transfor-
mation to make both optimization problems unconstrained.
Consider the mapping t = t(w) given by,

tj(wj) = 1− exp(−w2
j ), j = 1, . . . , n,

then if we consider the optimization of continuous CSSP,

w∗ = argmin
w∈Rp

fλ(t(w)),

we attain the solution to (2.1) by evaluating t(w∗). This is
true because for any a, b ∈ R,

1− exp(−a2) < 1− exp(−b2) if and only if a2 < b2.

In vector form the transformation is t(w) = 1−exp(−w�
w) (here � denotes element-wise multiplication) and using
the chain rule we obtain for w ∈ Rp,

∂fλ(t(w))

∂w
=
∂fλ(t(w))

∂t
� (2w � exp(−w �w)).

We can now implement a gradient descent algorithm to
approximately obtain t(w∗). Using this approximation we
can select an appropriate binary vector as a solution to the
exact problem (2). The same transformation can be applied
to solve gλ(t(w)) over w ∈ Rn.
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3.2. Stochastic Estimate for the Gradient

As discussed in Section 2,∇fλ(t) and∇gλ(t) are problem-
atic to compute for large n due to the O(n3) complexity of
inverting a matrix. Here we show that we can implement
a stochastic gradient descent (SGD) which has strong the-
oretical guarantees (Robbins & Monro, 1951) by using an
unbiased estimate for∇fλ(t) and ∇gλ(t).

The method we employ is a factorized estimator ˆ̀ for the
diagonal of a square matrix. Suppose we wish to estimate
the diagonal of the matrix A = BC> where A,B,C ∈
Rn×n. Let z ∈ Rn be a random vector sampled from the
Rademacher distribution, whose entries are either −1 or
1, each with probability 1/2. Then an unbiased estimate
for Diag (A) is ˆ̀ = Bz �Cz, see (Martens et al., 2012).
Further analysis of its properties including its variance can
be found in (Mathur et al., 2021). We note that when B = A
and C = I, this estimator reduces to the well-known (Bekas
et al., 2007) estimator for the diagonal.

The two following results provide an unbiased estimate for
∇fλ(t) and ∇gλ(t) using the factorized estimator for the
diagonal of a matrix.

Lemma 3.1. Recall that in the continuous CSSP optimiza-
tion for X, we have the definitions T = Diag(t) for t ∈
[0, 1]n, K = X>X, Z = K− δIn and Lt = TZT+ δIn.

Suppose z ∈ Rn follows a Rademacher distribution and let:

(1)a = Kz, (2) b = L−1t (t� a) and

φ = b� Z(t� b)− a� b.

Then for t ∈ (0, 1)n,

∇fλ(t) = 2E [φ] + λ1.

Lemma 3.2. Recall that in the continuous Nyström opti-
mization for a kernel matrix K, we have the definitions T =
Diag(t) for t ∈ [0, 1]n, Z = K− δI and Lt = TZT+ δI.

Suppose z ∈ Rn follows a Rademacher distribution and let:

(1)a = Kz, (2) b = L−1t (t � a), (3) c = K(t � b) −
a, (4)d = Kc, (5) e = L−1t (t� d) and

ψ = b� d+ a� e− e� Z(t� b)− b� Z(t� e).

Then for t ∈ (0, 1)n,

∇gλ(t) = 2E [ψ] + λ1.

Using these results, we can obtain for a Monte-Carlo sizeM ,
the approximations∇fλ(t) ≈ 2

(
1
M

∑M
i=1 φ

(i)
)
+ λ1 and

∇gλ(t) ≈ 2
(

1
M

∑M
i=1ψ

(i)
)
+λ1, whereφ(i) andψ(i) are

evaluated using a sample z(i) drawn from the Rademacher
distribution.

Algorithm 1 Continous Landmark Selection

1: input: Data matrix: X ∈ Rm×n (CSSP) or Kernel ma-
trix: K ∈ Rn×n (Nyström method), Tuning parameters:
δ and λ, Monte Carlo size: M , Termination Condition:
TermCond, Threshold value: τ ∈ [0, 1].

