Human Factor Issues in Building Middleware
for Pervasive Computing

Tatsuo Nakajima, Eiji Tokunaga, Hiroo Ishikawa, Kaori Fujinami, Shuichi Oikawa
Department of Computer Science
Waseda University
tatsuo@dcl.info.waseda.ac.jp

Abstract

Our daily lives will be dramatically changed by embed-
ded small computers in our environments. The environ-
ments are called pervasive computing environments. To
realize the environments, it is important to reduce the cost
to develop pervasive computing applications by encapsu-
lating complexities in middleware infrastructures that are
shared by various applications.

In this paper, we present three middleware infrastruc-
tures for pervasive computing, that have been developed
in our projects. These middleware infrastructures hide
various complexities such as context-awareness and dis-
tribution to make it easy to develop pervasive computing
applications. We also describe some design issues related
to human factors that we found while designing and im-
plementing our middleware infrastructures.

1 Introduction

Our future daily lives will be augmented by various
computers and sensors, and our environments change their
behavior according to the current situation. Each person
will have many personal devices such as cellular phones,
PDAs, MP3 players, voice recorders. Also, many appli-
ances will be available near us such as various displays,
televisions, and information kiosk. We believe that these
devices and appliances are communicated in a sponta-
neous way, and provide useful information to us.

Therefore, our daily lives become more and more com-
plex every day. Information technologies have been in-
creasing these complexities, because a large proportion
of our daily lives is currently spent in analyzing various
sorts of information. Ironically, present pervasive com-
puting technologies will increase the amount of such in-
formation dramatically, and increase the complexities in
our daily lives. Also, various appliances surrounding us
rapidly become commodities. Today, it is very difficult
to create an appliance that offers special, distinctive fea-
tures. For example, we cannot distinguish among differ-
ent vendor’s televisions. Therefore, it is important to take
into account pleasurable experiences when a user uses the
appliances[12, 3].

It is important to offer middleware infrastructures to
hide a variety of complexities from application program-
mers to make it easy to develop pervasive computing

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

applications[14, 6]. However, we have not enough experi-
ences how to build middleware for pervasive computing,
and it is important to share knowledge among research
communities. In this paper, we present three middleware
infrastructures for pervasive computing, that have been
developed in our projects. These middleware infrastruc-
tures hide various complexities such as context-awareness
to make it easy to develop pervasive computing applica-
tions. We found that hiding context-awareness requires
to take into account human factors when designing mid-
dleware. We show the overview of our middlewares, and
discuss some human factor issues while designing our mid-
dlewares.

The remainder of this paper is structured as follows. In
Section 2, we describe our vision called computer medi-
ated daily lives. Section 3 presents middleware for perva-
sive computing. In Section 4, we show three middleware
infrastructures that we have developed in our project.
Section 5 shows research agenda for attacking the issues,
and Section 6 concludes the paper.

2 Computer Mediated Daily Lives

As described in the previous section, our future daily
lives will be mediated by various computers that offer var-
ious interaction devices and sensors. We call the future
life style computer mediated daily lives. Computers will
connect a variety of spaces such as home, office, town,
car, train, bus, station, and airport in a seamless way.
When we develop application software in computer me-
diated daily lives, it is important to design the behavior
of human to reduce the complexities in our lives and to
increase pleasurable experiences. However, currently, we
do not have a common software infrastructure to develop
these applications in an easy way.

The purpose of a software infrastructure for computer
mediated daily lives is to retrieve information from our
real world that could not be made available before, and
to control various everyday objects that could not be con-
trolled before by embedding computers. One of the most
important issues in computer mediated daily lives is to
provide context-awareness, to integrate physical and cy-
ber spaces to personalize our real world and reduce the
complexities in our dairy lives[1].

