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Abstract

Reduction operations are extensively employed in many computational
problems. A reduction consists of, given a finite set of numeric elements,
combining into a single value all elements in that set, using for this a
combiner function. A parallel reduction, in turn, is the reduction opera-
tion concurrently performed when multiple execution units are available.
The current work reports an investigation on this subject and depicts
a GPU-based parallel approach for it. Employing techniques like Loop
Unrolling, Persistent Threads and Algebraic Expressions to avoid thread
divergence, the presented approach was able to achieve a 2.8x speedup
when compared to ???, using a generic, simple and easily portable code.
Experiments conducted to evaluate the approach show that the strategy
is able to perform efficiently in AMD and NVidia’s hardware, as well as
in OpenCL and CUDA.

1 Introduction

Widely used as a basic subroutine for a number of algorithms such as Counting
Sort [6], Stream Compaction [2], Golden Section and Fibonacci Methods [18]
and Radix Sort [6, Chapter 8.3].

The remainder of this paper is structured as follows. Section 1.1 presents
some basic concepts. Section 2 briefly describes the techniques currently in use.
Section 3 explains our approach. Section 4 details the experimental environment
and the results. Finally, Section 5 gives general remarks about the presented
strategy.

1.1 Problem Definition

Formally, a reduction can be defined as follows [24]: Given a set X with n
values, X = {x0, x1, ..., xn−1}, compute x0 ⊗ x1 ⊗ ... ⊗ xn−1. The associative
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operator ⊗ (also known as combiner function) can be (but is not limited to)
any one of the set {+,×,∧,∨,⊕,∩,∪,max,min}.

Consider the pseudo code shown in Algorithm 1. At first glance, it seems
that the algorithm is inherently sequential, since the variable accumulator de-
pends on the value computed in the previous step, preventing any attempt of
parallelization. However, it is possible to avoid this problem by making use
of two basic properties of addition and multiplication operations: Associativity
and Commutativity2.

Algorithm 1: Summation(A)

Input: A set A = {a1, a2, . . . , an} of numeric elements
Output: The sum of all elements

1 accumulator ← 0
2 for i← 1 to n do
3 accumulator ← accumulator + ai

4 return accumulator

• Associativity means that, given three or more numbers, they can be
linked in any order without changing the final result. Taking the sum as
an example, it’s possible to do a1 + a2 and, then, add a3, and the result
will be the same as doing a3 + a2 and then adding a1. Formally, we have
(a1 + a2) + a3 ≡ a1 + (a2 + a3);

• Commutativity ensures that no matter the order in which an operation
on two numbers a1 and a2 is performed, the result will always be the same.
Formally, for multiplication, we have a1 · a2 ≡ a2 · a1.

Considering that the order in which the elements are combined does not
affect the final result3, 4, these two properties can be used, dividing the problem
into smaller subproblems and these, in turn, solved in parallel. After solving
each subproblem, the partial results are combined to produce the final result.
Figure 1 illustrates the process using the associative operator “+” in an array
with 16 elements.

2Other two properties, Neutral Element and Closeness, guarantee, respectively, that any
number added to zero results in the number itself, and when we add/multiply two or more
numbers within the same set (natural, for example), the result will always be a number within
the same set.

3Although, mathematically, this is true for numbers in any set, in computational terms
things are a little more complicated. For instance, these properties hold for the set of integers,
but the same does not happen for the floating point numbers due to the inherent imprecision
that arises when combining (adding, multiplying, etc.) numbers with different exponents,
which leads to the absorption of the lower bits during the combine operation. As an example,
mathematically the result of (1.5 + 450 − 450) is always the same, no matter the order the
terms are added, whereas the floating point computed value can result in 0 or 1.5, depending
on the sequence in which operations are performed [7, 10, 15, 21].

4Note that, although this is a complicating factor when a large numerical precision is
necessary, it did not actually preclude its application in a problem when the accumulated
error using single-precision floats did not exceed a certain pre-defined threshold. On the
other hand, if such precision becomes necessary, the problem could be greatly minimized
by adopting the use of double-precision floating points (which potentially can decrease the
application performance for certain GPU models) or using some strategies to reduce truncation
errors, like the one proposed by Kahan [17], among others.
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Figure 1: Parallel reduction – associative reduction tree.

2 Parallel Reduction in GPUs

Since the arrival of programmable GPUs, some strategies to accelerate the re-
duction operation on such devices have been proposed. The two most well
known are those described by Mark Harris [14] and Bryan Catanzaro [3]. Most
recently, Justin Luitjens [19] presented some improvements to the strategies
described in [14]. Unfortunately, the strategies adopted by [14] and [19], al-
though very efficient, are limited to hardware and software provided by NVidia,
restricting their use.

On the other hand, the proposal of Catanzaro [3] is based on the open
standard OpenCL [11], adopted by a myriad of manufacturers, what makes it
portable. Nevertheless, the code presented in [3] also has a weakeness, as it does
not adopt some strategies that could significantly improve its performance.

This section details how the associative and commutative properties can be
used to implement efficient parallel reductions on GPUs. As highlighted at the
end of Section 1.1, the basic idea is to “split” the problem into smaller pieces and
solve them in parallel. However, the execution environment (GPU hardware)
imposes some restrictions that must be considered to maximize the speedup.
Therefore, the details of how GPUs are organized [5, 27] will dictate the choices
from now on.

The approaches of Harris [14] and Catanzaro [3] to deal with reductions in
GPUs operate in a pretty similar way, using a tree-based structure.

One of the aspects to be considered is the number of elements in the collection
(vector) in which the reduction will be applied. If this amount is sufficiently
small and can be stored in the local memory of each SM, then the reduction
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becomes quite simple. In [3], Catanzaro presents some strategies for this case
and conducts performance comparisons between them. Then, after describing
how reductions can be efficiently performed in small sets, Catanzaro shifts his
focus to the cases in which a large volume of data must be handled. Three
strategies are presented and a winner, called “Two-Stage Parallel Reduction”,
is elected. Harris [14] deals only with parallel reduction in large datasets.

Our approach is mainly based on a proposal from Catanzaro [3]. Therefore,
a more detailed description of it is presented. First, however, we also give an
explanation of the strategies by Harris [14] and Luitjens [19], since some ideas
for speeding up the computation came from them. Hence, unlike the rest of the
thesis, here their original code is presented, and not just the pseudo code.

2.1 Mark Harris’ Work

The work presented by Harris [14] focuses on techniques for performing reduc-
tions of large data volumes. The author shows, through successive versions of
the same algorithm, how bad decisions or an incorrect way of mapping the prob-
lem to the target platform can negatively impact the application performance.

Problems like shared memory bank conflict, lack of communication between
thread blocks (making it impossible for a kernel to reduce a large array at once)
and highly divergent warps are addressed. Starting with a naive version, step by
step improvements are described, reaching an implementation 30x faster than
the first one. Next, we show how the author achieved such speedups.

Harris performed experiments using a G80 GPU. This video card has a 384-
bit memory interface, with a 900 MHz DDR memory, which leads to a theoretic
384∗1800

8 = 86.4GB/s of memory bandwidth5. All tests were conducted using a
vector with 222 (4M) integer values.

As a result of all the applied optimizations, the final version of the code runs
in 0.268ms and the memory bandwidth usage reaches 62.671GB/s. All these
improvements are summarized in Table 1.

Time
(ms)

Memory
Bandwidth

(GB/s)

Step
speedup

Cummulative
speedup

Kernel 1: interleaved addressing with diver-
gent branching

8.054 2.083

Kernel 2: interleaved addressing with bank
conflicts

3.456 4.854 2.33x 2.33x

Kernel 3: sequential addressing 1.722 9.741 2.01x 4.68x
Kernel 4: first add during global load 0.965 17.377 1.78x 8.34x
Kernel 5: unroll last warp 0.536 31.289 1.8x 15.01x
Kernel 6: completely unrolled 0.381 43.996 1.41x 21.16x
Kernel 7: multiple elements per thread 0.268 62.671 1.42x 30.04x

Table 1: Performance for parallel reduction of 222 integer elements (extracted
from [14]).

5Memory bandwidth basically determines how fast is the memory. Usually, it is measured
in gigabytes per second (GB/s). The more bandwidth of the memory and the more it is
explored by the running program, the faster the computation.
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2.2 Justin Luitjens’ Work

In [19] Luitjens shows how a new feature of the NVidia’s Kepler (and newer)
GPU architecture can be used to make reductions even faster when compared
to the strategies presented in [14]: the shuffle (SHFL) instruction.

Usually, work-items inside the same SM use the local (shared) memory when
they need to communicate (exchange information). This involves a three-step
process: writing the data to local memory, perform a synchronization barrier
and then read the data back from local memory. The Kepler and newer architec-
tures implement the shuffle instruction, which enables a work-item to directly
read private data from another work-item in the same wave-front. According to
the author, there are four main advantages in using this instruction:

• It ultimately allows work-items inside a wave-front to collectively exchange
or broadcast data;

• It replaces the three-step process by a single instruction, effectively in-
creasing the bandwidth and decreasing the latency;

• It does not use the local memory at all;

• A sync barrier is implicit in the instruction and, hence, a synchronization
step inside a workgroup is not necessary.

Figure 2 shows how this instruction can be used to build a reduction tree.
As pointed out by Luitjens, this figure only includes the arrows for the work-
items actually doing useful work. All work-items are indeed shifting values even
though these values are not necessary in the reduction process.

Figure 2: Parallel reduction using the shuffle instruction (extracted from [19]).

Using this instruction, several versions of the reduction were proposed, im-
plemented and compared. However, although Luitjens states that the adopted
strategies lead to faster reductions than those described by Harris [14], no com-
parative studies between the two approaches were conducted.

2.3 Bryan Catanzaro’s Work

Now, we describe Catanzaro’s two-stage parallel reduction approach for large
datasets, as presented in [3].

The technique is based on dividing the data set in p pieces (or “chunks”),
where p is large enough to keep all GPU cores busy. It is also necessary to limit
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the number of work-items to the maximum amount that the GPU can handle in
total without having to switch between them (from now on, that maximum will
be called GS – or global size). Each chunk is then processed by a work-group.

Since the sum operation has the properties of associativity and commutativ-
ity, each work-item can perform its own reduction sequentially and intercalary
with the others. A work-item takes, as the starting point, its global identifier
and accumulates, in a private variable, its partial sum, skipping GS positions
at every step in the vector stored in the GPU’s global memory.

After having completed a pass through the data set, the work-items in each
workgroup write the result of their own reduction in a scrap vector located in
local/shared memory which, in turn, will also be reduced in parallel. At the
end of the process, each working group will have its own scrap containing, in its
position 0, the result of the reduction so far. This partial result is then copied
to another vector, this time stored in the GPU global memory, which size must
be equal to —SM—. The first stage is then complete. Its source code, extracted
from [3], is presented in Listing 1.

Listing 1: Two-stage parallel reduction of Catanzaro – stage 1

k e r n e l void reduce ( g l o b a l f loat ∗ bu f f e r ,
l o c a l f loat ∗ scratch ,
c o n s t int l ength ,
g l o b a l f loat ∗ r e s u l t ) {

int g l o b a l i n d e x = g e t g l o b a l i d ( 0 ) ;
f loat accumulator = INFINITY ;
// Loop s e q u e n t i a l l y over chunks o f input vec to r
while ( g l o b a l i n d e x < l ength ) {

f loat element = b u f f e r [ g l o b a l i n d e x ] ;
accumulator = ( accumulator < element ) ? accumulator : e lement ;
g l o b a l i n d e x += g e t g l o b a l s i z e ( 0 ) ;

}
int l o c a l i n d e x = g e t l o c a l i d ( 0 ) ;
s c ra t ch [ l o c a l i n d e x ] = accumulator ;
b a r r i e r (CLK LOCAL MEM FENCE) ;
// Perform p a r a l l e l r educ t ion
for ( int o f f s e t=g e t l o c a l s i z e ( 0 ) / 2 ; o f f s e t >0; o f f s e t=o f f s e t /2) {

i f ( l o c a l i n d e x < o f f s e t ) {
f loat other = sc ra t ch [ l o c a l i n d e x + o f f s e t ] ;
f loat mine = sc ra t ch [ l o c a l i n d e x ] ;
s c r a t ch [ l o c a l i n d e x ] = ( mine < other ) ? mine : other ;

}
b a r r i e r (CLK LOCAL MEM FENCE) ;

}
i f ( l o c a l i n d e x == 0) {

r e s u l t [ g e t g r o u p i d ( 0 ) ] = sc ra t ch [ 0 ] ;
}

}

The second stage is simpler. Since now there is a vector with |SM | elements
in the global memory – with the result of a partial sum in each position – just
the first |SM | work-items of the first SM copy their corresponding value to an
array allocated in local memory. Then the work-items perform a new parallel
sum of the elements in the vector. After copying the value in position 0 back
to global memory, the reduction is finally complete.

The next sections detail some advanced techniques to further explore paral-
lelism and that were extensively used in the present work.
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2.4 Loop Unrolling

Loop Unrolling (also known as Loop Unwinding and Loop Unfolding) is an opti-
mization technique – performed by the compiler or manually by the programmer
– applicable to certain kinds of loops in order to reduce (or even prevent) the
occurrence of execution branches and minimize the cost of instructions for con-
trolling the loop [1, 8, 16, 25]. Its goal is to optimize the program’s execution
speed at the expense of increasing the size of the generated code (space-time
tradeoff ). It is easily applicable to loops where the number of executions is
previously known, like routines of vector manipulation where the number of
elements is fixed.

Basically the technique consists in the reuse of the sequence of instructions
being executed within the loop, so as to include more of an iteration of the code
every time the loop is repeated, reducing the amount of these repetitions.

This reuse is done by manually replicating the code inside the loop a certain
amount of times or through the “#pragma unroll n”6 positioned immediately
before the beginning of the loop. The number of times the loop is unrolled
is called Unrolling Factor and, with the pragma directive, it is given by the
parameter “n”.

It is worth noting that with the pragma directive we leave the decisions of
how the loop should be unrolled to the compiler, which may lead to a not so
optimized resulting code. In the experiments performed as part of this work,
the best results were always achieved using manual loop unrolling.

As an example, consider the C code shown in Listing 2, which simply mul-
tiplies the elements of an array by its index (ai ← ai · i). In this example, we
call L the loop size and F its unrolling factor. L here is equal to 100.

Listing 2: Multiplying elements in a vector

for ( int i = 0 ; i < 100 ; i++) {
a [ i ] = a [ i ] ∗ i ;
}

It’s possible to significantly improve the execution speed of this algorithm
by unrolling it, as shown in Listing 3.

Listing 3: Unrolling the multiply routine

for ( int i = 0 ; i < 100 ; i += 3) {
a [ i ] = a [ i ]∗ i ;
a [ i +1] = a [ i +1]∗( i +1);
a [ i +2] = a [ i +2]∗( i +2);
}

The two extra lines of code and the “i += 3 ” in Listing 3 performs the
desired three-fold (F = 3) manual loop unrolling.

As it can be seen, the L
F ratio does not necessarily need to be an integer.

If it admits a remainder, the compiler can (since the number of iterations is
previously known at compile time) add extra code to the end of the unrolled
generated code in order to ensure its correctness.

6A directive pragma is a language construct that provides additional information to the
compiler, specifying how to process its input. This additional information usually is beyond
what is conveyed in the language itself.
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Unrolling, when applicable, offers several advantages over non-unrolled code.
Besides the decrease in the number of iterations, an increase occurs in the
amount of work done each time through the loop. This also open ways for the
exploration of parallelism by the compiler in machines with multiple execution
units, since each instruction within the loop can be handled by an independent
thread.

However, these are only the most easily perceivable benefits. Agner Fog [8]
listed several others, as well as some observations about when this technique
should be avoided. Such factors (advantages and disadvantages) must be con-
sidered by the programmer when deciding to use loop unrolling or not.

2.5 Persistent Threads

Since the launch of the first programmable GPUs and with all its basic archi-
tecture inspired by the SIMD model, the “Single Instruction Multiple Thread”
(SIMT) and “Single Program Multiple Data” (SPMD) paradigms have become
standards de facto. Both seek to hide the details of the underlying hard-
ware where the code runs, attempting to facilitate the painful task of devel-
opment [12].

Gupta et al. [12] argue that the usage of these “traditional” paradigms
greatly limits the actions of the programmer, because all control of the exe-
cution flow is in the power of the scheduler’s video card. This programming
style, which delegates all the decisions to the scheduler, is called by the authors
as “non-PT”, or “non-Persistent”.

It requires that the software developer abstracts units of work to virtual
work-items. Since the number of wave-fronts to create is based on the number
of virtual work-items, during a kernel launch usually there are several hundreds
of even thousands more wave-fronts to be executed than the amount of physical
processing elements to assign them to.

Such scheduling of wave-fronts is performed by the scheduler and the pro-
grammer has no means to interfere in the process, e.g., how, where, when and
in which order the work-groups will be assigned.

Gupta et al. claim that, while these abstractions reduce the effort for new
developers in the GPGPU field, they also create obstacles for experienced pro-
grammers, who normally face problems for which workload is inherently ir-
regular, therefore making it much more difficult to efficiently parallelize when
compared to problems whose parallel solution is more regular.

According to Gupta et al., this uncovers a serious drawback of the current
SPMD programming style, which is not able to ensure order, location and timing.
It also does not allow the software developer to regulate these three parameters
without completely avoiding the GPU scheduler.

Thus, to overcome these limitations, developers have been using a program-
ming style called Persistent Threads (“PT”), whose low level of abstraction
allows performance gains by directly controlling the scheduling of work-groups.
And although this style has been in use for some time, only in 2012 it was for-
mally introduced, described and analyzed by Gupta et al. [12]. They also list
several problems when adopting the traditional style.

Basically, what the PT style change is the lifetime of a work-item [23],
by letting it keep running longer and giving it much more work than in the
traditional “non-PT” style [26]. This is done circumscribing the logic kernel (or
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part of it) in a loop, so this loop remains running while there are items to be
processed.

Briefly, from the point of view of the developer, all work-items are active
while the kernel is running. As a direct consequence of PT, a kernel should be
triggered using only the amount of work-items that can be executed concurrently
by each Streaming Multiprocessor. All these actions will prevent constant return
of control to the host and the cost of new kernel invocations [23].

Gupta et al. acknowledge, however, that the technique of Persistent Threads
is not a panacea, and its use should be carefully evaluated [12]. In particular,
the technique fits well when the amount of memory accesses is limited (i.e., few
reading/writing to global memory and a large volume of computation) and the
problem being solved has not many initial input elements or the growth in the
number of elements in the input set is fairly limited. Beyond these conditions,
the traditional non-PT style tends to outperform the PT style.

2.6 Thread Divergence

Current GPUs are able to deliver massive computational power at a reasonably
low cost. However, due to the way they are constructed, some obstacles must
be overcome for the effective use of such power. One of the main and hard-
est obstacles to avoid is the presence of conditional statements [28] potentially
leading to branches in the execution flow of the various work-items [13].

By default, GPUs try to run all the work-items inside the wave-fronts in
the SIMD model. However, if the code being executed has conditional state-
ments that lead to divergences in program flow, the divergent work-items will
be stalled and its execution will only happen after the non-stalled work-items
have completed their runs, which ultimately compromises the desired speedup.
This phenomenon is called Thread Divergence [4, 13, 22, 28].

Trying to circumvent this problem, some strategies have been proposed in
order to minimize or even eliminate the effects of such phenomena. Among
them, we cite [4, 9, 13, 20, 22, 28].

—:::
Wherefore it became necessary to develop a method to prevent flow diver-

gence, which could ultimately compromise the performance of such a step of
computation. The method is detailed at the end of Section 3.

3 The New Approach

The improvements proposed in our work focus on Steps 1 and 3 of the first
stage of the reduction presented in Section 2.3. The improvements employ
the same strategies proposed by Harris [14] to increase the performance of the
approach originally presented by Catanzaro [3] but with appropriately chosen
interventions.

In step 1 of the original implementation, the vector in global memory con-
taining the data to be reduced is entirely traversed by the work-items, each one
performing its own reduction.

This step already uses the “Persistent-Thread” strategy, but its performance
can be improved by adopting loop unrolling (Section 2.4). As it can be seen,
instead of doing the unroll when the data is in local memory, as proposed by
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Harris [14] (Listings ?? and ?? of Section 2.1), our improvement performs the
unroll in the global memory.

The code presented in Listing 4 shows the modified loop, assuming an un-
rolling factor (F) equals to 4, iGlobalID as the work-item global identifier and
iLength as the number of elements to be reduced.

Listing 4: Unrolling the step 1

for ( iPos = iGlobalID ∗ i Un r o l l i ng F a c t o r ; iPos < iLength ;
iPos += i G l o b a l S i z e ∗ i Un r o l l i ng F a c t o r )

{
i 0 = iPos ; i 1 = iPos +1; i 2 = iPos +2; i 3 = iPos +3;
accumulator +=
( ( i0<iLength )∗ ( aVector [ i 0 ])+

( i1<iLength )∗ ( aVector [ i 1 ])+
( i2<iLength )∗ ( aVector [ i 2 ])+
( i3<iLength )∗ ( aVector [ i 3 ] ) ) ;

}

A special attention must be given to how the data is brought from the global
memory (aVector) to the private memory (accumulator), through the use of
algebraic expressions that prevent reading from invalid memory locations, thus
avoiding the usage of “ifs” and potential divergences in the execution flow. The
expression in < iLength expands to integers 1 or 0 whether it is, respectively,
true or false. In the first case (in < iLength) ∗ (aV ector[in]) is interpreted
as (1) ∗ (aV ector[in]), adding the value stored in location in to the partial
sum (accumulator). In the second case, the expression is interpreted as (0) ∗
(aV ector[0]), ensuring that – regardless of the data stored in the first position of
the vector – value 0 is added to accumulator, keeping the partial sum correctness.

At the begining of Step 3, the resulting values of the previous sums are
already stored in the local memory of the SMs. Then, each SM performs its
own local reduction with its work-items.

In the solutions presented by Harris [14] and Catanzaro [3], in this step all
work-items are kept synchronized through the use of barriers. However, with
minor conceptual changes, it is possible to completely eliminate the overhead
caused by the barriers, not only in the last 6 iterations of the loop, as proposed
by Harris [14].

Our strategy is to use algebraic expressions to keep all the work-items in the
same execution step, maintaining its desired behaviour and algorithm correct-
ness.

Consider the highly divergent code presented in Listing ?? (Section 2.6).
Using a simple algebraic expression, it can be rewriten in order to completely
eliminate the conditional statement and still return the right result of the com-
parison, as can be seen in Listing 5.

Listing 5: Algebraic “if-then-else”

int sma l l e s tVa lue ( int a , int b) {
return ( a < b) ∗ a + ( a >= b) ∗ b ;
}

Note that the two boolean operations ((a < b) and (a >= b)) are mutually
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exclusive, being interpreted internally by the compiler as 0 (false) or 1 (true).
So, assuming that a is smaller than b, the result of the algebraic operation is
(1) * a + (0) * b which, ultimately, will return only the value of a.

The same strategy can be applied to lines 18 to 24 of Listing 1, that represent
the third step of the first stage. The new code is shown in Listing 6, where
iLocalSize stores the number of active local work-items and iLI represents the
work-item’s local identifier.

Listing 6: Avoiding Divergences

for ( iPos = i L o c a l S i z e /2 ; iPos > 0 ; iPos >>= 1)
{

bFlag = iLI < iPos ;
s c ra t ch [ iL I ] += ( bFlag )∗ ( s c ra t ch [ iL I + ( bFlag )∗ iPos ] ) ;
}

Here, in each iteration of the loop, iPos is divided by 2 (iPos ¿ ¿ = 1 )
and bF lag is expanded to either 1 or 0, thus reducing by half the number
of work-items doing a useful job. If, for the current work-item, the expression
iLI < iPos becomes true, then the expression in the last line will be interpreted
as scratch[iLI]+ = (1)∗(scratch[iLI+(1)∗iPos]), ensuring that the value stored
in position iLI + iPos will be added to the value in position iLI. On the other
hand, if the expression becomes false, it will be interpreted as scratch[iLI]+ =
(0) ∗ (scratch[iLI + (0) ∗ iPos]), ensuring that the value in position iLI will not
be considered. Since all work-items are always in the same step of computation
– doing exactly the same job (useful or not), independently of being in the same
wavefront – sync barriers are unnecessary.