2: Set t(0) = (1/2, . . . 1/2)>

3: w(0) ←
√
− ln(1− t(0))

4: w∗ ← SGD (w(0), M , X or K, TermCond)
5: t∗ ← 1− exp(−w∗ �w∗)
6: for i = 1 to n do
7: sj ← I(t∗j > τ)
8: end for
9: return: s∗ = (s1, . . . , sn)

>

These results show that to evaluate stochastic gradients one
needs to solve linear systems efficiently with the matrix Lt.
These systems can be iteratively solved using the conjugate
gradient (CG) algorithm (Golub & Van Loan, 1996) which
uses a sequence of MVMs with Lt. Multiplying a vector
with Lt can be reduced to a single MVM with the matrix K
and a sequence of element-wise vector multiplications and
additions.

3.3. Obtaining a Solution

While we have re-framed both the CSSP and the Nyström
problem as an optimization over t ∈ [0, 1]n, the priority
remains to obtain an approximate solution s ∈ {0, 1}n to
(2) and (3). To obtain such a binary vector, we first initialize
SGD from a starting point t(0) and return the final value
t∗ after a termination condition for SGD has been satisfied.
Under SGD the iterative sequence {t(i)}i≥0 moves towards
a corner point of the hypercube. To obtain the closest corner
point s ∈ {0, 1}n, we map the insignificant t∗j ’s to 0 and all
the other t∗j ’s to 1 for some tolerance parameter τ ∈ (0, 1).
This implementation is shown Algorithm 1. In Figure 1 we
provide example solution paths {t(i)}i≥0 under both batch
gradient descent and SGD.

When choosing the value for t(0) it is important to consider
the following true statements: tj = 0 if and only if wj = 0
and

lim
wj→0

∂fλ(t(w))

∂wj
= lim
wj→0

∂gλ(t(w))

∂wj
= 0.

These facts imply that if tj is set to zero during the course
of the optimization it will remain unchanged thereafter.
Therefore, it is important to choose t(0) that is away from
any corner point. It is for this reason, we set t(0) =
(1/2, . . . , 1/2)> in all our experiments.



Column Subset Selection and Nyström Approximation via Continuous Optimization

(a) Gradient Descent (b) Stochastic Gradient Descent

Figure 1. Convergence of t for continuous Column Subset Selection using the MNIST dataset. Blue trajectories correspond to selected
columns. Only a subset of 300 randomly chosen column trajectories (out of 784) are displayed. For both (a) and (b), λ = 10 and δ = 10.
In (b) the Monte-Carlo size is M = 5.

3.4. Dimensionality Reduction

In Section 3.3 we stated that if tj is set to zero during the
course of the SGD then it will remain unchanged thereafter.
This opens the possibility to reduce the computational cost
of estimating∇fλ(t(w)) and∇gλ(t(w)) by only focusing
on terms where tj 6= 0.

Let N = {1, . . . , n} and for any t ∈ [0, 1)n let It = {j :
tj = 0}. For a vector a ∈ Rn, denote the vector (a)+
of dimension n− |It| (respectively |It|) constructed from
a by removing the elements with indices that are in It
(respectively, inN \It). Likewise, for a matrix A ∈ Rn×n,
denote the principal sub-matrix (A)+ (respectively, (A)0)
that is constructed by removing the rows and columns with
indices that are in |It| (respectively, in N \ It). Then, we
have the following result.

Lemma 3.3. For any expression q = L−1t (t � r) where
r ∈ Rn and t ∈ [0, 1)n,

(q)0 = 0 and (q)+ = ((Lt)+)
−1

((t)+ � (r)+) ,

where,

(Lt)+ = (T)+(K)+(T)+ + δ(I− (T)2+).

To incorporate this result in our algorithm, we set a small
constant ε and during the course of SGD if t(w)j < ε, we
set its value to zero. Thereafter, when solving (2) and (5)
in either Lemma 3.1 (CSSP) or Lemma 3.2 (Nyström) the
dimension of the linear system is n− |It| < n.