Such a research shows that a software infrastructure to
support computer mediated daily lives is a key to realizing

TEEE ':a

COMPUTER
SOCIETY

the vision. The infrastructure makes it possible to share
various devices and sensors, and to build pervasive com-
puting applications easily. We have worked with many
companies in building embedded systems, and have found
that the following traditional following choices are wrong.

e A future appliance will be extremely smart.
e Our environment will be extremely smart.

e Each appliance will have a well defined fixed interface.

The first choice means that each application contains
many functionalities to satisfy various requirements. For
example, current digital televisions are very complex and
include various functionalities to satisfy most of us. How-
ever, the cost of the television is inflated, and it is not easy
to extend to support future advanced services. Similarly,
the second choice requires very high cost to build smart
environments, as shown in much research. The most seri-
ous problem with the choice is that it 1s not easy to sup-
port collaboration with environments and appliances that
are carried by a user, due to special protocols that are as-
sumed by the environments. The last choice cannot allow
us to upgrade each appliance’s service independently.

A key to solving the problems is provide middleware
infrastructures for integrating a variety of services pro-
vided by both appliances and environments. The middle-
ware infrastructures offer high level abstraction that hide
various complexities likes context-awareness, distribution,
and heterogeneity from application programmers. In our
project, we have developed several middleware infrastruc-
tures for pervasive computing[4, 5, 7, 8, 10, 13]. In this
paper, we present three middleware infrastructures that
hide context-awareness to reduce complexities when de-
veloping pervasive computing applications.

3 Middleware for Pervasive Computing

This section describes three middleware infrastructures
that have developed in our project. The first middle-
ware infrastructure makes it easy to develop mixed real-
ity applications for pervasive computing. The middleware
hides distribution and automatic configuration according
to changes of a user’s current situation. Also, it is easy
to build an application by composing several multimedia
components. The second middleware infrastructure al-
lows us to use various interaction devices to navigate tra-
ditional GUI-based applications. The middleware hides
to select the most suitable interaction devices to control
appliances. The third middleware infrastructure provide
an integrate way to control home appliances. The middle-
ware hides the personalization to control home appliances.

3.1 Middleware and Abstraction

There are a variety of complex issues in pervasive com-
puting environments. For example, there may be various
devices that have dramatically different characteristics.
These ultra heterogeneity should be hidden in middleware
infrastructures. Also, pervasive computing applications
need to control many devices that are connected via net-
works, but applications may not take into account such
distribution. Also, the structure of applications should be

dynamically reconfigured according to the current situa-
tion. However, these complexities should be hidden from
an application programmer to make it easy to develop
their applications.

The behavior of pervasive computing applications
should be changed according to the current situation. For
example, the behavior may be personalized according to
a user’s preference. Also, the most suitable devices to be
used by an application may be changed according to a
user’s current location. We believe that it is important
to hide the changes under the abstraction provided by
middleware to make the development of applications easy.
Therefore, application programmers need not to take into
account these changes.

3.2 Middleware for Mixed Reality

3.2.1 Overview

Our middleware infrastructure called MiRAGe[13] con-
sists of the multimedia framework, the communication in-
frastructure and the application composer. The multime-
dia framework, is a CORBA-based component framework
for processing continuous media streams. The framework
defines CORBA interfaces to configure multimedia com-
ponents and connections among the components.

Multimedia components supporting mixed reality can
be created from the MR class library. The library contains
several classes that are useful to build mixed reality ap-
plications. By composing several instances of the classes,
mixed reality multimedia components can be constructed
without taking into account various complex algorithms
realizing mixed reality.

The communication infrastructure based on CORBA
consists of the situation trader and OASiS. The situation
trader is a CORBA service that supports automatic recon-
figuration, and is colocated with an application program.
Its role is to manage the configuration of connections
among multimedia components when the current situa-
tion is changed. OASIS is a context information database
that gathers context information such as location informa-
tion about objects from sensors. Also, in our framework,
OASIS behaves like as a Naming and Trading service to
store objects references. The situation trader communi-
cates with OASIS to detect changes in the current situa-
tion.

Finally, the application composer, written by an ap-
plication programmer, coordinates an entire application.
A programmer needs to create several multimedia com-
ponents and connect these components. Also, he speci-
fies a policy on how to reconfigure these components to
reflect situation changes. By using our framework, the
programmer does not need to be concerned with detailed
algorithms for processing media streams because these al-
gorithms can be encapsulated in existing reusable multi-
media components. Also, distribution is hidden by our
CORBA-based communication infrastructure, and auto-
matic reconfiguration is hidden by the situation trader
service. Therefore, developing mixed reality applications
becomes dramatically easy by using our framework.

3.2.2 How Our System Works?
In a typical mobile mixed reality application, our real-

world is augmented with virtual information. For exam-
ple, a door of a classroom might have a visual tag attached

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

to it. If a PDA or a cellular phone, equipped with a cam-
era and an application program for capturing visual tags,
the tags are superimposed by a schedule of today’s lecture.

We assume that in the future our environment will de-
ploy many mixed reality servers. In the example, the near-
est server stores information about today’s lecture sched-
ule and provides a service for detecting visual tags and
superimposing them by the information about the sched-
ule. Other mixed reality servers, located on a street, might
contain information about what shops or restaurants can
be found on the street and until how late they are open.

To build the application, an application composer uses
components for capturing video data, detecting visual
markers, superimposing information on video frames and
displaying them. The application composer contacts a sit-
uation trader service to retrieve a reference to a reference
to the nearest mixed reality server to a user. When he
moves, a location sensor component notifies sensed loca-
tion information to QASiS, and OASIS notifies the situa-
tion trader to replace the current object reference to the
reference of the nearest mixed reality server. In this way,
the nearest mixed reality server can be selected dynami-
cally according to his location, but the automatic recon-
figuration is hidden from an application programmer.
3.3 Middleware for Interaction Devices
3.3.1 Overview
In the middleware infrastructure[4], an application gener-
ates bitmap images containing information such as control
panels, photo images and video images. Also, these appli-
cations can receive keyboard and mouse events to be con-
trolled. The user interface middleware receives bitmap im-
ages from applications and transmits keyboard and mouse
events. The role of the middleware is to select appro-
priate interaction devices by using context information.
Also, input/output events are converted according to the
characteristics of interaction devices.

The application implements graphical user interface by
using a traditional user interface system such as the X
window system. The protocol between the middleware
and the user interface system are specified as a standard
protocol. In the paper, we call the protocol the universal
interaction protocol.

Our system consists of the following four components.

e Interactive Application
e Unilnt Server
e Unilnt Proxy

e Input/Output Interaction Devices

Interactive applications generate graphical user inter-
face written by using traditional GUI toolkits. In our
system, we can use any existing GUI based interaction
applications, and they are controlled by various interac-
tion devices that are suitable for the current situation.

The Unilnt server transmits bitmap images generated
by a window system using the universal interaction pro-
tocol to a Unilnt proxy. Also, it forwards mouse and key-
board events received from a Unilnt proxy to the window
system. In our current implementation, we need not to

modify existing servers of thin-client systems, and any ap-
plications running on window systems supporting a Unilnt
server can be controlled in our system without modifying
them.

The Unilnt proxy is the most important component in
our system. The Unilnt proxy converts bitmap images
received from a Unilnt server according to the character-
istics of output devices. Also, the Unilnt proxy converts
events received from input devices to mouse or keyboard
events that are compliant to the universal interaction pro-
tocol. The Unilnt proxy chooses a currently appropriate
input and output interaction devices for controlling ap-
pliances. To convert interaction events according to the
characteristics of interaction devices, the selected input
device transmits an input specification, and the selected
output device transmits an output specification to the
Unilnt proxy. These specifications contain information
that allow a Unilnt proxy to convert input and output
events.

The last component is input and output interaction
devices. An input device supports the interaction with a
user. The role of an input device is to deliver commands
issued by a user to control home appliances. An output
device has a display device to show graphical user interface
to control appliances.

