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Abstract—In this paper, we propose a wireless Communicator 

to manage and enhance a Cardiac Rhythm Management System. 

The system includes: (1) an on-body wireless Electrocardiogram 

(ECG), (2) an Intracardiac Electrogram (EGM) embedded inside 

an Implantable Cardioverter/Defibrillator, and (3) a 

Communicator (with a resident Learning System). The first two 

devices are existing technology available in the market and are 

emulated using data from the Physionet database, while the 

Communicator was designed and implemented by our research 

team. 

The value of the information obtained by combining the 

information supplied by (1) and (2), presented to the 

Communicator, improves decision making regarding use of the 

actuator or other actions. Preliminary results show a high level of 

confidence in the decisions made by the Communicator. For 

example, excellent accuracy is achieved in predicting atrial 

arrhythmia in 8 patients using only external ECG when we used a 

neural network. 

Keywords—Wireless, Learning systems, Bluetooth, ZigBee, 

ECG, EGM 

I. INTRODUCTION 

The electrocardiogram (ECG/EKG) is an electrical 
representation of the polarization cycle of the heart as read by 
electrodes placed at strategic points on the skin surface. The 
heart is stimulated by the natural pacemaker of the heart, which 
applies an electrical signal to the heart such that the muscles of 
the heart contract. The heart’s electrical signals set the rhythm 
of the heartbeat. An ECG records the heart’s electrical activity 
and indicates (1) heart rate, (2) whether the rhythm of the 
heartbeat is steady or irregular. 

Conventionally, 10 electrodes are used to display the ECG 
and the combined output is known as the 12-lead ECG because 
12 distinct signals are recorded and displayed. These signals 
provide a 3 dimensional (spatial) view of the heart’s electrical 
activity to the physician. With the advancement in technology, 
a smaller version of the 12-lead ECG that uses 2 or 3 leads has 
been realized, that can be attached to the human body, and can 
continuously monitor the heart’s electrical activity. This type of 
ECGs is called an ambulatory ECG, or on-body wireless ECG, 
and provides only a one or two- dimensional view of the heart’s 
electrical activity. It is hypothesized that by combining the 
information supplied by ECGs and EGMs, both of which 

measure the electrical activity of the heart, the value of this 
combined information presented to the Communicator and/or 
the physician will increase and improve decision-making, that 
in turn benefits the accuracy of the actuator and other actions. 
The presentation and analysis of this data, in real time, is 
facilitated by the Communicator. Note that the information that 
can be provided to the physician by the 12-lead ECG is much 
more comprehensive than that of the wireless ECG. 

In a similar fashion, an Intracardiac EGM, embedded in a 
pacemaker device, an Implantable Cardioverter Defibrillator 
(ICD) or Cardiac Resynchronization Therapy (CRT) device 
monitors the heart for possible arrhythmias [1]. The implanted 
device is surgically placed in the chest close to the collarbone. 
Catheters are extended into the heart from the device and come 
into contact with cardiac tissue. The EGM sensor views the 
heart’s polarization cycle in one dimension. The implanted 
device processes and analyzes this information to monitor the 
heart’s electrical activity. Based on this information, the device, 
through an actuator, applies an electrical signal to the heart to 
bring it out of arrhythmia and back to normal heart rhythm. 

The main difference between the ECG and the EGM is that 
the surface ECG provides a high-level view of the heart and the 
EGM is a fine-grain view of the heart.  The surface ECG in 
essence has a “filter” in place (intervening tissue and skin), 
allowing only the larger signals to be discernible. Also due to 
the muscle and tissue, the noise levels is higher in the surface 
ECG compared to the EGM signals.  

As compared to the 12-lead ECG, which provides a three-
dimensional view of the heart’s polarization cycle, only a one or 
two-dimensional view is provided by the wireless ECG and a 
one dimensional view is provided by the EGM sensors. It is 
recognized by the medical community that the amount of 
information increases as the number of (independent) 
dimensions is increased from one to three. However, the 12-lead 
ECG is not portable and cannot be used for continuous 
monitoring without hindering the patient’s daily activities. 

The paper presents an innovative Cardiac Rhythm 
Management (iCRM) System and is organized as follows. In 
section II, we present a literature review of the technologies used 
for the iCRM. In section III we describe the iCRM. Section IV 
presents the simulation setup and preliminary results of our 



approach. Finally, we present our conclusions and future 
research directions in section V. 

II. LITERATURE REVIEW 

A. Implanted Devices 

Implanted Cardiac Rhythm Management devices are used to 
monitor and correct arhythmia. There are three classes of 
Implantable Cardiac Rhythm Management devices: 1)  
Pacemakers; 2) Implantable Cardioverter/Defibrillators (ICD); 
and 3) Cardiac Resynchronization Therapy devices (CRT). The 
respective functions of these devices, which include sensing and 
actuating, vary depending on the type of arrythmia. These 
devices are implanted in the patient’s chest area close to the 
collarbone. Special conductive wires [catheters] extending from 
the device are passed through the blood vessels and are placed 
into the heart. The sensors on the tip of the catheters measure the 
fluctuation of voltage in the locus of cells that it is in contact 
with and sends this information to the implanted device. The 
device, then administers voltage [actuation]. This informations 
is called an Intracardiac electrogram EGM [2]. The EGM is a 
fine-grained view of the heart’s polarization cycle. The 
implanted device processes and analyzes this information to 
monitor the heart condition. Based on this information an 
appropriate voltage is applied depending on the arrhythmia. 
Pacemakers apply a small voltage to bring the heart rate back to 
normal. ICD/CRT devices apply a certain amount of shock 
(voltage) to the heart to bring it out of potentially fatal 
arrhythmia back to normal heart rhythm. Fig. 1 shows a basic 
block diagram of a ICD/CRM device [3].  

B. Learning Systems 

Machine Learning [4] is a branch of artificial intelligence 
that enables a computer or an embedded system to detect data 
patterns from input data provided without being programmed,   a 
priori, with explicit rules [as would be the case with an Expert 
System]. The leaning system develops rules based on labelled, 
data of a given process, provided in a training mode to classify 
data and effectively aids or replaces expert involvement. 

Learning systems employ machine-learning algorithms on 
substantial records of training data of a given process to learn 

patterns and predict outcomes. The success of the learning 
system depends on many factors such as, the type of algorithm 
chosen, nature of the data, quality of the data, etc. Success is 
measured using different metrics such as confusion matrices, 
receiver operator characteristics (ROC), comparison of true and 
false positives, confidence measures, etc. 

Typically, the data are divided into three phases: (1) training 
data, (2) validation data and (3) testing data. The training data 
are used to teach the system and develop rules. Each outcome is 
labeled and the system knows this label. The validation data are 
used to perform preliminary testing on the algorithm. The testing 
data are used to perform a final test on the quality of the 
algorithm [5].  

The ECG and EGM data is a set of voltage fluctuations in 
time that form patterns depending upon the condition of the 
heart. For example, in the case of atrial fibrillation the ECG and 
EGM could show a rate of over 300 peak fluctuations per minute 
(normal rhythm follows a pattern of 72 patterns per minute). The 
algorithm that we employ must be trained to recognize patterns 
and associate them with specific arrhythmias.    

To achieve this goal we use a learning system technique 
called an Artificial Neural Network (ANN) in order to learn 
ECG and EGM patterns and correctly classify them. Artificial 
Neural Networks are based on the concept of biologically 
occurring neural networks that are present in the central nervous 
system and are responsible for human learning and computation. 
An ANN uses a plurality of nodes or ‘neurons’ [the circles in the 
figure] to recursively train and adapt weights [the W’s in the 
figure] to correctly recognize patterns and associated labels 
(classes) as shown in Fig. 2. ANN systems are especially useful 
in recognizing patterns and are used substantially in ECG 
analysis[3], [6]–[9]. 

III. INNOVATIVE WIRELESS CARDIAC RHYTHM 

MANAGEMENT SYSTEM 

The improved Cardiac Rhythm Management (iCRM) 
System, which is illustrated in Fig. 3, is designed to improve 
patient outcomes by using existing technologies (e.g., a wireless 
ambulatory ECG and an EGM) in combination with a novel 

 

Fig. 1. Block Diagram of ICD/CRT Architecture. 

 
Fig. 2. Architechture of a Neural Network 



Communicator to provide enhanced multi-dimensional 
networked ECG information. The networked information is 
input to a Learning System on-board the Communicator that 
detects the arrhythmia from the ECG/EGM patterns and 
provides enhanced actuating decisions to the implanted CRM 
devices [i.e., actuators] or relays accurate diagnoses to a 
physician, to create an improved CRM system. 

The Learning System makes decisions based on the received 
information from several networked sensors (depending on the 
configuration of lead placements of the wireless ECG as well as 
the EGM) and supplies information to the implanted actuators 
and simultaneously sends information to the hospital/physician 
for round-the-clock and immediate/continuous monitoring. The 
Communicator features: (1) real-time processing, (2) a better 
grade of intelligence than available in the implants realized in 
the advanced learning techniques employed in the 
communicator (not present in present-day CRM) , and (3) serves 
as the central decision-making and communication device to the 
sensor/actuator network. 

In the case of ICDs, the proposed system adds value by 
aiding the EGM monitoring with the Communicator performing 
the critical decision-making role. From a fabrication point of 
view, this will also help to reduce complexity in the ICD because 
the decision making infrastructure is moved into the 
Communicator. 

The preprocessing that the Communicator provides for the 
CRT may greatly reduce the complexity and size of the system, 
as it is one of the larger cardiac rhythm management (CRM) 
devices. The inclusion of the external ECG in the monitoring 
process helps to add an extra dimension in the monitoring 
process. This will help in acquiring better information for 
actuation. The implanted actuator (ICD or CRT) communicates 
with the Communicator and the Communicator receives the 
information from the 2- or 3-lead external ECG and the 2-lead 
ECG present inside the actuator. The information collected from 

these leads is fed into the Learning System to make more 
accurate decisions than is achievable by either device alone. 

Figure 4 shows the Communicator communicating with the 
monitor (ECGs) and actuator (ICD/CRT). The Communicator 
acts as a preprocessor for the actuator by processing the 
information from the monitors and making decisions that 
improve the accuracy and efficiency of the actuator. For 
example, the Holter monitor [10], which is a 2-lead on-body 
ECG, supplies information to the Communicator, and, in turn, it 
calls upon the expertise of the Learning System to make 
decisions for the benefit of the ICD/CRT (better pulsing 
accuracy). 

To achieve low data rates for wireless communication, we 
include real-time compression inside the ECG monitors before 
transmitting the information to the Communicator. This 
increases the battery’s lifetime of the monitor because fewer bits 
are transmitted. The information processed by the 
Communicator is also relayed on a cellular or Wi-Fi network, 
through the internet, to the hospital data center. Besides the data 
obtained in conventional ECG measurements, it also includes a 
reliable diagnosis and report of the recent ICD/CRT device 
activity. This leads to a more holistic understanding of the 
patient’s problem and allows medical attention to be brought to 
the patient faster. 

IV. PRELIMINARY RESULTS 

A. Physiobank Database 

In order to test the above mentioned hypothesis we used a 
database from Physiobank [11] that contained both surface ECG 
and EGM information that was simultaneously recorded . The 
EGM traces were obtained using a catheter containing 10 
sensors. The catheter was positioned in different locations 
within the cardiac atrium, and information was recorded while 
the patient underwent an episode of either Atrial Fibrillation 
[AFB] or Atrial Flutter [AFL]. The data were digitized at 1 KHz 
and contained 8 signal traces for every patient, 5 EGM signals 
and 3 surface ECG signals recorded simultaneously. Another 
database containing surface ECGs of patients with a normal 
heart beat or Normal Sinus Rhythm [NSR], also from 
Physiobank [11], was adapted into our experiment.     

 

Fig. 4. Functional view of the Communicator Learning Systems algorithm. 

 

Fig. 3.  Improved Cardiac Rhythm Management (iCRM) System 

Architecture. 



B. Results with Surface ECG 

We present our preliminary results from passing the surface 
ECG signal through an ANN algorithm using the MATLAB 
neural network toolbox.  

The surface ECG signals are divided into data segments of a 
constant time period. This time period was chosen to represent 
a standard PQRST signal of a normal heartbeat [10]. This 
amounted to about 106 samples after appropriate down 
sampling. These data segments were labeled according to the 
heart condition (Atrial Fibrillation, Atrial Flutter or Normal 
Sinus Rhythm) and input to the neural network using a standard 
back propagation algorithm [12]. The neural network had 3 
layers, input layer, output layer and one hidden layer containing 
10 neurons.  

   Figure 5 shows the confusion matrices [4], [5], [12]for 
training, testing and validation. The rows contain the true classes 
and the columns contain the class that was predicted by the 
algorithm. We can see that 99.2 percent of data segments were 
correctly classified. Fig. 6 shows the number of times the 
algorithm went through the entire data set and it’s relationship 
with the mean squared error for training, validation and testing. 

C. Prototype System  Design 

The prototype system implementation of the iCRM involves 
that is shown in Fig. 6 consists of three components: the 
Communicator acting as bulk data processing and decision 
engine, and two device emulators, one to emulate the EGM and 
the other to emulate an external ECG Holter monitor.  

The Communicator is implemented using a 32-bit Freescale 
K-70 microcontroller operating at 120MHz. To simplify 
hardware development and focus on proof of concept of the 

ANN algorithm in real-time, the Freescale Tower System 
TWRK70F120M is employed as a complete hardware 
development platform solution for experimentation with real-
time behavior of the learning system algorithm. 

Likewise, the device emulators are also built using the 
Freescale Tower System K-60 MCU operating at 100MHz on 
the TWRK60D100M development board. These devices contain 
a Bluetooth and Zigbee radio, to emulate the types of proprietary 
and non-proprietary radio interfaces found on commonly 
available implanted and external ECG devices. Each device is 
hard coded with data from the Physiobank database 
corresponding to EGM and ECG traces. The devices, when 
powered on, wait for a synchronization signal from the 
Communicator and then begin transmitting data using their 
respective radio. The synchronization is important to ensure the 
data being received by the Communicator is accurate between 
the two sources to the corresponding time value ECG sample. 

A real-time operating system named MQX is provided by 
Freescale to support their MCU with handling task scheduling, 
peripheral management, and data flow within the device. MQX 
is a priority task-based system with an API programmable 
interface to communicate to external devices. The top-level 
tasks scheduled by MQX are to connect and maintain a wireless 
connection with the Bluetooth and Zigbee modems, read the 
input buffer to receive incoming ECG data, process the data 
using the Learning System, and transmit the decision result when 
available via the UART. 

The core of the Learning System is an ANN subroutine based 
on C code that was tested on a PC and the results compared 
against Matlab simulation with the same training data and input 
data for verification of operation. For the purpose of the initial 
hardware emulation, the training data is pre-programmed as a 
fixed variable array that is configured during compile time. In 
future iterations, the Learning System and Communicator will 
allow dynamic training of the ANN to add additional decision 
results once data is available for conditions beyond the scope of 
the Physionet database. Also, the ECG device emulators will be 
configured to read data from a removable storage device to 
provide additional system testing using patient ECG data from 
other sources. 

 

Fig. 6. iCRM prototype system with FreeScale equipment 

 
1=Atrial Fibrilation (AFB); 2=Atrial Flutter (AFL); and 3=Normal Sinus 

Rhythm (NSR) 

Fig. 5. Confusion Matrix generated by the MATLAB Toolbox. 



The flexibility of the Tower System peripheral interface will 
only require minor adjustments in the Communicator hardware 
and software to incorporate any proprietary wireless 
technologies that may be used in commercially available ECG 
systems. 

V. CONCLUSIONS AND FUTURE DIRECTIONS 

A high degree of accuracy was achieved in predicting atrial 
arrhythmia in 8 patients using only an external ECG when we 
used an ANN neural network with 10 hidden neurons with a 
back propagation algorithm.  

Future work involves extracting information from the EGM 
that compliments the information of the surface ECG and 
implementing these algorithms on hardware. In addition we plan 
to explore the benefits of using the VCG representation by 
converting both the ECG and the EGM signals into the VCG 
format, VCGEGM and VCGECG respectively, to see if this 
improves decision making of the learning system [13]. 
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