3.5. Complexity Analysis

The main computational cost of our algorithm is the com-
plexity attributed to estimating the gradients at each iteration
of SGD. For simplicity of analysis, we assume the dimen-
sionality reduction described in Section 3.4 is not carried

out. The cost to solve (2) and (5) in either Lemma 3.1 or
3.2 via CG is O(TmultM`) flops where ` is the number of
CG iterations and Tmult is the cost of computing a matrix-
vector product with either X>X (CSSP) or kernel matrix
K (Nyström). Generally, only `� n iterations of CG are
required to obtain an accurate solution to the linear system.

The cost Tmult is O(mn) and O(n2) via direct computa-
tion for X>X and K respectively. For kernel matrices with
specific structure, this cost can be reduced. For example,
for Toeplitz matrices or for matrices constructed from a
kernel function that is analytic and isotropic, the cost can
be reduced to quasi-linear complexity (Dietrich & Newsam,
1997; Gardner et al., 2018; Ryan et al., 2022). Utilizing
GPU hardware for accelerating matrix computations has
gained significant recent attention and numerous software
regimes (Charlier et al., 2021; Hu et al., 2022) have been
proposed to accelerate kernel MVMs. These methods can
be implemented out-of-the-box and allow MVMs to be fea-
sible on very large datasets (n ∼ 108). Another advantage
of these algorithms is that, as long as the kernel function
h(x′i,x

′
j) is given, MVMs can be computed directly with-

out ever storing the kernel matrix K. This is an advantage
of our method when compared to other methods such as
the greedy selection method for the Nyström approximation
in (Farahat et al., 2011), which has a cost of O(n2k) and
requires the full explicit matrix to be stored in memory.

3.6. Role of parameters δ and λ

The tuning parameter λ controls the size of the penalty ‖t‖1
which is added to the Frobenius matrix loss. It is intuitive
then that for a larger value of λ a stronger shrinkage is
applied to t during the course of the continuous optimization.
In terms of curvature, as λ increases so does the directional
slope of fλ(t(w)) and gλ(t(w)) in the region around wj =
0. For this reason, it is likelier that more wj’s will be pushed
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(a) Residential (σ = 1) (b) Residential (σ = 5) (c) MNIST1K (σ = 10) (d) MNIST1K (σ = 20)

Figure 2. The mean Nyström empirical approximation factor over 50 trials for the UCI Residential Building and MNIST dataset where K
is constructed using the Gaussian Radial Basis Function (RBF) kernel: Ki,j = h(x′

i,x
′
j) = exp

(
−‖x′

i − x′
j‖2
)
/σ2. Approximation

factor is plotted on a logarithmic scale.

(a) Residential (b) MNIST1K (c) Arrhythmia (d) SECOM

Figure 3. The mean CSSP empirical approximation factor over 50 trials for the MNIST dataset and three UCI datasets for different
methods. Approximation factor is plotted on a logarithmic scale.

towards zero when the value for λ is large. This behavior is
similar to that of the parameter λ in the COMBSS method
(Moka et al., 2022) where a more formal analysis can be
found. We note that the relationship between λ and k is data
dependent and it is suggested that the user apply an efficient
grid search regime to obtain an appropriate λ for their use.

With respect to the parameter δ we first note that Lemma 2.2
and Lemma 2.6 remain true regardless of the choice of
δ. Therefore, the value of δ affects the behavior of the
penalized loss only at the interior points t ∈ (0, 1)n. We
would like a choice of δ such that for all the interior points
t ∈ (0, 1)n the functions fλ(t) and gλ(t) are well-behaved.
When δ is very small the linear systems that require solving
at t ∈ (0, 1)n may be close to singular and numerical issues
can arise more frequently. Moreover, when δ is large we
observe large shifts in the value of the objective approaching
a corner point. Our simulations indicate that δ = 1 produces
a well-behaved function.

4. Numerical Experiments and Results
In this section, we provide numerical examples with real
data designed to demonstrate that our proposed continuous
optimization method outperforms well-known sampling-
based methods for small and large datasets. Moreover, we
demonstrate that when it is feasible to run greedy selection,
our continuous method exhibits very similar performance.

