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Abstract

In software visualization and algorithm animation it is important that advances in system

technologies are accompanied by corresponding advances in animation presentations. In

this paper we describe methods for animating tree manipulation algorithms, one of the

most challenging algorithm animation domains. In particular, we animate operations on

pairing heap data structures which are used to implement priority queues. Our animations

use tree layout heuristics and and smooth transitions for illustrating intermediate algorithm

states to promote viewer understanding. This paper describes the visual techniques and

methodologies used to display the pairing heap operations. The paper also details the

implementation requirements and how our particular support platform, the XTango system,

facilitates meeting these requirements.
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1 Introduction

Algorithm animations[Bro88b] visually depict how algorithms function to promote un-

derstanding of the algorithm's methodologies. Usually, the animations contain abstract

views of an algorithm's semantics and operations. Recently developed algorithm animation

systems[LD85, Bro88a, BB90, Sta90b, BK91, Bro91] primarily have advanced the technol-

ogy exhibited in algorithm animations, but as the area of algorithm animation matures,

these technological system advances must be accompanied by advances in the quality of

algorithm presentations. Researchers must focus on providing e�ective algorithm presenta-

tions that help communicate the purpose and tactics of sophisticated computer algorithms.

Most of the systems referenced above provide a variety of views of sorting, searching,

and graph algorithms. Certain other types of algorithms have proven to be more challenging

to animate. A particular class of algorithms considered to be one of the most di�cult to

animate is the dynamic tree algorithm. This is especially true when the algorithm's input is

not prede�ned or hard-wired and when its animation is dynamic and real-time. Animating

tree algorithms is particularly di�cult because they challenge the two intrinsic aspects of

algorithm animation: layout and action.

Graph and tree layout are known to be challenging problems with an extensive list of

research articles on the topic[TE88]. For tree layout algorithms, specifying the placement

of tree nodes to avoid edge crossings and to preserve aesthetics is critical. Various methods

have been designed for optimally positioning the nodes in a static tree. In algorithm ani-

mation, this layout problem is further compounded because unpredictable run-time input

causes the tree to grow and shrink. An algorithm animation must reect the correct tree

state without undue delay.

The action component of a tree algorithm animation is challenging because di�erent

parts of the tree structure must update synchronously in complex motion sequences. It is

critical that the animation view support continuous changes in state with smooth, incre-

mental transitions during operations to help maintain the viewer's context and to explain

how the algorithm is operating.

This paper describes animations that we have developed of pairing heap priority queue

algorithms. Pairing heaps are tree data structures that are appealing due to their con-

ceptual clarity and their nearly optimal computational complexity[FSST86]. We describe

the animation methodology used to animate the heap algorithms that, we believe, provides

an e�ective presentation of the algorithms, promoting and facilitating understanding. We

also describe how the animations were implemented using the XTango system, and how

XTango's facilities supported the animation design.

2 Problem Domain

Priority queues are data structures that manipulate nodes with key values and that support

the operations insert, �nd min, delete min, delete, and decrease key[AHU74]. Priority

queues are widely used with applications such as job scheduling, minimal spanning tree,

shortest path, and graph traversal. By using a simple heap data structure, worst case time

bounds of O(logn) are achieved for all operations. Fibonacci heaps[FT84], developed by
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Figure 1: Comparison-link action between the two trees. The \losing" tree becomes the

new �rst child of the \winner."

Fredman and Tarjan, achieve amortized[Tar85] time bounds of O(1) for insert, �nd min,

and decrease key and O(logn) for delete min and delete. Currently, these bounds provide

the best running times for a variety of di�erent problems[FT84]. Unfortunately, Fibonacci

heaps are quite complex and exceptionally di�cult to implement. As a result, they are

rarely used in practice. Pairing heaps o�er an attractive alternative implementation option,

nearly achieving the optimal amortized time bounds of Fibonacci heaps[FSST86, SV87], yet

providing a more manageable and less contrived data structure to implement.

Pairing heaps are implemented as multiway trees with the heap property invariant that

the children of a node have key values greater than or equal to the node's key value. A

number of pairing heap variants exist. This paper focuses on the two-pass variant, named

after its delete min operation's methodology.

The two-pass pairing heap algorithm maintains one tree with the minimum key value in

the root. The comparison-link action is fundamental to all the pairing heap operations. In

a comparison-link, two nodes are compared to determine which has the smaller key value.

The node with smaller key value \wins" the comparison, and the larger key-valued node is

demoted as the new �rst child of the winning node. The larger key-valued node retains its

own children and it becomes a sibling of all the previous children of the winner. Figure 1

shows the result of a comparison-link between two subtrees.

Operations on a two-pass pairing heap work as follows:

� Insert: The algorithm's insert operation simply comparison-links the new node with

the tree root node.

� Delete min: The delete min operation removes the root and elevates all its children as a

forest of new trees. These nodes are reformed into one tree by a two-pass comparison-

link procedure: Nodes are compared in non-overlapping pairs left-to-right, then the
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Figure 2: A multiway depiction of a pairing heap (left) and its corresponding binary repre-

sentation (right).

rightmost tree is repeatedly linked to its left sibling in a right-to-left pass.

� Decrease key: To decrease a node's key value, we remove it and its children from

the heap. Since the new value may now be less than the original root, the removed

subtree is comparison-linked with the previous root to reform one tree again.

� Delete: To delete a node, we remove it, elevate all the node's children, reform them

into one tree using the two-pass method, then comparison-link this tree's root to the

previous root.

Because of the di�culties in implementing multiway tree data structures, pairing heaps

are often implemented using a binary tree simulation of a multiway tree. This representation

maps a node's �rst child (multiway) to its left child (binary) and its next sibling (multiway)

to its right child (binary). Figure 2 shows both the multiway and corresponding binary

representations of a tree. The animations we describe in this paper reect the binary tree

representation.

3 Animation Methodology

In this section, we describe how the pairing heap algorithm animations look and work. The

animations are implemented using the XTango system[SH90], a derivative of the Tango

algorithm animation system[Sta90b]. XTango di�ers from Tango in that it runs directly

on top of the X11 Window System, and it has a simpler architecture model to promote

portability and ease-of-use.
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Figure 3: Animation frame from the XTango pairing heap algorithm animation using the

conservative layout technique.

3.1 Representation

In our animations, tree nodes are presented as colored rectangles with the root at the top

center of the animation window. Left and right children are located below and to the

appropriate sides of their parents. Related nodes are connected by thin lines between the

closest corners of the two nodes, and each node's key value is superimposed upon its image.

Figure 3 shows a frame from the pairing heap animation between operations.

The motion of nodes and subtrees in the heap operations is carried in a smooth animation

sequence by incrementally moving objects from their existing positions to their desired

positions. For instance, when a forest of subtrees is created by one of the pairing heap

operations such as delete min, all the roots of the subtrees ascend smoothly to the level

of the original root. All subsequent comparison-links occur with nodes or subtrees at the

same height as the root of the tree. The action of the two-pass algorithm for recombining a
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forest of subtrees is clearly depicted by the animation. The trees are shown being combined

in a pairwise fashion on the �rst pass. On the second pass, the right most tree continually

combines with its neighbor until the �nal heap slides into place in the center of the animation

window. The animation was explicitly designed to show the two passes sweeping across the

forest creating a new tree.

These smooth portrayals of updates di�erentiate our animations from those that typi-

cally only show the state of the tree after each operation in one comprehensive view update.

Animations with smooth updates showing intermediate states help to preserve viewing con-

text and convey the actual algorithm used to manipulate a tree.

3.2 Layout Techniques

The problem of tree layout has been studied extensively[WS79, Vau80, RT81, WI90, Moe90]

and many node positioning algorithms exist. These algorithms primarily deal with deter-

mining optimal positioning for static trees. Animating tree operations during a program's

execution is quite di�erent, however, requiring dynamic updates of node positions based on

local changes. It may be desirable to sacri�ce optimal node placement for features such as

preservation of context and the highlight of particular algorithmic operations.

In a pairing heap, all the operations can be broken down into a series of simple linkings

of subtrees. By linking each subtree as close as possible to its parent we can simplify the

positioning requirements and avoid making two complete traversals, which are typically re-

quired for optimally positioning a static tree, every time a node or subtree changes location.

Such a methodology may be computationally expensive for real-time animation, and more

importantly it may actually detract from the visual appearance of the animation. Small

changes to the tree that modify non-local positionings will disrupt viewer context and make

it more di�cult to follow an animation.

The animations we have developed can utilize two possible supporting layout techniques.

The �rst technique (we call it conservative) creates trees whose steady-state appearance

looks like those created by Knuth's algorithm that positions each node according to its

position in an inorder traversal[Knu71]. Figure 3 reects this technique. The second tech-

nique, developed speci�cally for these animations produces trees that we found to be more

aesthetically appealing than those of the conservative technique. (This was a subjective

opinion based on our own personal tastes.) Trees produced by this approach (we call it

natural) are more compact and tend to be more balanced than those produced by the con-

servative approach. The �gures at the end of this paper reect the natural technique. Both

layout methods render trees with basic \tidy" properties[WS79]: parents are drawn above

children; nodes on the same level lie on a horizontal line; left children are drawn to the left

of their parent (and vice-versa).

To facilitate both layout techniques, local positioning information is encoded using the

following strategy: For each node, two successor-width values are de�ned. All leaves have

successor-widths of 0-0 which corresponds to the width of their left and right subtrees.

A node whose subtree is a single leaf will have a successor-width of 0-1 or 1-0 based upon

whether the leaf is a right or left child. The two layout techniques di�er in how the successor

width is de�ned for a general node. For the conservative scheme, a node's left successor

width value is determined by adding 1 to the sum of its left child's successor-width values.
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Likewise, the right successor-width value is 1 plus the sum of the right child's successor

width values.

In the natural scheme, the left successor width value for any node is de�ned to be the

maximum of (1 + left child's left successor width value) and (the right child's left successor

width value - 1). Similarly, the right successor width is de�ned as the maximum of (1 +

the right child's right successor width) and (the left child's left successor width - 1). Once

the local positioning information is de�ned, it is used during the comparison-link action to

guide the horizontal placement of each subtree. The root of each subtree is positioned as

close to its parent as possible during linking. If a subtree is linked as the right child of a

node, then it is positioned with its root located n+1 units to the right of its parent, where

n is the left successor extent of the node and a unit is a �xed, arbitrary spacing between

nodes. A fundamental di�erence between the two approaches is that the natural approach

allows a subtree to extend underneath its ancestors while the conservative approach does

not.

What is critically important here is that our technique's updates modify only local

portions of the tree. We do not traverse the entire tree to perform an expensive update.

Were we to strictly enforce a static layout strategy, all the small modi�cations that happen

during the heap algorithm would result in a constantly changing, di�cult-to-interpret tree

structure. Operations such as decrease key, which removes a subtree from the heap, do not

modify the surrounding structure of the heap near the removal, thereby avoiding a ripple

up the tree. Consequently, over time the trees in our animations may not exhibit the pure

appearance of an absolute layout heuristic. That is, the trees may not always support the

other tidy properties such as having subtrees appear the same no matter where they are.

We believe that such di�erences from the \tidiest" layout techniques are more than

compensated for by the bene�ts of this approach: Our update methodologies are fast, they

produce natural-looking trees, and most importantly they preserve viewing context from

operation to operation.

3.3 Animating the Operations

In designing the pairing heap animations, we strived to create actions that would be natural

in appearance and that would activate the pattern matching capabilities of human viewers.

Naturally, the static nature of the �gures in his paper does not do justice to the animations.1

Nevertheless, below we describe some of the key methods used in the animations.

When the animation presents a comparison-link between two nodes, it utilizes an in-

variant that we have labeled \loser moves." A comparison between the lowest key values of

two trees in a forest is presented by ashing the root nodes of the two trees in alternating

colors. The node with the losing (larger) key value, reverts to the standard node color

and smoothly incorporate itself into the winning (smaller key) node's tree. The winning

node remains stationary and is highlighted by the alternate color until the losing node is

integrated into the winning tree. If the right tree of the pair won the comparison, the

consolidated tree moves to the original position of the left tree. (A win by the left tree re-

1We have prepared a videotape of the heap animations that provides a much better impression of their

dynamic behavior.
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quires no post-merge movement.) Enforcing this \loser moves" invariant brings consistency

to the animation, promoting comprehension through pattern recognition by the animation

viewers.

Another important feature of the animations is smooth motion of subtrees as rigid

structures. Rather than move a subtree one component image at a time, all the images

which comprise the subtree move along the same path simultaneously. Rigid tree transitions

provide visual animation sequences that are consistent with the logical operations on the

pairing heap. In the underlying data structure, an entire subtree is linked as the child of

a node at once by the single operation of assigning a child pointer inside the parent node.

This semantic component of the algorithm operation is reinforced by the visual e�ect of

manipulating subtrees as rigid structures.

The delete and decrease key operations in the animation are interesting because they

allow viewers to interactively select the a�ected node by using the mouse. The animation

reports the selection back to the underlying heap program which then carries out the oper-

ation. This \hands-on" capability helps to unify the user of the system with the animation

being presented.

One di�cult problem in animating tree algorithms results from the dynamics of tree

growth. Because input is received \on-the-y" at program execution time, it is not possible

to predict how the tree will grow or shrink in the future.2 Certain sets of input operations

might make the tree grow rapidly in one or more directions and exceed the boundary of the

animation view.

Our animations address this problem by zooming the animation view. XTango anima-

tions are implemented on top of a real-valued world coordinate system that is automatically

mapped to integer pixel coordinates by the system. XTango includes a simple \zoom" func-

tion for altering the world coordinates that correspond to the animation window boundaries.

Our tree animations incorporate the XTango zoom feature to cope with growing trees.

After every operation, the positions of the tree's extremities are measured and compared

with the coordinate boundaries of the animation window. When a node exceeds a coordinate

boundary, the animation smoothly zooms out: the coordinate boundaries are increased and

the representation of the tree shrinks to again �t within the animation window. When

subsequent pairing heap operations cause the tree's extremities to recede within the original

coordinates, the animation automatically zooms in and the tree's components grow to their

normal size.

Viewers of the animations have found this visual e�ect to be aesthetically appealing, and

it helps preserve the context of the animation's operations and view. Of course, this tech-

nique goes only so far. After about three zoom-outs the nodes become too small to discern.

To display extremely large trees, other visualization techniques such as tree-maps[JS91] are

better. For learning the details of an algorithm, however, small to medium size trees are

most useful, and our zoom technique works well in these cases.

2By using a two pass animation in which the �rst pass simply reads all input, it is possible to plan for
future tree growth and do \smarter" layout. Our animations do not assume this capability|they must

adapt instantaneously to reect program operations as they initially occur.
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4 Tree Animation Algorithms

To create an algorithm animation with XTango, a programmer must 1) augment the pro-

gram being animated with algorithm operations, parameterized event calls that activate sets

of animation routines 2) de�ne the animation routines to represent the program operations

using the XTango implementation of the path-transition paradigm[Sta90a]. The animation

paradigm is based on four simple abstract data types (image, location, path, and transition)

and their operations. XTango implements the data types in the C programming language

using the X11 Window System.

In the pairing heap animation, we used four algorithm operations named Add, Pop,

Delete and DecreaseKey. We placed the algorithm operations into the pairing heap source

code at the appropriate points to inform the animation component about the heap algo-

rithm's actions. The operations map to three animation routines, AnimAdd, AnimPop, and

AnimReduce which are de�ned in an independent source �le. These three routines make

extensive use of routines named AnimComparisonLink and AnimTwoPass. An additional

animation routine, AnimBounds, is called after every pairing heap operation to manage the

zoom facility.

To remove any dependence of the animation routines on the underlying pairing heap

implementation, the heap data structure is mirrored by a similar data structure in the

animation component. An animation structure node contains the following XTango objects:

the image of the node rectangle, the image of its key value, and the images of links to right

and left children.

This duplication of some program data structure is valuable because it supports a clean

separation of the underlying program and its animation. If the animation routines were

to access program data structures, their reuse for animating other tree algorithms would

be restricted. By not relying on program data, just the algorithm operations and their

parameters, our tree animation description code can be reused with minimal changes for

animating other variants and algorithms.

To help explain how the animation routines are implemented, we describe the delete

min operation's animation, a few key frames of which are shown in Figures 5-8. Delete min,

signi�ed by the Pop algorithm operation, removes the lowest valued node (the root) from

the pairing heap. AnimPop animates this action with the following sequence: First, the root

node image disappears from the animation view. Next, the left child of the former root severs

its link to its right child and ascends with its left subtree to the location formerly occupied

by the root. In turn, each of the orphaned right children ascends with its left subtree

creating a forest of subtrees with root nodes at the same level. Finally, the AnimTwoPass

animation routine is called to animate the reformation of the forest into a pairing heap.

AnimTwoPass presents the two-pass reformation operation on a forest of subtrees that

are created when a node is deleted. This animation routine does a left-to-right comparison-

link pass by calling AnimComparisonLink on each pair starting from the left. Next, a right

to left pass is made with the animation again carried out by AnimComparisonLink. The

result of the right-to-left pass is a new pairing heap.

In Figure 4 we provide pseudo-code for the AnimComparisonLink routine. (Left and

Right refer to the root nodes of the left and right subtrees being linked.)
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BEGIN

IF the pointer to Right is a null pointer, RETURN

Create and perform transition to cause Left and Right to
ash and to remain in the highlight color

IF Left has lower key value

IF Left has a left child
Delete the image of the link to Left's left child

Move Left's left child subtree aside

ENDIF

Determine target position for Right as new left child of Left

Create a path from Right's position to target

Apply the path to entire right subtree
Create an image to link Right as Left's left child

Move right subtree to target and make link visible

Make Right return to the normal node color
IF Left previously had a left child

Determine target position for child as Right's right child

Create a path to target
Apply path to entire subtree

Create an image of link to Right's right child

Move Left's left child and make link visible
ENDIF

Make Left return to the normal node color

ENDIF

ELSE Right has lower key value

IF Right has a left child

Delete the image of the link to Right's left child
Determine target position for Right's left child as Left's right child

Create a path to target

Apply path to entire subtree
Create an image of link to Left's right child

Move Right's left child and make link visible

ENDIF

Determine target position for Left as Right's left child

Create a counterclockwise path from Left to target

Apply the path to entire left subtree
Create an image to link Left as Right's left child

Move left subtree to target and make link visible

Make Left return to the normal node color

Move Right (which is the root of the resulting tree) into the position formerly occupied by Left

Make Right return to the normal node color

ENDELSE

END

Figure 4: Pseudo-code for the AnimComparisonLink routine.
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By using the layout technique we discussed earlier, it is straightforward to determine the

target location to which a node should move. Because bounding box locations of XTango

images are available, the departure position for a motion path is also readily available.

Once these two endpoints of a movement action are determined, the motion is described

by creating a path between the two endpoints. Frequently this path is simply linear, and

o�sets in the path are small enough to insure a smooth transition from the initial point

to the target. Nonlinear paths are used in linking a left subtree into a right subtree by

following a counterclockwise semi-circle from the node's current location to the target.

Moving an entire subtree is an important visual e�ect in our animations. To accomplish

this, we use the following steps: First, we determine a path of motion for the root node of

the subtree. This path, along with an initial dummy transition and a pointer to the root

node are passed to a recursive function which returns a new composite XTango transition.

In XTango, composing transitions causes the actions embodied in the transitions to occur

simultaneously in the animation window. The recursive function creates a transition which

applies the path to the node's image and composes this transition with the transition that

was passed in as its parameter. The function calls itself recursively with the motion path,

composed transition, and pointer to its existing children. The transition returned from the

very �rst call is �nally the composition of all the transitions which were created by applying

the path of motion to each node in the subtree. When the transition is performed, all visual

components of the subtree simultaneously move along the same path causing smooth motion

of an entire subtree.

5 Summary

We have described new methodologies for animating tree algorithms, in particular, oper-

ations on a pairing heap data structure. These methodologies utilize basic tidy layout

techniques together with smooth state transitions to help preserve viewing context and to

promote comprehension. We have developed a constant-time heap update layout technique

that minimizes modi�cations to the tree from operation to operation, and we have described

how it is implemented.

In an ongoing project we are conducting user testing on students interacting with the

pairing heap animations to study the animations' e�ect on algorithm comprehension. We

speculate that these animations will help students learn how pairing heaps function. By

comparing student understanding both with and without viewing the animations, we seek

to acquire statistical evidence of the animations' utility.
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Figure 5: View of the pairing heap prior to a delete min operation. This animation uses

the natural layout technique.
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Figure 6: In the delete min, the root of the heap has been removed and all its children have

ascended smoothly up as trees in a new forest.
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Figure 7: View of the reformation following pass 1 of the two passes. Neighboring pairs of

trees have been linked together.
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Figure 8: View of the heap following the delete min. Here, the �nal comprehensive linking

pass from right-to-left has just occurred.
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