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Abstract

The goal of this paper is to develop methodology for the systematic analysis of asymp-
totic statistical properties of data driven DRO formulations based on their corresponding
non-DRO counterparts. We illustrate our approach in various settings, including both phi-
divergence and Wasserstein uncertainty sets. Different types of asymptotic behaviors are
obtained depending on the rate at which the uncertainty radius decreases to zero as a
function of the sample size and the geometry of the uncertainty sets.

1 Introduction

The statistical analysis of Empirical Risk Minimization (ERM) estimators is a well investigated
topic both in statistics (e.g., [18]) and stochastic optimization (e.g., [17]). In recent years,
there has been significant interest in the investigation of distributionally robust optimization
(DRO) estimators (e.g., [13]). The goal of this paper is to develop methodology for the study of
asymptotic statistical properties of data driven DRO formulations based on their corresponding
non-DRO counterparts.

Our objective is to illustrate the main conceptual strategies for the statistical development,
emphasizing qualitative features, for instance, the different types of behavior arising from the
interaction between the distributional uncertainty size and the sample size, while keeping the
discussion easily accessible. Consequently, in order to keep the discussion easily accessible, we
do not necessarily focus on the most general assumptions to apply our results.

To set the stage, let us introduce some notation. We use P(S) to denote the set of Borel
probability measures supported on a closed (nonempty) set S ⊂ R

d. Let X1, ..., Xn be a sequence
of independent identically distributed (i.i.d.) random vectors viewed as realizations (or i.i.d.
copies) of random vector X having distribution P∗ ∈ P(S). Consider the corresponding empirical
measure Pn = n−1

∑n
i=1 δXi

, where δx denotes the Dirac measure of mass one at the point x ∈ R
d.
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The sample mean of a function ψ : S → R is EPn [ψ(X)] = n−1
∑n

i=1 ψ(Xi). By the Strong Law
of Large Numbers we have that EPn[ψ(X)] converges with probability one (w.p.1) to EP∗

[ψ(X)],
provided the expectation EP∗

[ψ(X)] is well defined1.
By the Central Limit Theorem,

n1/2(EPn [ψ (X)] − EP∗
[ψ (X)]) N

(

0, σ2
)

,

where “ ” denotes the weak convergence (converges in distribution) and N (0, σ2) represents
the normal distribution with mean zero and variance σ2 = VarP∗

[ψ(X)], provided this variance
is finite.

We consider a loss function of the form l : Rd × Θ → R, with Θ ⊂ R
m being the parameter

space. Unless stated otherwise, we assume that the set Θ is compact and l(x, θ) is continuous
on S × Θ. We define

fn (θ) := EPn [l (X, θ)] and f (θ) := EP∗
[l (X, θ)] . (1.1)

So, the standard ERM formulation takes the form

min
θ∈Θ

fn (θ) , (1.2)

and viewed as an empirical counterpart of the “true” (or limiting) form

min
θ∈Θ

f (θ) . (1.3)

The statistical properties such as consistency and asymptotic normality of the ERM estimates
have been widely studied in significant generality as the sample size n → ∞. These types of
results hold under structural properties of the function f (·) and natural stability assumptions
(to be reviewed) which guarantee a functional Central Limit Theorems for fn (·). Our goal
is to present a development that is largely parallel for the associated distributionally robust
counterpart to (1.2).

More precisely, (1.2) can be endowed with distributional robustness by defining a set of proba-
bility measures, referred to as the ambiguity set, Mδ(Pn) ⊂ P(S), which are seen as “reasonable”
(according to some criterion) perturbations of the empirical measure. The parameter δ ≥ 0 is
the uncertainty size and the family of sets {Mδ(Pn) : δ ≥ 0} is typically nondecreasing in δ
(in the inclusion partial order sense). The ambiguity set can be defined around any reference
probability measure, but unless stated otherwise, we will center the ambiguity set around Pn. In
this paper we deal with ambiguity sets of the form

Mδ(Pn) := {P ∈ P(S) : D(P, Pn) ≤ δ}, (1.4)

where D(Q,P ) is a divergence between Q,P ∈ P(S). Specifically, we consider the phi-divergence
and Wasserstein distance cases.

In order to state the DRO version of (1.2) we define

Fn(θ, δn) := sup
P∈Mδn(Pn)

EP [l (X, θ)] , (1.5)

1Throughout our discussion, every function whose expectation is considered will be assumed to be Borel
measurable, so we will not be concerned with making this assumption repeatedly.
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where δn is a monotonically decreasing sequence tending to zero as n → ∞. The DRO version
of (1.2) takes the form

min
θ∈Θ

Fn(θ, δn). (1.6)

The aim of this paper is to investigate asymptotic statistical properties of the optimal value and
optimal solutions of the DRO problem (1.6). In particular, under natural assumptions (to be
discussed), we will show that both in phi-divergence and Wasserstein DRO formulations, there
are typically (but not always) three types of cases involving the limiting asymptotic statistics
depending on the rate of convergence of δn to zero. These can be seen both in terms of the value
function error

min
θ∈Θ

Fn(θ, δn) − min
θ∈Θ

f (θ) ,

and the optimal solution error (assuming it is unique for the limiting version of the problem and
sufficient regularity conditions are in place).

Intuitively, if δn is smaller than a certain (to be characterized) critical rate relative to the
canonical parametric statistical error rate n−1/2, then the DRO effect is negligible compared to
the statistical error implicit in a sample of size n. If δn decreases to zero right at the critical rate,
the DRO effect is comparable with this statistical error and can be quantified in the form of an
asymptotic bias. If δn is bigger than the critical rate, the DRO effect overwhelms the statistical
noise. These critical rates depend on the sensitivity of the optimal value function with respect
to a small change in the size of uncertainty.

Our objective is to provide accessible principles that can be used to obtain explicit limiting
distributions for the errors, both for value functions and optimizers, when δn → 0 in these three
cases ; see Theorems 3.1 and 3.2 for general principles and Theorems 4.1 and 4.2 for the applica-
tion to these principles to value functions of phi-divergence and Wasserstein DRO, respectively;
and Theorems 5.1 and 5.2 for the corresponding application to phi-divergence and Wasserstein
DRO optimal solutions, respectively.

It is important to note that it is common in the data-driven DRO literature to suggest choosing
δn in order to enforce that P∗ is inside Mδn(Pn) with high probability. Such selection typically
will fall in the third case, that is, this choice will induce estimates that are substantially larger
than standard statistical noise. Therefore, prescriptions corresponding to the third case should
be assigned only if the optimizer perceives that the out-of-sample environment is substantially
different from the observed (empirical) environment due to errors or fluctuations that fall outside
of standard statistical noise.

The rest of the paper is organized as follows. In Section 2 we will quickly review the elements
of statistical analysis of Empirical Risk Minimization (ERM) – also known as Empirical Opti-
mization or Sample Average Approximation – which corresponds to the case δn = 0. Then, in
Section 3, we will follow a parallel discussion to that of Section 2 and discuss assumptions for the
data-driven DRO version of the problem. The objective is to use these assumptions so that we
can obtain a flexible and disciplined approach that can be systematically applied to various DRO
formulations. Then, in Section 4 we will discuss the application of this approach to the explicit
development of asymptotics for the optimal value in phi-divergence and Wasserstein DRO and,
finally, in Section 5, we also develop these explicit results for associated optimal solutions.

We use the following notation throughout the paper. For a sequence Yn of random variables,
by writing Yn = op(n

−γ) we mean that nγYn tends in probability to zero as n→ ∞. In particular
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Yn = op(1) means that Yn tends in probability to zero. The notation Q ≪ P means that Q ∈
P(S) is absolutely continuous with respect to P ∈ P(S). Unless stated otherwise probabilistic
statements like “almost every” (a.e.), are made with respect to the probability measure P∗. By
saying that a function h : S → R is integrable we mean that EP∗

|h(X)| < ∞. It is said that a
mapping φ : Rm → R

k is directionally differentiable at a point θ ∈ R
m if the directional derivative

φ′(θ, d) := lim
t↓0

φ(θ + td) − φ(θ)

t
(1.7)

exists for every d ∈ R
m. We will use the term ǫn(θ), θ ∈ Θ, to denote a random field such that

sup
θ∈Θ

|ǫn (θ)| = op(1). (1.8)

2 Statistics of ERM: Review

In addition to the population objective function f(θ) := EP∗
[l (X, θ)], introduced in (1.1), we

also let
ϑ := inf

θ∈Θ
f(θ) and Θ∗ := arg min

θ∈Θ
f(θ), (2.1)

be the optimal value and the set of optimal solutions of the population version of the optimization
problem, respectively.

As defined in (1.1), fn(θ) = EPn [l (X, θ)] is the objective function of the ERM version of the
problem and

ϑn := inf
θ∈Θ

fn(θ) and θn ∈ arg min
θ∈Θ

fn(θ) (2.2)

are the respective optimal value and an optimal solutions of the ERM problem. We will now
quickly review the development of the asymptotic statistics of the optimal value in ERM and
then we will discuss the corresponding results for optimal solutions.

2.1 Asymptotics of the Optimal Value

In order to analyze the statistical error in the difference between the optimal values ϑn − ϑ, we
start from enforcing a functional Central Limit Theorem (CLT) for fn (·). In particular, one
imposes assumptions which guarantee an expansion of the form2

fn (θ) = f (θ) + n−1/2rn (θ) + n−1/2ǫn (θ) , (2.3)

where we have functional weak convergence

rn (·) g (·) (2.4)

in the uniform topology on compact sets, with g (·) being a mean zero Gaussian random field
with covariance function

Cov (g (θ) , g (θ′)) = CovP∗

(

l (X, θ) , l (X, θ′)
)

. (2.5)

There are several ways to enforce (2.3); a simple set of sufficient conditions satisfying this is
given next (cf., [18, example 19.7]).

2Recall that ǫn(·) denotes a random field satisfying condition (1.8).
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Assumption 2.1 (i) For some θ̄ ∈ Θ the expectation EP∗
[l(X, θ̄)2] is finite. (ii) There is a

measurable function ψ : S → R+ such that EP∗
[ψ(X)2] is finite and

|l(X, θ) − l(X, θ′)| ≤ ψ(X)‖θ − θ′‖ (2.6)

for all θ, θ′ ∈ Θ and a.e. X ∈ S.

In particular under this assumption, it follows that the expectation function f(θ) and variance

σ2(θ) := VarP∗
(l(X, θ)) (2.7)

are finite valued and continuous on Θ. Furthermore, since the set Θ is compact, it follows that
the optimal value ϑn, of the ERM problem, converges to ϑ in probability (in fact almost surely).
Moreover, it is not difficult to show from (2.3) that the distance from θn to Θ∗ converges in
probability to zero (actually, the convergence occurs almost surely) as n → ∞. Finally, since
the functional V (φ) := infθ∈Θ φ(θ), mapping continuous functions φ : Θ → R to the real line, is
directionally differentiable, the following classical result is a direct consequence of the (functional)
Delta Theorem (cf., [14]).

Proposition 2.1 Under Assumption 2.1,

n1/2(ϑn − ϑ) inf
θ∈Θ∗

g(θ) (2.8)

as n → ∞. In particular, if Θ∗ = {θ∗} is the singleton, i.e. θ∗ is the unique optimal solution of
the true problem, then n1/2(ϑn − ϑ∗) converges in distribution to normal N(0, σ2(θ∗)).

2.2 Asymptotics of Optimal Solutions

We assume now that Θ∗ = {θ∗} is the singleton, i.e., θ∗ is the unique optimal solution of the true
(population) problem (1.3). We also assume that for a.e. X , the function l(X, ·) is continuously
differentiable3. As it was argued in the previous section, asymptotics of the optimal value is
governed by the asymptotics of the objective function. On the other hand, asymptotics of the
optimal solutions can be derived from the asymptotics of the gradients of the objective function.

Let us consider the following parametrisation of problem (1.3):

min
θ∈Θ

f (θ) + vT θ, (2.9)

with parameter vector v ∈ R
m. Denote by θ∗(v) an optimal solution of the above problem (2.9)

viewed as a function of vector v. Of course, we have that θ∗(0) = θ∗.

Assumption 2.2 (uniform second order growth) There is a neighborhood V of θ∗ and a
positive constant κ such that for every v in a neighborhood of 0 ∈ R

m, problem (2.9) has an
optimal solution θ∗(v) ∈ V and

f(θ) + vT (θ − θ∗ (v)) ≥ f(θ∗ (v)) + κ‖θ − θ∗ (v) ‖2, (2.10)

for all θ ∈ Θ ∩ V.
3Unless stated otherwise all first and second order derivatives will be taken with respect to vector θ.
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The following assumption can be viewed as a counterpart of Assumption 2.1 applied to the
gradients of the objective function.

Assumption 2.3 (i) For some θ̄ ∈ Θ the expectation EP∗

[

‖∇l(X, θ̄)‖2
]

is finite. (ii) There is
a measurable function Ψ : S → R+ such that EP∗

[Ψ(X)2] is finite and

‖∇l(X, θ) −∇l(X, θ′)‖ ≤ Ψ(X)‖θ − θ′‖, (2.11)

for all θ, θ′ ∈ Θ and a.e. X ∈ S.

By the functional CLT it follows that

∇fn (θ) = ∇f (θ) + n−1/2dn (θ) + n−1/2ǫn (θ) , (2.12)

where we have a functional weak convergence dn (·) G (·) in the uniform topology on a closed
neighborhood of θ∗, with G (·) being a continuous mean zero Gaussian random field with covari-
ance function

Cov [G(θ),G(θ′)] = EP∗
[(∇l(X, θ) −∇f(θ))(∇l(X, θ′) −∇f(θ′))T ].

It follows from (2.12) that

[∇fn(θ) −∇f(θ)] − [∇fn(θ∗) −∇f(θ∗)] = n−1/2 [dn (θ) − dn (θ∗) + ǫn (θ) − ǫn (θ∗)] . (2.13)

Also since ρn := ‖θn − θ∗‖ tends in probability to zero, we have

sup
θ:‖θ−θ∗‖≤ρn

[dn (θ) − dn (θ∗) + ǫn (θ) − ǫn (θ∗)] = op(1). (2.14)

Thus we have the following result from [15, Theorem 2.1], where the respective regularity condi-
tions are ensured by the above property (2.14).

Proposition 2.2 Suppose that Assumptions 2.2 and 2.3 hold. Then it follows that

θn = θ∗(Zn) + op(n
−1/2), (2.15)

where Zn := ∇fn(θ∗) −∇f(θ∗).

The above result reduces the analysis of asymptotic properties of the optimal solutions to
investigation of asymptotic behavior of the optimal solutions of the finite dimensional problem
(2.9). By the (finite dimensional) Central Limit Theorem, n1/2Zn converges in distribution to
normal N(0,Σ) with covariance matrix Σ = Cov(∇l(X, θ∗)). Moreover, if the mapping θ∗(v)
is directionally differentiable at v = 0 (in the Hadamard sense), then by the finite dimensional
Delta Theorem it follows from (2.15) that

n1/2(θn − θ∗) θ′∗(0, Z), (2.16)

where Z ∼ N(0,Σ). In particular, if θ′∗(0, w) = Aw is linear (i.e., θ∗(v) is differentiable at v = 0
with Jacobian matrix A), then n1/2(θn − θ∗) converges in distribution to normal with null mean
vector and covariance matrix AΣAT .
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Directional differentiability of optimal solutions of parameterized problems is well investi-
gated. For example, if θ∗ is an interior point of Θ, f(θ) is twice continuously differentiable at
θ∗ and the Hessian matrix H := ∇2f(θ∗) is nonsingular, then the uniform second order growth
(Assumption 2.2) holds, and θ∗ (v) is differentiable at v = 0 with θ′∗ (0, w) = H−1w. When θ∗

is on the boundary of the set Θ, the sensitivity analysis of the parameterized problem (2.9) is
more delicate and involves a certain measure of the curvature of the set Θ at the point θ∗. This
is discussed extensively in [6]. We also refer to [17, sections 5.1.3 and 7.1.5] for a basic summary
of such results.

It is worthwhile to note at this point that the regularity conditions of assumptions 2.2 and
2.3 address different properties of the considered setting. Assumption 2.2 deals with the limiting
optimization problem and is of deterministic nature. The uniform second order growth condition
was introduced in [15], and in a more general form was discussed in [6, section 5.1.3]. On the
other hand Assumption 2.3 is related to the stochastic behavior of the ERM problem (1.2).

3 Statistics of DRO: General Principles

We now provide sufficient conditions for the development of DRO statistical principles based on
assumptions which are parallel to those imposed in the ERM section. Define

ϑ̄n := inf
θ∈Θ

Fn(θ, δn) and θ̄n ∈ arg min
θ∈Θ

Fn(θ, δn), (3.1)

the optimal value and an optimal solution of the DRO problem (1.6) (recall the definition of
Fn(θ, δn) in (1.5)).

3.1 DRO Asymptotics of the Optimal Value

Similar to the ERM case, in the DRO setting, we will typically have an expansion of the form

Fn(θ, δn) = fn (θ) + δγnRn (θ) + δγnǫn (θ) , (3.2)

for some γ > 0, where Rn(·) converges in probability in the uniform topology over Θ to a
continuous deterministic process ̺(·),

Rn(θ) = ̺(θ) + ǫn(θ). (3.3)

Since Fn(·, δn) ≥ fn(·), it follows then that ̺(·) ≥ 0. We will characterize γ > 0 and ̺ (·) explicitly
in the next sections in the context of phi-divergence and Wasserstein DRO formulations under
suitable conditions on the distributional uncertainty set – in addition to Assumption 2.1 (which is
clearly independent of the distributional uncertainty). The following result, which is immediate
from the application of the functional Delta Theorem summarizes the type of behavior that we
expect in DRO formulations depending on the geometry of the distributional uncertainty set
and the rate of decay to zero of the uncertainty size δn. Recall that g(θ) denotes a mean zero
Gaussian random field with covariance function (2.5).
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Theorem 3.1 Suppose that Assumption 2.1 and conditions (3.2) - (3.3) hold. Then there are
three types of asymptotic behavior of the DRO optimal value:
(a) If δγn = o

(

n−1/2
)

, then

ϑ̄n = ϑn + op
(

n−1/2
)

, (3.4)

and hence
n1/2

(

ϑ̄n − ϑ
)

 inf
θ∈Θ∗

g(θ), (3.5)

which coincides with (2.8) and thus the DRO formulation has no asymptotic impact.
(b) If δγn = n−1/2, then

n1/2
(

ϑ̄n − ϑ
)

 inf
θ∈Θ∗

{g(θ) + ̺ (θ)} , (3.6)

so the DRO formulation introduces an explicit and quantifiable asymptotic bias which can be
interpreted as a regularization term.
(c) If o (δγn) = n−1/2, then4

δ−γ
n

(

ϑ̄n − ϑ
)

 inf
θ∈Θ∗

̺ (θ) , (3.7)

so the bias term induced by the DRO formulation is larger than the statistical error.

Proof. Part (a). By (3.2) and (3.3) we have that in the considered case

Fn(θ, δn) = fn(θ) + o(n−1/2)ǫn (θ) ,

where ǫn (θ) is the generic term satisfying (1.8). Thus (3.4) follows.
Part (b). By (3.2) and (3.3) in the considered case we can write

n1/2 (Fn(θ, δn) − f(θ)) = n1/2(fn(θ) − f(θ)) + ̺(θ) + ǫn (θ) .

Under Assumption 2.1, by the functional CLT we have that n1/2(fn(θ) − f(θ)) + ̺(θ) converges
in distribution to g(θ) + ̺(θ), and hence (3.6) follows by the Delta Theorem.

Part (c) may appear somewhat different because the right hand side is deterministic but,
under case (c) note that we can simply write

Fn(θ, δn) = f (θ) + δγnRn (θ) + δγnǫn (θ) ,

so case (c) also follows from the standard analysis since Rn (·) converges uniformly to ̺ (·) in
probability (thus it converges weakly in the uniform topology). �

3.2 DRO Asymptotics of the Optimal Solutions

As in the ERM development, in addition to Assumptions 2.2, it is convenient to guarantee that
for all n large enough, Fn(θ, δn) is differentiable in a neighborhood V of θ∗ and

∇Fn(θ, δn) = ∇fn (θ) + δγnDn (θ) + δγnǫn (θ) , (3.8)

for some γ > 0, where Dn (θ) converges in probability to ∇̺ (θ) uniformly around a closed
neighborhood V̄ of θ∗. In consequence, we obtain the following analog of Theorem 3.1, which
follows from the finite dimensional Delta Theorem. Recall that θ∗(v) is an optimal solution of
problem (2.9) and θ′∗(0, ·) is its directional derivative at v = 0.

4The right hand side of (3.7) is a deterministic number. Therefore convergence in distribution ‘ ’ there is the
same as convergence in probability.
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Theorem 3.2 Suppose that: Assumptions 2.2 and 2.3 hold, conditions (3.2) - (3.3) are satisfied,
identity (3.8) holds with Dn (·) converging in probability to ∇̺ (·) uniformly around a closed
neighborhood V̄ of θ∗, and that θ∗(v) is directionally differentiable at v = 0 (in the Hadamard
sense). Let Z ∼ N(0,Σ) with covariance matrix Σ = Cov(∇l(X, θ∗)). Then the DRO optimal
solutions can have three types of asymptotic behavior:
(A) If δγn = o

(

n−1/2
)

, then

θ̄n = θn + op
(

n−1/2
)

, (3.9)

thus
n1/2

(

θ̄n − θ∗
)

 θ′∗ (0, Z) . (3.10)

(B) If δγn = n−1/2, then
n1/2

(

θ̄n − θ∗
)

 θ′∗ (0, Z + ∇̺(θ∗)) . (3.11)

(C) If o (δγn) = n−1/2, then
δ−γ
n

(

θ̄n − θ∗
)

 θ′∗ (0,∇̺ (θ∗)) . (3.12)

4 General Principle in Action: Optimal Values

In this section, we apply the general principle to the asymptotics of the value function in two of
the main types of DRO formulations, namely, phi-divergence and Wasserstein DRO.

4.1 The Phi-Divergence Case

We recall the definition of the distributional uncertainty set for the phi-divergence case. Consider
a convex lower semi-continuous function φ : R → R+∪{+∞} such that φ(1) = 0 and φ(t) = +∞
for t < 0. For probability measures Q,P ∈ P such that Q is absolutely continuous with respect
to P with the corresponding density dQ/dP , the φ-divergence is defined as (cf., [7],[12])

Dφ(Q‖P ) := EP [φ(dQ/dP )] =

∫

φ(dQ/dP )dP. (4.1)

In particular, for φ(t) := t log (t)−t+1, t ≥ 0, this becomes the Kullback–Leibler (KL) divergence
of Q from P . The ambiguity set Mδ(P ) associated with Dφ(·‖P ) is defined as

Mδ (P ) := {Q≪ P : Dφ(Q‖P ) ≤ δ}. (4.2)

By duality arguments the corresponding distributionally robust functional can be written in the
form (cf., [2], [3], [16])

sup
Q∈Mδ(P )

EQ[Y ] = inf
µ,λ>0

{λδ + µ+ λEP [φ∗((Y − µ)/λ)]} , (4.3)

where φ∗(y) = supt∈R{yt − φ(t)} is the convex conjugate of φ. Using this representation we
can obtain an asymptotic expansion for (4.3) as a function of δ. This expansion can be helpful
to suggest the form of the expansion in (3.2) and (3.8). For this, we need to assume certain
regularity properties of φ (t) around t = 1.
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Assumption 4.1 Assume that φ(t) is two times continuously differentiable in a neighborhood
of t = 1 with κ := 2/φ′′(1) > 0.

Under this condition we have the following expansion, which is obtained, in order to simplify
our exposition, under the assumption that the probability measure P has compact support. See
also the results in [11], which provide additional correction terms under a fixed P . The uniform
feature of the statement below is helpful in the statistical analysis. Our development here will
also be used in the expansion of the optimal solutions.

Proposition 4.1 Suppose that Assumption 4.1 holds, that P (|Y | ≤ ν) = 1 for some ν ∈ (0,∞).
Then, for any b0 > 0,

sup
Q∈Mδ(P )

EQ[Y ] − EP (Y ) − δ1/2κ1/2
√

VarP [Y ] = o
(

δ1/2
)

, (4.4)

uniformly over Borel probability measures P supported on [−ν, ν] such that VarP [Y ] ≥ b0. More-
over, there is δ̄ > 0 such that for all δ < δ̄

arg max{EQ[Y ] : Q ∈ Mδ (P )}

is unique.

Proof. Note that we can write

sup
Q∈Mδ(P )

EQ[Y ] = sup
EP (Z)=1,EP (φ(Z))≤δ

EP [Y Z],

where the sup is taken over the set of positive random variables Z satisfying the specified moment
constraints. We may assume that EP [Y ] = 0 for simplicity since we can always center the
objective function around EP [Y )]. In turn, by letting ∆̄ = (Z−1)/δ1/2, the previous optimization
problem is equivalent to

δ1/2 sup
EP (∆̄)=0,∆̄≥−δ−1/2,EP (φ(1+δ1/2∆̄))≤δ

EP [Y ∆̄]. (4.5)

Since |Y | ≤ ν and EP [Y ] = 0, then ∆̄ = aY is feasible for any a > 0 provided that aν ≤ δ−1/2

and
EP [φ(1 + δ1/2∆̄)] ≤ δ.

In turn, since φ (t) is two times continuously differentiable at t = 1, we have that

δ−1φ(1 + δ1/2ay)) → a2y2φ′′ (1) /2

as δ → 0 uniformly over compact sets. Therefore, we conclude that there exists δ0 > 0 such that
for any δ < δ0

sup
EP (∆̄)=0,∆̄≥−δ−1/2,EP (φ(1+δ1/2∆̄))≤δ

EP [Y ∆̄]

≥ sup
a>0,a2EP (Y 2)/2≤(1−δ0)/φ′′(1)

EP [aY 2] =
√

κ (1 − δ0) ·
√

EP [Y 2].
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Since δ0 > 0 can be chosen to be arbitrarily small, we conclude an asymptotic lower bound which
retrieves (4.4). For the upper bound, we apply the duality result (4.3) in the form corresponding
to (4.5), we obtain

sup
EP (∆̄)=0,∆̄≥−δ−1/2,δ−1EP (φ(1+δ1/2∆̄))≤1

EP [Y ∆̄]

= min
λ̄>0,µ̄

{λ̄+ EP [ sup
∆̄≥−δ−1/2

{(Y + µ̄) ∆̄ − λ̄δ−1/2φ(1 + δ1/2∆̄)}]}

≤ min
λ̄>0

{λ̄+ EP [ sup
∆̄≥−δ−1/2

{Y ∆̄ − λ̄δ−1/2φ(1 + δ1/2∆̄)}]}. (4.6)

We will plug in

λ̄0 = arg min{λ̄+ κEP [Y 2]/4λ̄ : λ̄ > 0} = 2−1
√

κEP [Y 2] > 0

into (4.6) to obtain our upper bound. Using that λ̄0 > 0 and that φ is convex with φ′′ (1) > 0,
we have that the family of (continuous) functions

sδ (y) := sup
∆̄≥−δ−1/2

{y∆̄ − λ̄δ−1/2φ(1 + δ1/2∆̄)}

converges uniformly on compact sets to

s0 (y) = sup
∆̄

{y∆̄ − λ̄∆̄2/κ} =
κy2

4λ̄
.