Numerical experiments were conducted on the small to
medium-sized datasets: Residential and Building dataset
(m = 372, n = 109), MNIST1K (m = 1000, n = 784)1,
Arrhythmia dataset (m = 452, n = 279), SECOM (m =
1567, n = 591). Numerical experiments for Nyström land-
mark selection were also conducted on the larger datasets:
Power Plant dataset (m = 4, n = 9568), HTRU2 dataset
(m = 8, n = 17898) and Protein dataset (m = 9,
n = 45730). All datasets except MNIST are downloaded
from UCI ML Repository (Asuncion & Newman, 2007).
All datasets were standardized such that all columns had
mean zero and variance equal to one.

For the small to medium-sized datasets, we use the best
rank-k approximation factor to compare our method to ex-
isting methods (see Figure 2 and Figure 3). The best rank-k
approximation factor is given by

Approximation Factor :=
‖A− Âs‖2F
‖A− Ĝ‖2F

.

where Âs is either the Nyström or CSSP low-rank matrix
and Ĝ is the best rank-k approximation computed using the
Singular Value Decomposition (SVD) of A.

In these experiments, we compare the proposed continuous
landmark selection method executed with SGD (M = 10)
with the following four well-known methods: Uniform Sam-

1https://yann.lecun.com/exdb/mnist/
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(a) Power Plant (b) HTRU2 (c) Protein

Figure 4. The mean empirical squared Frobenius error ‖K− K̂s∗‖2F over 10 trials for the UCI datasets Power Plant, HTRU2 and Protein
for different methods. The kernel matrix K for all datasets is constructed using the RBF kernel function with σ = 0.5. Error is plotted on
a logarithmic scale.

pling (Williams & Seeger, 2000), Recursive RLS (Ridge
Leverage Scores) - Nyström sampling (Musco & Musco,
2017), k-DPP sampling (Derezinski & Mahoney, 2021) and
Greedy selection (Farahat et al., 2011; 2013).

For the experiments conducted on the larger datasets (see
Figure 4) we exclude the k-DPP sampling and greedy meth-
ods as it is either too costly to compute the choice of land-
mark points or too costly to store the full kernel matrix on a
GPU. In our implementation of continuous Nyström land-
mark selection, we use the KeOps library (Charlier et al.,
2021) to efficiently compute MVMs and linear solves on a
GPU without ever storing the matrix K, thus negating the
need to store any O(n2) objects. These experiments were
run using an NVIDIA Tesla T4 GPU with 16GB memory.

In Figure 2 and Figure 3 we observe the approximation fac-
tor for Nyström and CSSP landmark selection with different
subset sizes k. A lower approximation factor indicates a
better approximation and an approximation factor close to
one implies near-best-case performance for the given subset
size k. The results indicate that the continuous optimization
method is better than every tested sampling method and
is very similar to greedy selection in performance (when-
ever the greedy selection is feasible). In most cases, for
the CSSP, as the proportion of selected columns increases
the continuous method starts to marginally outperform the
greedy method.

In Figure 4, we observe for all three datasets (Power Plant,
HTRU2 and Protein) that the continuous landmark selection
achieves better accuracy than the Recursive RLS (Ridge
Leverage Scores) - Nyström sampling and Uniform sam-
pling methods. While Recursive RLS sampling (complexity:
O(nk2)) and uniform sampling are faster at selecting land-
mark points, for a fixed k the continuous method obtains a
more accurate Nyström approximation. Thus, if a memory
budget for the size of the Nyström approximation is given,
as is often the case, the continuous method will compute a

superior approximation.