In our approach, the Unilnt proxy plays a role to deal
with the heterogeneity of interaction devices. Also, it can
switch interaction devices according to a user’s situation
or preference. This makes it possible to personalize the
interaction between a user and appliances.

3.3.2 How Our System Works ?

An example described in this section is a ubiquitous video
phone that enables us to use a video phone in various
ways. In this example, a user speaks with his friend
by using a telephone like a broadband phone developed
by AT&T Laboratories, Cambridge. The phone has a
receiver like traditional phones, but it also has a small
display. When the phone is used as a video phone,
the small display renders video streams transmitted from
other phones. The display is also able to show various
information, such as photos, pictures, and HTML docu-
ments that are shared by speakers. Our user interface
system makes the phone more attractive, and we believe
that the extension is a useful application in pervasive com-
puting environments.

When a user needs to start to make a dinner, he will
go to his kitchen, but he likes to keep to talk with his
friend. However, a phone is put in a living room, and the
traditional phone receiver is not appropriate to continue
the conversation with his friend in the kitchen because
his both hands may be busy. In this case, we use a micro-
phone and a speaker in the kitchen so that he can use both
hands for making the dinner while talking with his friend.
In the future, various home appliances such as a refrig-
erator and a microwave provide displays. Also, a kitchen
table may have a display to show a recipe. These displays
can be used by the video phone to show a video stream.
In a similar way, a video phone can use various interaction
devices for interacting with a user. The approach enables
us to use a telephone in a more seamless way.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

Our system allows us to use a standard VolP applica-
tion running on Linux, which does not take into account
using sophisticated interaction devices. The application
provides a graphical user interface on the X window sys-
tem. However, our system allows a user to be able to
choose various interaction styles according to his situa-
tion. Also, if his situation is also changed, the current
interaction style is changed according to his preference.

3.4 Middleware for Home Computing

3.4.1 Overview

A personal home server[10] is implemented in a personal
devices like a cellular phone, a wrist watch, or a jacket.
Thus, the server can be carried by a user anytime any-
where. The personal home server collects information
about home appliances near a user, and creates a database
storing information about these appliances. Then, it cre-
ates a presentation document containing the attributes of
appliances and the commands to control them. A display
near the user also detects the personal home server, and
retrieves the presentation document containing the au-
tomatically generated user interface. The display shows
the presentation document on the display. The document
contains URLs embedding the attributes of appliances
and their commands. Also, the presentation document
is customized according to a user’s preference. A personal
server contains preference rules to represent a preferences
for the owner of the personal home server. The execu-
tion of the rules is hidden from an application. When
a user touches the display, an URL containing the at-
tributes of an appliance and its command is transmitted
to his personal home server via the HTTP protocol. The
server translates the URL to a SOAP command by using a
database containing information about the appliance that
he likes to control. Finally, the SOAP command is for-
warded to the target appliance.

3.4.2 How Our System Works?

In this section, we describe how our systems works by
using an example. In the example, we consider that a
television and two lights are in a room. We assume that
one is a ceiling light and another is a floor light. When
a user enters a room, his personal server in his pocket
detects appliances by receiving SSDP advertisement mes-
sages containing IP addresses from the television and the
lights. The personal home server accesses Web servers
of both appliances, and retrieves their service description
documents. Then, the documents are stored in the service
database of a personal home server.

On the other hand, a display device near the user de-
tects an advertisement message from the personal home
server, and retrieves an automatically generated HTML
document. The document contains URLs for controlling
the television and a ceiling light. The user specifies that
he likes to use only ceiling lights in a rule stored in the
context database. Thus, the context management module
removes information about a floor light.

The document is shown by a browser of the display
device. In this example, a user can navigate the browser
by using a touch panel. When the user clicks an URL,
http://102.10.2.2/7func=light&?type=ceiling&!power=on,
a GET command containing the URL is transmitted to

the personal home server. The server searches a light ap-
pliance that matches to specified attributes in the ser-
vice database, and finds that its IP address 1s 102.10.2.10.
Also, a command encoded in the URL is converted to
a SOAP request, power(“ON”). Finally, the commands is
transmitted to a target light appliance whose IP address is
102.10.2.10, then the appliance turns on its power. In our
current prototype, light appliances are controlled via an
X10 device, and an analog television is controlled through
an intelligent remote control device.

4 Human Factor Issues for Pervasive
Computing Middleware

In our middleware infrastructures described in the pa-
per, context-awareness is hidden from a user. However,
these properties are closely related to human factors. For
example, if an interaction device is switched in an un-
expected way, a user may surprise the context change.
This means that middleware infrastructures that hide
context-awareness or dynamic reconfiguration will need
to take into account human factors when designing the
middleware[2]. For example, our experiences show that
the automatic selection of interaction devices is not good
approach. Instead, we use a token to choose the most
suitable interaction device in an explicit way. For exam-
ple, let us assume that a user is using a telephone in a
living room. When s/he moves to a kitchen, s/he may use
a speaker and a microphone in the kitchen. In this case,
the user brings a token attached to the telephone, and
put it into a base in the kitchen. Our system detects the
event, and changes the interaction devices for the user.

However, implicit changes may be attractive for realiz-
ing pleasurable services. For example, if an environment
detects that a user and his girl friend are together in a
room, it is desirable to make the room’s lighting strategy
more romantic automatically. We believe that it is bet-
ter to control the strategies for context-awareness should
be customized in each application. The programming
interface to control context-awareness should be clearly
separated from other programming interface to make the
structure of an application clear.

In the near future, designers for pervasive computing
middleware should learn psychology, and we need to con-
sider that the adaptation of software should not contradict
our mental model. We believe that how to implement the
real world model and the mental model in middleware in-
frastructures is an important research topic for building
practical middleware for pervasive computing. For ex-
ample, in our second middleware, if choosing a suitable
interaction device is not consistent with a user’ s mental
model, the user will confuse which interaction device he
should use. However, the implementation of real world
model and mental model requires to represent ontologies
in a standard way to access them from a variety of middle-
ware for pervasive computing. We also need to consider
social aspects and cultural aspects when designing appli-
cations interacting with the real world. For example, it is
important to take into account trust and privacy in future
pervasive computing environments, but we need to learn
sociology and anthropology to know whether our under-

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

standing is enough or not. We believe that it is important
to consider how to model psychological, social, and an-
thropological concepts into our programs to interact with
the real world properly.

We also believe that the designers for pervasive com-
puting middleware should know aesthetics to provide plea-
surable services[3]. To develop pleasurable services, we
may need to take into account emotion, peak experience,
and unconsciousness to develop software. For example,
our third middleware supports a mechanism to design
pleasurable experiences by encoding preference rules in
RF tags{11]. Our system infrastructure allows us to em-
bed tags into various objects and places, and controls our
experiences by changing the behavior of applications.

5 Research Agenda

We believe that it is important to consider the following
three issues to achieve better integration between cyber
and physical spaces.

The first issue is how to hide context-awareness from
programmers when designing middleware infrastructures.
Each application may have different criteria to consider
how context should be abstracted. For example, when an
application uses several interaction devices, some appli-
cation programmers wish a middleware infrastructure to
select the most suitable devices automatically, but other
programmers want an application to select devices accord-
ing to a user’s intention. This means that a user’s ac-
tion triggers to change the currently used interaction de-
vices, and application programs should extract the events
to adapt their behavior. We believe that middleware in-
frastructures should not hide detailed context information
when programmers want.

Currently, ubiquitous computing technologies are used
to reduce a variety of complexities in our dairy lives. How-
ever, future ubiquitous computing applications should
consider how to provide pleasurable services to users. We
believe that it is important to consider a user’s experi-
ences to provide pleasurable services. When designing
middleware infrastructures, we should consider how the
middleware can support application programmers to de-
sign experiences explicitly.

As described in the previous section, we present that
it is important to consider psychological aspects when de-
signing middleware from a human factor’s aspect. How-
ever, we also need to consider social aspects and cultural
aspects when designing applications interacting with the
real world. For example, it is important to take into ac-
count trust and privacy in future ubiquitous computing
environments, but we need to learn sociology and anthro-
pology to know whether our understanding is enough or
not. We believe that it is important to consider how to
model psychological, social, and anthropological concepts
mto our programs to interact with the real world properly.

6 Conclusion and Future Directions

This paper has described three middleware infrastruc-
tures that have developed in our project. We have also
presented several experiences and future directions for
building middleware for pervasive computing. We believe

that there are new requirements to develop the middle-
ware infrastructures for pervasive computing. Especially,
we believe that it 1s important to take into account human
factors to develop them.

Currently, we are developing a new middleware in-
frastructures for collaborating various appliances near a
user[9]. In the system, we are conducting several exper-
iments to consider the tradeoff between implicit changes
and explicit changes to realize context-awareness. Also,
we are working on developing another middleware to inte-
grate various services provided in pervasive computing en-
vironments. In the middleware, we are considering to de-
sign programming interface to control context-awareness.

References

[1] W.Buxton, “Less is More(More or Less)”, In Invisible Computing,
P.J. Denning(Ed.), 2002.

[2] Edwards, K., Bellotti, V., Dey, A.K., Newman, M. “Stuck in the
Middle: The Challenges of User-Centered Design and Evaluation
for Middleware”, In the Proceedings of CHI 2003, 2003.

[3] P.W.Jordan, “Designing Pleasurable Products”, CTI, 2000.

[4] Tatsuo Nakajima, “Middleware Component Supporting Flexible
User Interaction for Networked Home Appliances”, ACM Computer
Architecture News, December, 2001.

[5] T .Nakajima, D.Ueno, I.Satoh, H. Aizu, “A Virtual Overlay Network
for Integrating Home Appliances”, In the Proceedings of the 2nd
International Symposium on Applications and the Internet, 2002.

[6] T.Nakajima, et. al., “Technology Challenges for Building Internet-
Scale Ubiquitous Computing”, In Proceedings of the 7th IEEE In-
ternational Workshop on Object-Oriented Real-Time Dependable
Systems, 2002.

[7] T Nakajima, “Experiences with Building Middleware for Audio and
Visual Networked Home Appliances on Commodity Software”, In
Proceedings of ACM Multimedia 2002, 2002.

[8] D.Ueno,, T.Nakajima, I.Satoh, K.Soejima, ” Web-based Middleware
for Home Entertainment”, In Proceedings of International Confer-
ence on ASIEN’02, 2002.

[9] T.Nakajima, “Pervasive Servers: A Framework for Building a Soci-
ety of Appliances®, In Proceedings of the 1st International Confer-
ence on Appliance Design, 2003.

[10] . T.Nakajima. I.Satoh, " Personal Home Server: Enabling Personal-
ized and Seamless Home Computing Environments”, To be submit-
ted, 2003.

[11] T.Nakajima, T. Akutagawa, “A Personalization Framework in a
Personal Home Server: System Infrastructure for Designing Plea-
surable Experiences”, To be submitted, 2003.

[12] B.J.Pine II, J.}H. Gilmore, “The Experience Economy”, High Bridge
Company, 1999.

[13] Eiji Tokunaga, Andrej van der Zee, Makoto Kurahashi, Masahiro
Nemoto, Tatsuo Nakajima, ”Object-Oriented Middleware Infras-
tructure for Distributed Augmented Reality”, In Proceedings of
IEEE International Symposium on Object-Oriented Real-Time
Computing, 2003.

[14] K.Raatikainen, H.B.Christensen, T.Nakajima, “Applications Re-
quirements for Middleware for Mobile and Pervasive Systems”,
ACM Mobile Computing and Communications Review, Vol.16,
No.4, 2002.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS’04)
0-7695-2123-1/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