Therefore we obtain that

min
λ̄>0

{λ̄+ EP [ sup
∆̄≥−δ−1/2

{Y ∆̄ − λ̄δ−1/2φ(1 + δ1/2∆̄)}]}

≤ λ̄0 + EP [ sup
∆̄≥−δ−1/2

{Y ∆̄ − λ̄0δ
−1/2φ(1 + δ1/2∆̄)}] →

√
κ ·

√

EP [Y 2].

These estimates, which are uniform given that |Y | ≤ ν, yield the estimate in the proposition.
The uniqueness is standard, it follows from the local strong convexity of φ (·) at the origin. �

Recall that σ2(θ) := VarP∗
(l(X, θ)), and that g (·) is a mean zero Gaussian random field.

Expansion (4.4) immediately yields, at least when supθ∈Θ |l (X, θ)| is P∗-bounded, that

Fn(θ, δn) = fn (θ) + δ1/2n κ1/2σ(θ) + δ1/2n ǫn (θ) . (4.7)

Consequently, we obtain the following result.

Theorem 4.1 Suppose that supθ∈Θ |l (X, θ)| is P∗-essentially bounded, that Assumption 2.1 and
Assumption 4.1 hold, and that σ2(θ) > 0 for all θ ∈ Θ∗. Then, we have the following types of
asymptotic behavior of the DRO optimal values.
(a-phi) If δn = o (n−1), then

n1/2
(

ϑ̄n − ϑ
)

 inf
θ∈Θ∗

g(θ). (4.8)
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(b-phi) If δn = βn−1, then

n1/2
(

ϑ̄n − ϑ
)

 inf
θ∈Θ∗

{

g(θ) + κ1/2β1/2σ(θ)
}

. (4.9)

(c-phi) If o (δn) = n−1, then

δ−1/2
n

(

ϑ̄n − ϑ
)

 κ1/2 inf
θ∈Θ∗

σ(θ), (4.10)

so the bias term induced by the DRO formulation dominates the statistical error.

Proof. Proof of this theorem is quite standard (cf., [17, proof of Theorem 5.7]). For the
sake of completeness we briefly outline proof of case (b-phi). Note that our assumptions imply
Assumption 2.1, and hence σ2(θ) is a continuous function of θ. Therefore there is a compact
neighborhood Θ̄ of Θ∗ such that σ2(θ) > 0 for all θ ∈ Θ̄. We can restrict the minimization to Θ̄
for which the expansion (4.7) holds.

Consider the space C(Θ̄) of continuous functions g : Θ̄ → R equipped with the sup-norm, and
functional V (g) := infθ∈Θ̄ g(θ), mapping C(Θ̄) into the real line. This functional is directionally
differentiable in the Hadamard sense with the directional derivative at a point µ ∈ C(Θ̄) given
by V ′(µ, h) = infθ∈Θ̄(µ) h(θ), where Θ̄(µ) := arg minθ∈Θ̄ µ(θ). We have that ϑ̄n = V (Fn) and

ϑ = V (f), where Fn(·) := Fn(·, δn). By the functional CLT and (4.7) it follows that n1/2(Fn−f)
converges in distribution (weakly) to g(θ)+κ1/2β1/2σ(θ). We can apply now the functional Delta
Theorem to conclude (4.9). �

Given that φ(·) is only assumed to satisfy Assumption 4.1, without imposing any growth
condition, situations such as the (c-phi) case require imposing stronger moment conditions than
just assuming VarP∗

[l (X, θ)] < ∞. This can be seen in the KL-divergence case in which φ (t) =
t log (t)− t+1. For fixed δ > 0, the population solution requires that l (X, θ) has a finite moment
generating function in a neighborhood of the origin. Therefore, if δn converges to zero sufficiently
slowly and l (X, θ) has infinite moments of order 2 + ε, an expansion such as (4.7) may not hold.
However, if φ (t) = (t− 1)2, it follows that expansion (4.7) holds exactly with ǫn (θ) = 0.

On the other hand, the result in [8, Theorem 2] provides more for the case (b-phi) since it does
not require compact support (although it requires φ to be three times continuously differentiable).
The following example shows that the smoothness of φ (·) is important in deriving the asymptotics
in the previous result with δn = n−1/2.

Example 4.1 Consider φ(t) := |t−1|, t ≥ 0. In that case (e.g., [16, Example 3.12]), for δ ∈ (0, 2)
and essentially bounded Y ,

sup
Q∈Mδ(P )

EQ[Y ] = (δ/2)ess sup(Y ) + (1 − δ/2)AV@RP,1−δ/2(Y ), (4.11)

where
AV@RP,α(Y ) := inf

τ∈R

{

τ + α−1
EP [Y − τ ]+

}

, α ∈ (0, 1]. (4.12)

Note that AV@RP,1(Y ) = EP [Y ] and as α tends to one,
∣

∣AV@RP,α(Y ) − EP [Y ]
∣

∣ = O(1 − α), (4.13)

12



provided Y is essentially bounded.
Suppose that l(x, θ) is bounded on S × Θ, and hence

Fn(θ, δn) = (δn/2) max
1≤i≤N

l(Xi, θ) + (1 − δn/2)AV@RPn,1−δn/2(l(X, θ)). (4.14)

Consider δ n = βn−1 with β > 0. Then the first term in (4.14) is of order O(n−1), and by (4.13)
the second term is EPn [l(X, θ)] + O (n−1). Consequently in that case ϑ̄n = ϑn + op(n

−1/2), and
hence this corresponds to case (a) in Theorem 3.1. This shows that the assumption of smoothness
(differentiability) of φ(·) is essential for derivation of the asymptotics of ϑ̄n. Here some additional
terms in the asymptotics of ϑ̄n appear when δn is of order O(n−1/2), rather than O(n−1). �

4.2 The Wasserstein Distance Case

We use P(S × S) to denote the set of Borel probability measures on the product space S × S.
Let c : S × S → R+∪{+∞} be a lower semi-continuous function such that c(x, y) = 0 if and only
if x = y. This function measures the marginal cost of a transporting a unit of mass from a source
location to a target location, respectively. The optimal transport cost between P,Q ∈ P(S) is
given by

Dc (P,Q) := min{Eπ [c (X, Y )] : π ∈ P (S × S) , πX = P, πY = Q}, (4.15)

where Eπ[ · ] is the expectation under a joint distribution π ∈ P (S × S) and πX and πY denote
the marginal distributions of X and Y , respectively. It turns out that the optimizer is always
achieved, thus we write ‘min’ instead of ‘ inf’. Let ‖ · ‖ be a norm on the space R

d. An impor-
tant special case corresponds to the choice c (x, y) := ‖x − y‖p for some p > 0, in which case

Dc (P,Q)1/p is the so-called p-Wasserstein distance. The reader is referred to the text of Villani
[19] for more background on optimal transport.

For any given P ∈ P(S) and δ ≥ 0 we have the following dual result (cf., [9], [4], [10])
assuming that h (·) is upper semi-continuous and h(X) is P -integrable,

sup
Q:Dc(P,Q)≤δ

EQ[h(Y )] = min
λ≥0

{

λδ + EP

[

h̄λ(X)
]}

, (4.16)

where
h̄λ(x) := sup

y∈S
{h(y) − λc(x, y)}, λ ≥ 0. (4.17)

Throughout the rest of our discussion, we will choose c (x, y) := ‖x− y‖p for p ∈ (1,∞) and
therefore write Dp (P,Q) for this choice of cost function. Further, we use ‖·‖∗ to denote the dual
norm, namely,

‖y‖∗ = sup{xT y : ‖x‖ = 1}.
As in the phi-divergence case, assuming that P is fixed and has compact support, for example,

we can obtain an asymptotic expansion for (4.16) as a function of δ. By writing E
(p−1)/p
P [ · ] we

mean (EP [ · ])(p−1)/p.

Proposition 4.2 Suppose that h (·) is continuously differentiable and the mapping

x 7→ sup{‖∇h (x + ∆) −∇h (x)‖ /(1 + ‖∆‖p−1) : ∆ ∈ R
d} (4.18)
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is bounded on compact sets. Then, for any b0 > 0,

sup
Q:Dp(P,Q)≤δ

EQ[h(Y )] − EP [h(X)] − δ1/pE
(p−1)/p
P [‖∇h(X)‖p/(p−1)

∗ ] = o
(

δ1/p
)

,

uniformly over P ∈ P([ − ν, ν]d) such that EP ‖∇h (Y )‖ ≥ b0.

Proof. The proof of this result is similar to the one given in the phi-divergence case. We
start by observing that

sup
Q:Dp(P,Q)≤δ

EQ[h(Y )] = EP [h(X)] + sup
EP ‖∆‖p≤δ

EP [h(X + ∆) − h(X)],

where the optimization in the right hand side is taken over random variables ∆. We let δ1/p∆̄ = ∆
and note that

sup
EP ‖∆‖p≤δ

EP [h(X + ∆) − h(X)]

= δ1/p sup
EP‖∆̄‖p

≤1

EP [
(

h(X + δ1/p∆̄) − h(X)
)

/δ1/p]

= δ1/p sup
EP‖∆̄‖p

≤1

EP

[
∫ 1

0

∇h(X + tδ1/p∆̄) · ∆̄dt

]

.

Next, we can obtain a lower bound by considering a specific form of ∆̄ suggested by the formal
asymptotic limit as δ → 0. Note that

EP [∇h(X) · ∆̄] ≤ EP [‖∇h(X)‖∗
∥

∥∆̄
∥

∥],

and the equality is achieved if we choose any ∆̄∗ which is a constant multiple of

∆̄1 (X) ∈ arg max{∇h(X) · ∆̄ :
∥

∥∆̄
∥

∥ = 1},

(The function ∆̄1 (·) can be selected in a measurable way using the uniformization technique of
Jankov-von Neumann.) Next, if

∥

∥∆̄∗
∥

∥ = a ‖∇h(X)‖γ∗ , then

EP [‖∇h(X)‖∗
∥

∥∆̄∗
∥

∥] = aEP [‖∇h(X)‖γ+1
∗ ]

and
EP

(
∥

∥∆̄∗
∥

∥

p)
= apEP ‖∇h(X)‖γp∗ = 1.

Letting γp = γ + 1 we have that γ = 1/(p− 1) and therefore

sup
EP‖∆̄‖p

≤1

EP [∇h(X) · ∆̄∗] = E
(p−1)/p
P [‖∇h(X)‖p/(p−1)

∗ ],

with
∆̄∗ (X) = ∆̄1 (X) ‖∇h(X)‖1/(p−1)

∗ E
−1/p
P ‖∇h(X)‖p/(p−1)

∗ .
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The denominator is well defined since EP ‖∇h (Y )‖ > 0 and the random variable ∆̄∗ (X) is
essentially bounded uniformly over the family P ∈ P([−ν, ν]d) and EP ‖∇h (Y )‖ ≥ b0. Since the
gradient ∇h(·) is continuous, then it is uniformly continuous over compact sets and, consequently,
uniformly over ∆̄ in compact sets,

∫ 1

0

∥

∥∇h(x + tδ1/p∆̄) −∇h(x)
∥

∥ ∆̄dt = o (1)

as δ → 0. This yields that

sup
EP‖∆̄‖p

≤1

EP

[
∫ 1

0

∇h(X + tδ1/p∆̄) · ∆̄dt] ≥ E
(p−1)/p
P [‖∇h(X)‖p/(p−1)

∗

]

+ o (1)

uniformly over P ∈ P([− ν, ν]d) and EP ‖∇h (Y )‖ ≥ b0. For the upper bound, we can apply the
duality representation, just as we did in the phi-divergence case. Using duality, we have that

sup
EP‖∆̄‖p

≤1

EP

[
∫ 1

0

∇h(X + tδ1/p∆̄) · ∆̄dt

]

= min
λ̄>0

{

λ̄+ EP

[

sup
∆̄

∫ 1

0

∇h(X + tδ1/p∆̄) · ∆̄dt− λ̄
∥

∥∆̄
∥

∥

p
]}

.

Once again, we select a specific choice λ̄0 given by

0 < λ̄0 = arg min

{

λ̄+ EP [sup
∆̄

{‖∇h(X)‖∗ ·
∥

∥∆̄
∥

∥− λ̄
∥

∥∆̄
∥

∥

p}] : λ̄ ≥ 0

}

.

The fact that λ̄0 > 0 follows because EP ‖∇h(X)‖∗ > 0. We then obtain

sup
EP‖∆̄‖p

≤1

EP

[
∫ 1

0

∇h(X + tδ1/p∆̄) · ∆̄

]

≤ λ̄0 + EP

[

sup
∆̄

{
∫ 1

0

∇h(X + tδ1/p∆̄) · ∆̄dt− λ̄0
∥

∥∆̄
∥

∥

p}
]

.

Next, we argue that the family of functions

sδ (x) := sup
∆̄

[
∫ 1

0

∇h(x+ tδ1/p∆̄) · ∆̄dt− λ̄0
∥

∥∆̄
∥

∥

p
]

converges uniformly on compact sets to the function s0 (x). Let us consider the sup over
∥

∥∆̄
∥

∥ >

ε/δ1/p and note because (4.18) is bounded on compact sets, there exists a constant c0 independent
of x ∈ [−ν, ν]d such that

∫ 1

0

(

∇h(x+ tδ1/p∆̄) −∇h(x)
)

· ∆̄dt− λ̄0
∥

∥∆̄
∥

∥

p

≤ c0(1 + δ(p−1)/p
∥

∥∆̄
∥

∥

p−1
) ‖∆‖ − λ̄0

∥

∥∆̄
∥

∥

p
.
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By selecting δ small enough (depending only on c0 > 0 and λ̄0 > 0) we see that the right hand side
can be made arbitrarily negative uniformly over x ∈ [−ν, ν]d as δ → 0. So, it suffices to consider
only

∥

∥∆̄
∥

∥ ≤ ε/δ1/p, in this case, since ∇h(·) is continuous, then it is uniformly continuous on
compacts. So, we can write, in terms of the (uniform) modulus of the continuity function m (·)

∥

∥∇h(x+ tδ1/p∆̄) −∇h(x)
∥

∥ ≤ m (ε) ,

where m (ε) → 0. In conclusion, we have that

sup
‖∆‖≤ε/δ1/p

[∇h(x) · ∆̄ (1 −m (ε)) − λ̄0
∥

∥∆̄
∥

∥

p
]

≤ sδ (x) ≤ sup
‖∆‖≤ε/δ1/p

[∇h(x) · ∆̄ (1 + m (ε)) − λ̄0
∥

∥∆̄
∥

∥

p
].