5. Conclusion
In this paper, we have introduced a novel algorithm that
exploits unconstrained continuous optimization to select
columns for both the CSSP and Nyström approximation.
The algorithm selects columns by minimizing an extended
objective which is defined over the hypercube [0, 1]n rather
than iterating over the corner points of the hypercube which
correspond to all of the

(
n
k

)
subsets. The extended objec-

tive for both the CSSP and Nyström approximation can
be minimized via SGD where the gradients are estimated
with an unbiased estimator which requires only MVMs with
either X (CSSP) or K (Nyström). On the real-world exam-
ples that we considered in this article, the proposed method
has proven to be more accurate without incurring higher
computational cost.
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A. Proofs
Proof of Lemma 2.2. The following proof follows similar arguments to that of Theorem 1 in (Moka et al., 2022). Given that
the pseudo-inverse of a matrix after a permutation of rows (respectively, columns) is identical to the matrix obtained by
applying the same permutation on columns (respectively, rows) on the pseudo-inverse, we assume without loss of generality
that all the zero-elements s ∈ {0, 1}n appear at the end, in the form,

s = (s1, . . . sl, 0, . . . , 0).

where l is equal to the number of non-zeros in s ∈ {0, 1}n. Then, P̃(s) is given by the block-wise matrix,

P̃(s) =
[
X[s] 0

] [X>[s]X[s] 0

0 δI

]† [
X>[s]
0

]
. (4)

It is easy to verify, when the matrices A1 and A2 are square, the block-diagonal pseudo-inverse
[
A1 0
0 A2

]†
=

[
A†1 0

0 A†2

]
.

Therefore (4) reduces to,

P̃(s) =
[
X[s] 0

] [X>[s]X†[s] 0

0 δ−1I

] [
X>[s]
0

]
= X[s]

(
X>[s]X[s]

)†
X>[s]

= X[s]X
†
[s].

�

Proof of Lemma 2.2. To obtain the gradient fλ(t) for t ∈ (0, 1)n we first simplify the term − tr
[
X>P̃(t)X

]
by letting

K = X>X, Z = K− δI and Lt = TZT+ δI. Then, we have,

− tr
[
X>P̃(t)X

]
= − tr

[
KTL−1t TK

]
.

Using matrix calculus, for any j = 1, . . . , n, we have the partial derivative,

∂

∂tj

[
− tr

(
X>P̃(t)X

)]
= − tr

(
K
∂
[
TL−1t T

]
∂tj

K

)
. (5)

Let Ej be the square matrix of dimension n× n with 1 at position (j, j) and 0 everywhere else. Then ∂T
∂tj

= Ej and we
have,

∂
[
TL−1t T

]
∂tj

= EjL
−1
t T+T

∂
[
L−1t T

]
∂tj

. (6)

Furthermore,
∂
[
L−1t T

]
∂tj

=
∂
[
L−1t

]
∂tj

T+ L−1t Ej , (7)

and using the derivative of an invertible matrix we have,

∂
[
L−1t

]
∂tj

= −L−1t

∂Lt

∂tj
L−1t , (8)

and,
∂Lt

∂tj
= EjZT+TZEj . (9)

Substituting (9)→ (8)→ (7)→ (6)→ (5) we obtain the expression,

∂

∂tj

[
− tr

(
X>P̃(t)X

)]
= − tr

[
KEjL

−1
t TK+KTL−1t EjK−KTL−1t EjZTL−1t TK−KTL−1t TZEjL

−1
t TK

]
.

(10)
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In order to simplify this expression we consider the following fact. If we have the matrices A = (aij) ∈ Rn×n and
B = (bij) ∈ Rn×n then, tr (AEjB) = (BA)jj =

∑n
i=1 aijbji. Using this, we obtain,

∂

∂tj

[
− tr

(
X>P̃(t)X

)]
= −

[
L−1t TK2

]
jj
−
[
K2TL−1t

]
jj

+
[
ZTL−1t TK2TL−1t

]
jj

+
[
L−1t TK2TL−1t Z

]
jj

= 2
[
L−1t TK2

(
TL−1t Z− I

)]
jj
,

since the matrices L−1t , K, Z and T are all symmetric. Considering the partial derivative of the penalty term is
∂
∂tj

[λ
∑
i ti] = λ we have the following expression for the gradient vector of fλ(t),

∇fλ(t) = 2Diag
[
L−1t TK2

(
TL−1t TZ− I

)]
+ λ1.