4 Computational Experiments

Table 2 and Figures 3 and 4 represent the performance gains achieved against
the algorithm described in [3], where F = 1 is the runtime of the original code.
The machine used in the tests was the same one presented in Section ??.

All tests were run on two vectors, one of integers and one of single preci-
sion floating points, containing 5533214 elements. There were no measurable
differences between the two vector types.

The times listed in Table 2 were obtained with the OpenCL profiler CodeXL,
version 2.0.12400.0, and are the averages of five consecutive executions for each
F .

As can be seen, these results show that the version of the algorithm with
F = 8 reached a speedup pretty close to 2.8x, when compared with the proposal
of [3]. It may also be noted that such speedup stabilizes around this value
(F = 16 provided just over 1.5% gain when compared to F = 8).

The same code was implemented in CUDA and tests were performed against
the Kernel 7 of Harris presented in Section 2.1. The GPU used in the experi-
ments was a Tesla C2075 with 6GB of memory. The architecture of such a video
card provides 448 CUDA cores, a GPU clock of 575MHz and a shader clock of
1150Mhz. Its memory is clocked at 750MHz (3.0GHz effective).

The experiments employed the same two vectors containing 5533214 ele-
ments (integers and single precision floating points). Several values of the un-
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F Time (ms) Speedup Memory Bandwidth (GB/s) Bandwidth Usage (%)

1 0.249780 1 88.6094002722 26.63
2 0.173930 1.4360949807 127.2515149773 38.24
3 0.139260 1.7936234382 158.9318971708 47.76
4 0.127700 1.955990603 173.3191542678 52.08
5 0.113930 2.1923988414 194.2671464935 58.37
6 0.100810 2.4777303839 219.5502033528 65.97
7 0.093740 2.6646042245 236.1089822914 70.95
8 0.089490 2.7911498491 247.3221142027 74.32
16 0.088160 2.8332577132 251.0532667877 75.44

Table 2: Parallel reduction execution times. New approach compared against
Catanzaro’s original code.

Figure 3: Chart of the parallel reduction execution times.

rolling factor (F ) were used in order to find the optimal value for such a video
board. It was determined that up to F = 6 the performance gains were sub-
stantial and, with F ≥ 8, the gains were very discrete. According to this, all
experiments were conducted using F = 8. Table 3 presents the running time
(in milliseconds) of both approaches and the percentage of performance (given
by the formula 100∗Tnew

Tk7
).

Time – Kernel 7 Time – New Approach % of Performance

0.17766 ms 0.17867 ms 99.4

Table 3: Parallel reduction execution times – new approach (with unrolling
factor equals to 8) compared against Harris’ code.

5 General Remarks

Reduction operations are widely employed in many computational problems.
This chapter showed how such operations can be performed in a parallel fash-
ion using graphics processing units and detailed the main approaches for them
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Figure 4: Chart of the parallel reduction speedup.

nowadays.
All parallel reduction techniques currently in use suffer from some basic

issues. Several only reach their peak performance by employing proprietary
strategies and/or technologies, what ends up limiting their use to the platform
for which they were designed. Others, though generic, do not adopt certain
procedures that could increase their performance without loss of generality.

The strategy presented here combines the best of both worlds: It is generic
enough to be used with both CUDA and OpenCL and can run on hardware of
the two major GPU manufacturers with minimal changes, just being adapted
to the particularities of each platform. The implemented code, besides simpler,
offered a performance equivalent to the best strategy described by Harris [14].

A good performance of this routine is essential for the efficient execution of
the macroscopic urban traffic assignment algorithm described in Chapter ??,
since it is used on two occasions: in the computation of shortest paths and in
the golden ratio method.
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