Further, the range ‖∆‖ ≤ ε/δ1/p in the upper and lower envelopes above can be further con-
strained to be compact (independent of ε and δ, but depending on λ̄0 > 0). From the above
expressions, we deduce the required uniform convergence of sδ (·) → s0 (·) on compacts. The
asymptotic upper bound then follows from these estimates. �

Similar results have appeared in the literature (cf., [1]). An important difference which is
useful in our analysis is that the above result is uniform over a class P ∈ P([ − ν, ν]d) such that
EP ‖∇h (Y )‖ ≥ b0.

In order to write the expansion of Fn(θ, δn) we clarify that here we use ∇xl (x, θ) to denote
the gradient with respect to x. Under suitable boundedness and smoothness assumptions, the
previous result yields

Fn(θ, δn) = fn (θ) + δ1/pn E
(p−1)/p
Pn

[‖∇xl (X, θ)‖p/(p−1)
∗ ] + δ1/pn ǫn (θ) . (4.19)

We collect the precise statement of our result next. The proof is similar to that of Theorem 4.1
and thus omitted.

Theorem 4.2 Suppose l (·, θ) is continuously differentiable, that

(x, θ) 7→ sup{‖∇l (x + ∆, θ) −∇l (x, θ)‖ /(1 + ‖∆‖p−1) : ‖∆‖ ≥ 0} (4.20)

is locally bounded, that P∗ has compact support, l (x, ·) is Lipschitz continuous and

inf
θ∈Θ∗

EP∗
[‖∇xl (X, θ)‖] > 0. (4.21)

Then, we have the following types of behavior of optimal values .
(a-W) If δ

1/p
n = o

(

n−1/2
)

, then

n1/2
(

ϑ̄n − ϑ
)

 min
θ∈Θ∗

g(θ). (4.22)

(b-W) If δ
1/p
n = βn−1/2, then

n1/2
(

ϑ̄n − ϑ
)

 min
θ∈Θ∗

{

g(θ) + E
(p−1)/p
P∗

[

‖∇xl (X, θ)‖p/(p−1)
∗

]

}

.
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(c-W) If o
(

δ
1/p
n

)

= n−1/2, then

δ−1/p
n

(

ϑ̄n − ϑ
)

 min
θ∈Θ∗

E
(p−1)/p
P∗

[‖∇xl (X, θ)‖p/(p−1)
∗ ].

A completely analogous situation to Example 4.1 can also be constructed in Wasserstein DRO
to show that both differentiability of l (·, θ) and p > 1 are important in deriving the asymptotics
in the critical case. The case in which p = 2 was covered in [5] under suitable quadratic growth
conditions and the existence of second moments.

5 General Principle in Action: Optimal Solutions

We complete our discussion in this section, considering optimal solutions for phi-divergence and
DRO problems. A key observation is that in both the phi-divergence case and the Wasserstein
DRO case the uncertainty set is compact in the weak topology and therefore, if Assumption 2.3
holds, the function Fn(·, δn) is differentiable and its gradient has expansion (3.8). In fact, the
derivative can be shown to exist if we are able to argue that, for δ sufficiently small, the worst case
measure is unique. This is precisely the strategy that we will pursue in this section. Throughout
the section we impose the condition that Θ∗ = {θ∗}. Recall that σ2(θ) := VarP∗

(l(X, θ)).

5.1 The Phi-Divergence Case

Theorem 5.1 Suppose that Assumptions 2.2, 2.3 and 4.1 hold, that l (x, ·) is essentially bounded
under P∗ and σ

2(θ∗) > 0, and that θ∗(v) is directionally differentiable at v = 0 (in the Hadamard
sense). Let Z ∼ N(0,Σ), where Σ is the covariance matrix of ∇l(X, θ∗). Then we have the
following.
(A-phi) If δn = o (n−1), then

n1/2
(

θ̄n − θ∗
)

 θ′∗ (0, Z) .

(B-phi) If δn = βn−1, then

n1/2
(

θ̄n − θ∗
)

 θ′∗
(

0, Z + κ1/2β1/2∇σ(θ∗)
)

.

(C-phi) If o (δn) = n−1, then

δ−1/2
n

(

θ̄n − θ∗
)

 θ′∗
(

0, κ1/2β1/2∇σ(θ∗)
)

.

Proof. Applying the centering and scaling used to obtain (4.5) we obtain

Fn(θ, δn) = fn (θ) + δ1/2n Dn (θ, δn) ,

where
Dn (θ, δn) = sup

EPn (∆)=0,∆≥−δ
−1/2
n ,δ

−1/2
n EPn (φ(1+δ

1/2
n ∆))≤1

EPn [ln (X, θ) ∆], (5.1)

and
l̄n (X, θ) = l (X, θ) − fn (θ) .
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It suffices to show that
∇Dn (θ, δn) → ∇̺ (θ)

uniformly over some region ‖θ − θ∗‖ ≤ δ0 for some δ0. Note that the optimization region in (5.1)
is compact in the weak topology and therefore, by Danskin’s Theorem (see [17, sections 5.1.3
and 7.1.5], Section 7), we have that Dn (·, δn) is directionally differentiable and by the uniqueness
of the optimal ∆̄n for δn sufficiently small we have that

∇Dn (θ, δn) = EPn [∇ln (X, θ) ∆̄n (θ)].

We can precisely characterize ∆̄n (θ) from Proposition 4.1 over a region ‖θ − θ∗‖ ≤ δ0 for which
we can guarantee V arPn[l (X, θ)] > 0. Note that such δ0 > 0 can be found assuming that n > N
(for some random but finite almost surely N because of the Strong Law of Large Numbers and
continuity since V arP∗

[l (X, θ∗)] > 0. We have, uniformly over ‖θ − θ∗‖ ≤ δ0, for n > N ,

∆̄n (θ) =
√
κ

ln (X, θ)
√

φ′′ (1)V arPn[l (X, θ)]
+ ǫn (θ) .

On the other hand, defining
l̄ (X, θ) = l (X, θ) − f (θ) ,

we have that
∇̺ (θ) = EP∗

[l̄(X, θ) · ∆̄ (θ)],

where

∆̄ (θ) =
√
κ

l̄ (X, θ)
√

φ′′ (1) V arP∗
[l (X, θ)]

.

We obtain

∇Dn (θ, δn) −∇̺ (θ)

= EPn [∇ln (X, θ) ∆̄n (θ)] − EP∗
[∇l̄(X, θ) · ∆̄ (θ)]

= EPn [
(

∇ln (X, θ) −∇l̄(X, θ)
)

∆̄n (θ)]

+ EPn [∇l̄(X, θ)(∆̄n (θ) − ∆̄ (θ))]

+ EPn [∇l̄ (X, θ) ∆̄ (θ)] − EP∗
[∇l̄(X, θ) · ∆̄ (θ)].

It follows that
∆̄n (θ) → ∆̄ (θ)

uniformly over ‖θ − θ∗‖ ≤ δ0, and

(

∇ln (X, θ) −∇l̄(X, θ)
)

→ 0

uniformly in probability (in fact almost surely) as n → 0. Uniform convergence in probability
over ‖θ − θ∗‖ ≤ δ0 follows from these observations. �
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5.2 The Wasserstein Distance Case

As in Proposition 4.2, in order to simplify the exposition, we assume that P∗ has a compact
support. We also let ‖·‖ be the ℓp̄ norm for p̄ ∈ (1,∞). This choice, in particular, satisfies that
for any x such that ‖x‖ = 1, the set

arg max{zTx : ‖z‖ = 1} is a singleton. (5.2)

This will help us argue, in the presence of Lipschitz gradients, that the worst case adversarial
distribution is unique when the distributional uncertainty, δ, is sufficiently small and this, in turn,
will help guarantee differentiability. In this section, we use ∇θ and ∇x to denote the derivatives
with respect to θ and x, respectively. The derivative with respect to all of the arguments is
simply denoted via ∇.

Theorem 5.2 Suppose that Assumptions 2.2 and 2.3 hold. Further, assume that conditions
(4.20) - (4.21) hold and that θ∗(v) is directionally differentiable at v = 0 (in the Hadamard
sense). Let Z ∼ N(0,Σ), where Σ is the covariance matrix of ∇l(X, θ∗). Then, we have the
following.
(A-W) If δ

1/p
n = o

(

n−1/2
)

, then

n1/2
(

θ̄n − θ∗
)

 θ′∗ (0, Z) . (5.3)

(B-W) If δ
1/p
n = βn−1/2, then

n1/2
(

θ̄n − θ∗
)

 θ′∗

(

0, Z + ∇θE
(p−1)/p
P∗

[‖∇xl (X, θ∗)‖p/(p−1)
∗ ]

)

. (5.4)

(C-W) If o
(

δ
1/p
n

)

= n−1/2, then

δ−1/2
n

(

θ̄n − θ∗
)

 θ′∗

(

0,∇θE
(p−1)/p
P∗

[‖∇xl (X, θ∗)‖p/(p−1)
∗ ]

)

. (5.5)

Proof. Most of the work has already been done in the proof of Proposition 4.2. We have
that

Fn(θ, δn) = fn (θ) + δ1/pn Dn (θ, δn) ,

where

Dn (θ, δn) := sup
EPn‖∆̄‖p

≤1

EPn

[
∫ 1

0

∇xl(X + tδ1/pn ∆̄, θ) · ∆̄dt

]

. (5.6)

It suffices to show uniform convergence of ∇Dn (θ, δn) to ∇̺ (θ) in some neighborhood ‖θ − θ∗‖ ≤
δ0 for some δ0 > 0.

From the proof of Proposition 4.2 we can collect several facts, note that we are assuming that
∇l(·) is L-Lipschitz, which guarantees (4.20).

I) First,
sup
θ∈Θ

|Dn (θ, δn) − ̺ (θ)| → 0

in probability.
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II) Moreover, we also saw that there exists a random N (finite with probability one) such
that

Dn (θ, δn)

= λ̄n (θ) + EPn

[

max
∆̄

∫ 1

0

∇xl(X + tδ1/pn ∆̄, θ) · ∆̄dt− λ̄n (θ)
∥

∥∆̄
∥

∥

p
]

,

with λ̄n (θ) > 0 for all n > N uniformly over ‖θ − θ∗‖ ≤ δ0 for δ0 > 0 small enough so
that EP∗

[‖∇l(X, θ)‖] > δ0. Note that such δ0 exists by continuity since we assume that
EP∗

[‖∇l(X, θ∗)‖] > 0.
III) Finally, also on the set ‖θ − θ∗‖ ≤ δ0 from II), since ∇l(·) is Lipschitz for all δn sufficiently

small, we have that the maximizer ∆̄n (X, θ) inside the expectation is unique because of (5.2)
and it converges uniformly on compacts in the variable X and over ‖θ − θ∗‖ ≤ δ0 to

∆̄ (X, θ) = ∆̄1 (X, θ) ‖∇l(X, θ)‖1/(p−1)
∗ E

−1/p
P ‖∇l(X, θ)‖p/(p−1)

∗ , (5.7)

where

∆̄1 (X, θ) = arg max{∇l(X, θ) · ∆̄ :
∥

∥∆̄
∥

∥ = 1}.
Next, by Danskin’s Theorem, see [17, sections 5.1.3 and 7.1.5], Section 7, because the uncer-

tainty set is compact in the weak topology, we have that Dn (·, δn) is differentiable by uniqueness
of ∆̄n (X, θ). The most convenient representation to see this is (5.6). It is also direct that ̺ (·)
is differentiable everywhere. Moreover, since

̺ (θ) = sup
EP∗

‖∆‖p≤1

EP∗
[∇xl(X, θ) · ∆],

Danskin’s Theorem also applies and we have that

∇θ̺ (θ) = EP∗
[∇θ,xl(X, θ) · ∆̄],

where ∆̄ is given in (5.7). So, we have (using ∆̄n) instead of ∆̄n (X, θ),

∇θDn (θ, δn) −∇θ̺ (θ)

= EPn

[
∫ 1

0

∇θ,xl(X + tδ1/pn ∆̄n, θ) · ∆̄ndt] − EP∗
[∇θ,xl(X, θ) · ∆̄

]

= EPn

[
∫ 1

0

(

∇θ,xl(X + tδ1/pn ∆̄n, θ) −∇θ,xl(X, θ)
)

· ∆̄ndt

]

+ EPn [∇θ,xl(X, θ) · ∆̄n] − EP∗
[∇θ,xl(X, θ) · ∆̄].

Since ∆̄n (X, ·) converges (in probability) uniformly over compact sets in X and ‖θ − θ∗‖ ≤ δ0
and it is bounded almost surely, we obtain the required uniform convergence occurs in probability
from the fact that ∇l(·) is Lipschitz continuous. �

A similar result is obtained in [5] quadratic growth conditions and the existence of second
moments (thus relaxing compactness assumptions). However, [5] primarily focuses on the case
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in which the optimal solution lies in the interior of the feasible region. Our discussion here can
be used in combination with the analysis in [5] to deal with boundary cases.
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