�

Proof of Lemma 2.6. For reasons outlined in the proof of Lemma 2.2 we assume without loss of generality that all the
zero-elements in s ∈ {0, 1}n appear at the end, in the form,

s = (s1, . . . sl, 0, . . . , 0).

where l is equal to the number of non-zeros in s ∈ {0, 1}n. Then, K̃(s) is given by the block-wise matrix,

P̃(s) =
[
K[s] 0

] [K[s,s] 0
0 δI

]† [
K>[s]
0

]
. (11)

Using the block-diagonal pseudo-inverse formula we have,

P̃(s) =
[
K[s] 0

] [K†[s,s] 0

0 δ−1I

] [
K>[s]
0

]
= K[s]K

†
[s,s]K

>
[s].

�

Proof of Lemma 2.7. For any positive semi-definite kernel matrix K ∈ Rn×n, a decomposition of the form K = X>X
where X ∈ Rn×n always exists. Therefore, the function K̃(t) can be written as,

K̃(t) = X>XT
[
TX>XT+ δ(I−T2)

]†
TX>X

= X>P̃(t)X>.

From Lemma 2.3 we know that the function P̃(t) is continuous over [0, 1]n. Since X is not a function of t we conclude that
K̃(t) is also continuous over [0, 1]n. �

Proof of Lemma 2.8. To obtain the gradient gλ(t) for t ∈ (0, 1)n we first simplify the term ‖K̃(t)−K‖2F . Since K̃(t) and
K are symmetric, we have the expansion,

‖K̃(t)−K‖2F = tr

[(
K̃(t)−K

)2]
= tr

[(
K̃(t)

)2
− 2K̃(t)K+K2

]
.

Therefore,
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∂

∂tj

[
‖K̃(t)−K‖2F

]
= tr

(
∂

∂tj

[(
K̃(t)

)2])
− tr

(
∂

∂tj

[
2K̃(t)K

])
= 2 tr

(
∂K̃(t)

∂tj
K̃(t)

)
− 2 tr

(
∂K̃(t)

∂tj
K

)

= 2 tr

(
∂K̃(t)

∂tj
D

)

where D = K̃(t) −K. Factorize K as K = X>X and let Z = K − δI and Lt = TZT + δI. Then, notice that the

derivative ∂K̃(t)
∂tj

=
∂[X>P̃(t)X]

∂tj
is the same expression that we derived in the proof of Lemma 2.4, see (10). Substituting

this expression in for ∂K̃(t)
∂tj

, we obtain,

∂

∂tj

[
‖K̃(t)−K‖2F

]
= 2 tr

[
KEjL

−1
t TKD+KTL−1t EjKD−KTL−1t EjZTL−1t TKD−KTL−1t TZEjL

−1
t TKD

]
.

Once again, using the fact that tr (AEjB) = (BA)jj =
∑n
i=1 aijbji for matrices A = (aij) ∈ Rn×n and B = (bij) ∈

Rn×n, we obtain,

∂

∂tj

[
‖K̃(t)−K‖2F

]
= 2

[(
L−1t TKDK

)
jj

+
(
KDKTL−1t

)
jj
−
(
ZTL−1t TKDKTL−1t

)
jj
−
(
L−1t TKDKTL−1t TZ

)
jj

]
(12)

= 4
[(
L−1t TKDK

)
jj
−
(
L−1t TKDKTL−1t TZ

)
jj

]
, (13)

since the matrices L−1t , K, Z and T are all symmetric. Considering the partial derivative of the penalty term is
∂
∂tj

[λ
∑
i ti] = λ we have the following expression for the gradient vector of gλ(t),

∇gλ(t) = 4Diag
[
L−1t TKDK

(
I−TL−1t TZ

)]
+ λ1.

� Proof of Lemma 3.1. From Lemma 2.4, we have,

∇fλ(t) = 2Diag
[
L−1t TK2

(
TL−1t TZ− I

)]
+ λ1

= 2
[
Diag

(
L−1t TK2TL−1t TZ

)
−Diag

(
L−1t TK2

)]
+ λ1

= 2α+ λ1,

where α = Diag
(
L−1t TK2TL−1t TZ

)
−Diag

(
L−1t TK2

)
. To obtain an unbiased estimator for α, we use the factorized

estimator ˆ̀ for the diagonal of a square matrix. Recall, to estimate the diagonal of the matrix A = BC> where
A,B,C ∈ Rn×n we let z ∈ Rn be a random vector sampled from the Rademacher distribution. Then the unbiased estimate
for Diag (A) is ˆ̀ = Bz �Cz (see (Martens et al., 2012; Mathur et al., 2021) for proof and analysis). We factorize the
matrices in α so that,

α = Diag

 B1︷ ︸︸ ︷
L−1t TK

C>1︷ ︸︸ ︷
KTL−1t TZ

−Diag

 B2︷ ︸︸ ︷
L−1t TK

C>2︷︸︸︷
K


Then, the factorized estimator for α is given by,

φ = L−1t TKz � ZTL−1t TKz − L−1t TKz �Kz,

where E[φ] = α and z ∈ Rn is a Rademacher random variable. If we compute the following variables: (1)a =
Kz, (2) b = L−1t (t� a), we have,

(1)a = Kz, (2) b = L−1t TKz
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and φ simplifies to,
φ = b� Z(t� b)− a� b.

Therefore, for t ∈ (0, 1)n we have,
∇fλ(t) = 2E [φ] + λ1.

�

Proof of Lemma 3.2. From Lemma 2.8 and Equation (12), we have,

∇gλ(t) = 4Diag
[
L−1t TKDK

(
I−TL−1t TZ

)]
+ λ1.

= 2
[
Diag

(
L−1t TKDK

)
+Diag

(
KDKTL−1t

)
−Diag

(
ZTL−1t TKDKTL−1t

)
−Diag

(
L−1t TKDKTL−1t TZ

)]
+ λ1

= 2β + λ1.

To obtain an unbiased estimator for β, we once again use the factorized estimator for the diagonal of a square matrix. We
factorize the matrices in β so that,

β = Diag

 B1︷ ︸︸ ︷
L−1t TKD

C>1︷︸︸︷
K

+Diag

 B2︷︸︸︷
KD

C>2︷ ︸︸ ︷
KTL−1t

−Diag

 B3︷ ︸︸ ︷
ZTL−1t TKD

C>3︷ ︸︸ ︷
KTL−1t

−Diag

 B4︷ ︸︸ ︷
L−1t TKD

C4︷ ︸︸ ︷
KTL−1t TZ

 .

Then, the factorized estimator for β is given by,

ψ = L−1t TKDz �Kz +KDz � L−1t TKz − ZTL−1t TKDz � L−1t TKz − L−1t TKDz � ZTL−1t TKz.

where E[ψ] = β and z ∈ Rn is a Rademacher random variable. Recall that D = K̃(t)−K and K̃(t) = KTL−1t TK. Then,
if we compute the following variables: (1)a = Kz, (2) b = L−1t (t � a), (3) c = K(t � b) − a, (4)d = Kc, (5) e =
L−1t (t� d), we have,

(1)a = Kz, (2) b = L−1t TKz, (3) c = Dz, (4)d = KDz (5) e = L−1t TKDz,

and ψ simplifies to,
ψ = b� d+ a� e− e� Z(t� b)− b� Z(t� e).

Hence, we have the expression for the gradient,

∇gλ(t) = 2E [ψ] + λ1.

� Proof of Lemma 2.3 For the same reasons outlined in the proof of Lemma 2.2 we assume without loss of generality that
all the zero-elements in t ∈ {0, 1}n appear at the end, in the form,

t = (t1, . . . tl, 0, . . . , 0).

Then Lt is given by,

Lt =

[
(T)+(K)+(T)+ + δ(I− (T)2+) 0

0 δI

]
=

[
(Lt)+ 0
0 δI

]
and since (t)+ ∈ [0, 1)l the matrix (Lt)+ is invertible. Therefore,

L−1t (t� r) =
[
(Lt)

−1
+ 0

0 δ−1I

] [
(t)+ � (r)+

0

]
=

[
(Lt)

−1
+ ((t)+ � (r)+)

0

]
.

�


