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Abstract—Wireless connectivity context data is composed by
date, time, geographical localization, and QoS metrics, to cite
the most common. These data are employed, in a particular
way, by fundamental techniques for context-aware connectivity
management, e.g. mobility predictors, handoff mechanisms and
mobility management. For instance, mobility and QoS predictors
use, as input, previous georeferenced network context data.
Normally, context data are available in hardly updated databases
with considerable size. In this paper, we propose a social-
based methodology to allow mobile users collaborate to discover
wireless connectivity islands. The methodology is composed by
methods to gather, combine, summarize and share context data
inside the users’ social circles. We, also, designed a schema
to mashup context data with location-based social media. It is
result of a prototyping effort and we focus the discussion on
its feasibility and limitations in terms of storage size, power
consumption and QoS metrics.

Index Terms—Context-aware connectivity management, net-
work context data, virtual social community.

I. INTRODUCTION

Wireless connectivity engineering is improving bandwidth,
coverage and ubiquitous access. However, it is, also, getting
expensive, in terms of both capabilities and cost [23], i.e. it
is computational complex and has a high monetary price. The
computational complexity occurs because the mobile device
is in charge of essential tasks, such as: gather, store, synchro-
nize and process connectivity context data. These are basic
functionalities of several context-aware wireless connectivity
management solutions reported in the literature, e.g. [3], [10],
[17], [19], [25], [26].

These investigations employ the current and historical con-
nectivity context data to keep the mobile device connected
while moving. The information applied is also referred as
mobility information, mobility profile or connectivity context
data. It is the input for handover mechanisms [7], mobil-
ity predictors [21], QoS predictors [18], [24], and mobility
management [4] standards and protocols. One of the most
common sources of this type of data are public searchable
databases, also called wardriving [15] databases. Even though,
it commonly has a considerable size, become outdated quickly
and make available just elementary information, e.g. the ones
in WiFi beacon packages [11].

Few efforts have been directed to improve the relevance of
this fundamental source of information. In order to achieve

this, the context data must be local, mobile, fresh, person-
alized and social. With this in mind, we have developed
a community-centric methodology to handle wireless con-
nectivity context. The focus is on data used to manage IP
connectivity in heterogeneous wireless environments [13].

The methodology orchestrates the fundamental methods to
manage connectivity in a feedback loop. It can be assisted by
a specialized virtual community or by popular on-line social
networks, e.g. Twitter. The idea is to allow mobile users to
collaborate, with others, in their social circle [12]. As a result,
the loop converges to better connectivity experiences for all
of them. Their time-spaced set of IP connectivity experience
is represented as a digraph called connectivity path. These
experiences are sent to the context manager, and an algorithm
is applied to combine it in a connectivity graph. It is the media
socialized, i.e. shared by mobile users in their social circles.

This investigation takes into consideration the hypothesis
that people have their opportunities of communication and
collaboration enhanced inside smart environments, e.g. digital
houses, universities and hospitals. Social networks would be
an important tool to achieve it. Providing efficient services to
enable communication through digital media. Presently, popu-
lar virtual social networks provide programming interfaces to
embed third part applications, and plugins to allow interaction
between common web sites and the virtual community.

We explore these possibilities in two ways: building a
specialized virtual community and creating mashups [27] with
location-based social media. The first one is a web application
which implements the proposed methodology. The social circle
is brought to the application using a plugin from Google
Friends Connect. The context data is shared through RSS
(Really Simple Syndication) feeds [14] channels. The second
one, attaches the shared connectivity graph to popular location-
based social media. This kind of media, usually, mashups the
mobile user’s localization, in a map, with a message/link.
Then, people in their social circle can search for feedbacks
related to that specific place. Employing this adds relevance
and scalability to the shared context data.

Certain valuable contributions of this paper are the discus-
sion related to the methodology, development, and limitations
of our solution. Some implementation issues motivated an
analysis of the critical points to make the methodology feasi-
ble. The feasibility is examined in terms of storage size, and
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power consumption. In addition, we deployed our prototype in
a university building to verify IP connectivity improvements
in terms of QoS metrics, e.g. throughput, and signal quality.
The experimental results shows that wireless connectivity
experiences are improved, even in a environment with good
network coverage.

The rest of this paper is organized as follows. In Section II,
the main related works are examined. The section III describes
our social-based methodology and the context data structure.
Section IV present the main issues faced during the develop-
ment of the prototype. In section V and VI, the viability of
the proposed approach is discussed using quantitative metrics.
Finally, conclusions are given in Section VIII.

II. RELATED WORK

Recent investigations, concerning wireless connectivity
management, combine mobility prediction and network QoS
mechanisms to access ubiquitous services in smart envi-
ronments [22]. Moreover, handoff mechanisms and mobility
management have been considered a critical issues in several
investigations reported in the literature, e.g. [15], [18], [21],
[22]. Nicholson et al. [17] concluded that an ideal connectivity
management would be possible if, before the access point in
use becomes unreachable, the mobile device must knew which
one will use next. Also, had previously completed association,
and had already received an IP address from the new network.

In our research, we reuse and adapt these ideas and mecha-
nisms. Placing the historical context database as fundamental
source of information for the other three components, as
shown in Fig. 1 (1). The mobility predictor forecast the
probable geographical localization of a mobile user, based on
past context data. When the user reaches a location where
the current network becomes unusable or does not fulfill the
applications’ QoS requirements, it is necessary to activate a
handoff mechanism. Also, several handoff mechanisms pub-
lished are context-aware, e.g. [1], [9], [20]. Finally, in order to
keep the transport connections alive it is necessary to make use
of a mobility management mechanism, e.g. Mobile IP at layer
3. Theoretically these components fulfill the requirements of
an ideal connectivity management aforementioned.

Handoff Mechanism Mobility Predictor

Mobility Manager

Historical Context  Database

Fig. 1. Fundamental components of the connectivity management.

Complementary research address investigations employing
the knowledge of mobility patterns in order to properly allo-
cate network resources [16], [19], [25]. Aiming at enhance the
QoS experienced by applications in mobile devices. However,
it takes time to construct an efficient mobility model. Because
it is necessary a set of past context data as input. Our solution
complements these approaches, offering combined context

data to build the initial model. As function of time, the model
can be adapted regarding the user’s mobility patterns.

BreadCrumbs [16] explores the derivative of connectivity of
a mobile user to perform context-aware handoffs. Prasad et al.
[19] have proposed a framework for modelling and predicting
user movements in wireless networks. Both apply a Markov
model to predict mobility in wireless networks. The observed
networking conditions are stored to construct a personalized
mobility model, on the user’s mobile device. Both solutions
could use our methodology to feed the predictors.

Recent investigations are exploring multiple network inter-
faces to increase throughput, taking advantage of the diversity
of access providers. Extra wireless interfaces can support
parallelism in network flows, improve handoff times, and
provide communication with nearby peers [5], [17]. Fig. 2
illustrates two typical cases: (1) one network interface and
multiple connections; and (2) multiple interfaces with single
connections. A hybrid approach, of these two, is also possible,
i.e. multiples interfaces with multiples connections.

AP01

...

(i1, conn1)

(i1, conn2)

(i1, connx)

APx

AP02

AP01

...

(i1, conn1)

(i2, conn2)

(ix, connx)
Mobile device

APx

AP02

(1) one interface, 

     multiple connections (2) multiple interfaces, 

     single connections 

Mobile device

Fig. 2. Two types of connectivity: (1) one interface and multiple connections,
(2) multiple interfaces with single connections.

Nicholson et al. [17] explore mobile devices with multiple
network interfaces that execute the MAC (Media Access Con-
trol) layer in software. Juggler is a link-layer implementation
of an 802.11 virtual networking service. The ultimate goal is
enhance data throughput. Specially, when wireless bandwidth
is superior to that of an access point’s wired back-end con-
nection. It is done multiplexing data across many networks,
using virtual network interfaces [17], the Fig 2 (2) illustrates
this statement. We believe that historical context data would
support the decision making to choose the second or the xth

access point.

The aforementioned researches are investigating handoffs
optimization using mobility prediction, and relying on public
or private QoS databases. However, few efforts are direct to
provide better quality data in terms of facility to access, handle
and update. We believe that these predictors can have better
forecasts using our social-based solution, if compared to just
use common wardriving databases. Also, they would use our
solution to delivery connectivity information to others mobile
users.
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III. DESIGN

A. Methodology

Four essential entities compose the methodology: mobile
device, mobile user, social circle and the context manager,
as shown in Fig. 3. At the mobile device, client side, the
mechanisms responsible to manage the IP connectivity are
implemented, e.g. just the operational system. People carrying
these devices experience distinct quality of service in a shared
place, e.g. a building, neighborhood or campus. Finally, the
mobile users are able to collaborate, with other ones, in their
social circle. The context manager, server side, assist them
with services. For instance, the users can upload their connec-
tivity experiences, share them, and download the combination
of all members’ feedbacks [13], to cite two essential services.

Fig. 3. Methodology: (1) Gather user’s network context data; (2) Combine
them; (3) Summarize the numerical QoS related data; (4) Share the combi-
nation.

Fig. 3 highlights the four fundamental methods disposed
in a feedback loop. To start, it is necessary to acquire, store
and upload the user’s connectivity experiences at a particular
location. It is our first method, as shown in Fig. 3 (1). It can be
done using the operational system’s programming interfaces
and supported network protocols. The second method, Fig.
3 (2), is in charge of combining all users’ experiences in an
adequate format. To accomplish this, we employ a graph-based
model that combines all these data in a connectivity graph [13].
This model is discussed in subsection III-B.

At a specific place, e.g. around a enterprise facility, several
mobile users may have had a connectivity experience. In this
case, a search for feedbacks could return many context in-
stances. One way to reduce the size complexity is delivery the
quantitative data condensed by statistical tools, as illustrated
in Fig. 3 (3). Lastly, this information needs to be accessible to
all community members through a delivery system, as shown
in Fig. 3 (4). A channel is created in a RSS feeds to distribute
the combined and summarized context data, more details are
given in subsection IV-B.

B. Network context data and data model

Connectivity experience is a set of time spaced network
context data. Including QoS parameters related to an access
point used, by a person with a mobile device, at a certain
location in a specific time. This data is gathered from different
sources, e.g. user profile, operational system, alive connections
and access point, as shown in Fig. 4. Sun et al., in [22],

defined mobility as logical concept rather than a physical one.
In which, mobility means the change of the logical location of
network’s access points instead of user’s geographic position.
With this vision in mind, we defined and structured our set of
context data, as illustrated in Fig. 4.

Server IP Port

Tx Latency

Transport layer’s QoS metrics

Rx

Protocol

User

140 bytes - static 58 bytes - dynamic

240 bytes - dynamic
Latitude

LongitudeDate

Time

Battery NI

1 Mobile user

Mobile device3

2 Operational system Signal 

Quality

MAC SecuritySSID

Standard Channel

Access point 4

Transport connection5

Fig. 4. Example of a set of context data and their sources: (1) mobile user,
(2) operational system, (3) mobile device, (4) access point and (5) transport
connection.

For Bettini et al. [2] an adequate context information model
would reduce the complexity of context-aware applications
and improve their maintainability and evolvability. Taking
this recommendation, we defined the sources of context data:
(1) mobile user, (2) mobile device, (3) operational system,
(4) access point and (5) transport connections, as shown in
Fig. 4. The data fetched from these sources were specified
regarding our development environment, and the requirements
of a runnable prototype, more details are discussed in Section
V.

Handling this set of data appropriately we can infer some
useful information. For instance: who is the person; where
and when she or he was connected; which access point was
used; which transport connections were opened. At each scan,
the context data’s size can vary as function of the number
of networks available and transport connections opened. Fig.
4 indicates the static and dynamic subsets of context data,
in terms of size. At a particular scan, the data related to
date, time and mobile user will appear just once in the set,
it is part of the static subset. On other hand, the dynamic
subset is composed by data associated to the access points
and transport connections. The instances, of this subset, will
vary as function of the number of access points available, and
transport connections opened.

Regarding the data model, in a previous work [13], we
defined a graph-based structure to represent connectivity ex-
periences, called connectivity path or Gpath(Vpath, Epath).
The vertices, Vpath, are locations where the mobile device
switched from an access point to another, called handoff
points. The edges, Epath, represents the access point used
and the ones available between handover points, with labelling
”currentAP, {allAPs}”. Thus, a Gpath condenses the wire-
less connectivity experience of a specific user.

Gconn(V,E) = Combine(Gpath[user.length()]). (1)
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<rss version=”2.0”>

 <channel>

  <title>ConGraph</title>

  <lastBuild>…</lastBuild>

  <item>

  <pubDate>…</pubDate>

  <link>…</link>

  …

  </item>

  <item>...</item>

 </channel>

 <channel>…</channel>

</rss>

RSS Feed

<congraph>

 <node>

  <location>...</location>

  <time>...</time>

  ...

 </node>

 <node>…</node>

</congraph>

Connectivity graph

(1) (2)

Fig. 5. (1) part of the RSS file. (2) elements of the XML file, which is a
textual representation of the connectivity graph.

Given the connectivity paths of all mobile users in some-
one’s social circle, an algorithm is applied to combine these,
to a new graph called connectivity graph or Gconn, as shown
in Eq. 1. The vertices, V , are still handover points created
by the union of all Vpath. However, the edges, E, are the
users whom used the same access point between two nodes.
It is a digraph with labels like ”currentAP, {allUsers}”. An
textual representation of Gconn, i.e. a XML file, is the media
shared in the users’ social circles, more details in Section IV.

IV. DEVELOPMENT

A. Delivery system

Historical network context data needs to be flexible in terms
of handiness, freshness and updatability. In order to comply
with these requirements, we developed a delivery system using
RSS feeds. It provides a standardized XML-based format to
publish very often updated applications, e.g. news headlines
and blog posts. The most interesting functionalities are: com-
bine digital content automatically, allow users to subscribe to
timely updates in channels, and aggregate feeds from distinct
sources in one place.

The fundamental idea is create channels to publish con-
nectivity context inside virtual social networks. Fig. 5 (1)
shows the basic structure of a RSS feeds file. A channel is
defined by the tag < channel > plus metadata related to
the date, authorship and content. The content can be set into
a timestamped item, tag < item >. In our prototype the
connectivity graph is referenced in the tag < link >, which
points to a textual representation of the graph, as shown in
Fig. 5 (2).

Each social circle has a channel subscribed by the members.
The tag < lastBuildDate > is used to verify if there are
updates in the channel. This tag is modified when a new item
is added to the channel, which means that a connectivity graph
was created or updated. In this way, the users can get updated
just reading the newest item available. Moreover, the graph’s
evolution is recorded and is available.

B. Specialized virtual community

The context manager, earlier reported in subsection III-A,
was implemented as a web application with the functionalities
described in the methodology. The social circle is a plugin,

from Google Friends Connect1, that brings all the users’
friends to the web application, as as illustrated in Fig. 6. In
this figure a web interface is shown with user’s personal data
(1), feeds subscribed to (2), and community members (3). In
addition, an abstract schema is highlighted and shows how we
can share feeds among distinct virtual communities (5), using
a RSS feeds aggregator (4).

Fig. 6. Web user interface and an abstract view of the distributed application:
(1) personal data, (2) subscribed feeds, (3) community members, (4) RSS feeds
aggregator, and (5) an virtual community B.

The feeds are available at the aggregator in the web. Then,
the applications can create common links to the feeds’ URLs.
The basic services to handle the context data are embedded
in the community, a web application. The whole solution is
composed of a web application, the community, and a mobile
application at the users’ mobile device. These components
interact through the Internet using standard HTTP requests.
The community is responsible to provide a graphical user
interface and a set of basics services described earlier in the
methodology, Section III.

C. Mashup with location-based social media

From the idea to create a specialized virtual community,
the prototype evolved to a less centralized solution. We ob-
served that people are using location-based services to share
feedbacks about specific places inside their social networks.
For example, Foursquare2 is a web and mobile application that
allows mobile users to connect with friends and update their
location. The application helps people to explore their city,
and discover new places. It applies a social-recommendation
engine, which provides real-time suggestions based on the
user’s social graph. Fig. 7 shows a typical mashup shared in
social networks. The presentation is composed by the user (1),
a social network (2), a message plus links (3), and a map (4).

We argue that network context data can become more
relevant when attached to these popular mashups. Fig. 7 (b)
shows an abstract view of the main entities in a mashup,
and add the connectivity context data. In order to develop it,
we identified two basic ways to interact with location-based
services, as shown in Fig. 8. First, the user is having an expe-
rience somewhere and decides to share it inside his/her social
circle. The input is composed by geographical localization, a

1http://www.google.com/friendconnect/
2https://foursquare.com
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Fig. 7. Typical mashup on web: (a) real implementation and (b) an abstract
view of the main entities.

message/link and the connectivity context data. In this case,
the output would be similar to the one showed in Fig. 7.

Fig. 8. Two forms of interaction: (1) having and sharing an experience
somewhere; and (2) looking for feedbacks in the user’s social network.

Another way of interaction, Fig. 8 (2), occurs when the
user is somewhere and is interested in find feedbacks from
his/her friends in that specific place. In this case, the input
is the current localization and the service returns the set of
feedbacks in the virtual social network. With this approach
the mobile users searches for meaningful feedbacks and, also,
gets connectivity experiences there.

The location-based service , Fig. 8 (A), can be any appli-
cation that publishes georeferenced data in social networks,
e.g. FourSquare and Google Latitude3. The social network,
Fig. 8 (B), can be any virtual social network that allows
embedding third party applications. The context manager,
Fig. 8 (C), implements the methods described earlier in the
methodology, subsection III-A. This module needs to access
the social network to get the connectivity data to combine
with other ones from the same social circle. The combination
is, also, shared using the delivery system described earlier in
subsection IV-A.

V. FEASIBILITY

A. Storage size

Gathering network context data arbitrarily is expensive in
terms of storage size. Because network scans are performed,
frequently, to sense the available access points in the current
environment. Each wireless technology does this in a particular

3http://www.google.com/latitude/intro.html

way. The scan frequency is strong related to the probability
of take a connectivity opportunity, as listed in Table I. This
table lists the scan intervals, in seconds, for each probability of
finding a new access point. In addition, shows the estimated
storage overhead of one mobile device performing scans in
continuous 24 hours, for each probability. For example, a
hypothetical mobile device scanning in intervals of 250 s, i.e.
with 80 % chance of take an opportunity, will accumulate 194
Kbytes of contex data at the end of the day.

Opportunity (%) Scan interval (s) [8] Size (Kbytes)
20 1500 32.40
40 1000 48.60
60 500 97.20
80 250 194.40
>80 <15 3,240.40

TABLE I
DATABASE SIZE GROWING IN FUNCTION OF THE PROBABILITY OF TAKE A

CONNECTIVITY OPPORTUNITY DURING A WALKING (VELOCITY LOWER
THAN 8 KM/H).

Our prototype gathers the set of context data, described
earlier in Fig. 4. It has a static subset and two dynamics ones,
in terms of storage size. The storage size can be estimated by
Eq. 2. This equation computes the database size as function of
time, numbers of users and scan frequency. For instance, the
estimated size in Table I was calculated for one user u = 1,
performing scans during 24 hours, t1 = 86, 400s, in an area
with about 2.4 access points per scan [15], x1 = 2.4.

Database =

u∑
i=1

ti
o
∗

(
c+

n∑
i=1

xi ∗ si

)
. (2)

Where:

u number of users.
ti user’s total usage time.
o scan interval.
c size of the static part of the context data.
n total of dynamic sets of data.
xi number of the dynamic’s subset instances.
si size of this particular data subset.

The database size has a linear grow until 80%, and a
disproportional grow for more than 80%, cited as > 80%.
In this case, the database size increases about 16 times faster
than with 80% of probability. Means that sense more than 80%
of the connectivity opportunities, i.e. perform scans in itervals
lower than 15 s, is expensive in terms of storage overhead. It
is, also, visible that the grow in storage is not proportional to
the decrement of the scan frequency, as shown in Fig. 9.

B. Power consumption

Power is another critical resource used to gather connectiv-
ity context data. In order to estimate the power consumption
we assume that the scanning task for a IEEE 802.11 network
interface costs 5ms in reception mode at 300mW [6]. Using
the scan frequencies, earlier listed in Tab. I, it is possible to
calculate the power consumption (joule) as function of the
chance of find a connection, results are plotted in Fig. 10.
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Fig. 9. Scan frequency in function of the probability of make use of a
connectivity opportunity.

The behavior is similar to the observed with storage size, i.e.
there is a significant grow in power and storage overhead for
scan frequencies lower than 15 seconds.
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Fig. 10. Power consumption in function of the probability of make use of
a connectivity opportunity.

Comparing the two charts in Fig. 10 and 9 it is possible
to identify a strong relation between the scan frequency and
the power consumption. It is a inverse relation, however, it is
not linear. This information is combined with the knowledge
of high density handoff areas, from the connectivity graph, to
guide a smarter way to perform scans, i.e. do scans more often
only in areas with high probability of execute a handoff [13].

C. Saving resources

The connectivity graph, Gconn, is used to identify areas with
high density of handoffs. It is done by traversing the graph and
calculate the number of the edges and users arriving/leaving
the vertices, i.e. handoff points. The main idea is to save
storage space and energy defining policies to perform scans.
For instance, Fig. 11 shows a connectivity graph with 5 nodes,
p1 to p5, retrieved in our testbed described later in Section VI.
There are 3 mobile users walking through the five points in
sequence. This path is in an university building and about
210 meters long. Each mobile device used different polices to
perform scans, namely:

• Constant >80%: a constant loop to take more than 80%
of the connectivity opportunities, i.e. the scan interval is
15 seconds.

• Preemptive >80%: performs scans every 15 s when the
mobile device is near a handoff point in the connectivity
graph. The main idea is just look for connectivity op-
portunities when the mobile device is at a high density
handoff area.

• Preemptive 80%: performs scans in intervals of 250
seconds when the mobile device is near a handoff point.

p1

p2

AP2,{A, B}

p3

AP4,{C}

p4

AP3,{C}

Charlie

AP3,{B, C}

AP4,{B, C}

AP3,{A, B}

AP3,{A}

Alpha

AP1,{A}

AP5,{A}

Fig. 11. Connectivity graph created in an indoor testbed [13].

The size of accumulated data as function of time and the
power consumption until the end of the path are shown in
Table II. Using the policy constant >80% as base line, the
two preemptive policies > 80% and 80%, saved 30% and
75% respectively. It is important to mention that the three
policies had equivalent QoS performances. Policies to discover
60%, of the connectivity opportunities, or less had inferior
QoS performances than the ones in Table II. For this reason
they are not listed in the table. It, also, indicates a trade-off
between saved resources and improved QoS performances in
WiFi networks.

Method (%) Storage overhead (Kbytes) Power consumption (Joule)
Constant >80% 7.31 0.78
Preemptive >80% 5.06 0.54
Preemptive 80% 1.12 0.12

TABLE II
IMPROVEMENTS IN STORAGE OVERHEAD AND POWER CONSUMPTION.

VI. EXPERIMENTAL RESULTS

The comparative evaluation is done for 3 connectivity man-
agement mechanisms, namely: (A) strongest signal strength
(SSS), (B) mobility predictor, and (C) community-based. SSS
is the base line for the comparison. It is the current technique
employed by common operational systems, e.g. Windows Mo-
bile and Android. The next access point is chosen taking the
one with highest signal strength [16]. The mobility predictor
uses a second order Markov model calibrated with the specific
user movement history, similar to the one discussed in [16].
Finally, the community-based mechanism employs the same
predictor, however, the socialized connectivity graph was used
to build the model and to assist the handoff decision making
[13].
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A. Throughput

These mechanisms were implemented in a prototype. It
was used by 3 persons during 4 months in an indoor IEEE
802.11a/g testbed, with about 1, 600m2 of area, covered by
5 access points. The mobile devices measures the through-
put performing get and posts to a dedicated HTTP server,
connected to the local network. In the first month, the 3
mechanisms presented similar irregular performances. Then,
the mobility predictor was calibrated with the first month data.
In the following months we observed significant performance
differences between the 3 connectivity management mecha-
nisms.

The community-based method had a superior throughput,
about 13 and 23 % higher, than the other two. On average,
the performance was 3.8 Mbps against 3.3 and 2.9 Mbps, for
mobility predictor and SSS respectively. Fig. 12 shows the
histogram, and the tendency function for each method. For
SSS, Fig. 12 (A), the majority of the values are concentrated
below 3.5 Mbps. On other hand, mobility predictor (B) and
community-based (C) methods concentrate the values above
3.0 Mbps, the maximum throughput observed was 4.0 Mbps.
Comparing Fig 12 (C) with the others two, we conclude that
the proposed solution avoided bad QoS conditions inside the
testbed.

A) SSS
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Fig. 12. Histogram of observed throughput (rx), during the experiments, for
the three mechanisms: (A) SSS, (B) Mobile predictor, and (C) Community-
based.

B. Signal quality

The difference among the mechanisms is also evident when
we look to the signal quality. Fig. 13 shows the signal quality
as function of time, during free walking in the testbed. The
three mechanisms were used through the same path, doing

HTTP requests to the server. The average signal quality of
the three methods are 55, 64 and 78%, for (A) SSS, (B)
mobility predictor and (C) community-based, respectively.
This confirms that it is possible to have better connectivity
experiences by improving the quality of the context data
employed. In addition, the time to discover a wireless envi-
ronment can be reduced as function of the number of mobile
users collaborating.
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VIII. CONCLUSIONS

Context-aware connectivity management is the main issue
of several investigation reported in the literature. Some of these
researches motivated us to design a social-based methodology
to improve the quality of the context data gathered and stored.
A prototype has been developed to prove the concept, and ex-
periments were performed aiming at a quantitative evaluation.
Other metrics such as freshness and updatability, of network
context data, would be improved with intense collaboration
of people inside the virtual social circle. Also, the handiness
of the data can be enhanced by the efficient delivery system
developed.

The primary contribution of this paper is the orchestration of
fundamental tasks for context-aware connectivity management
in a methodology. It is an user-centric solution, which explores
virtual social circles to allow collaboration among mobile
users. The socialized connectivity graph can be applied to save
storage size, power consumption and QoS, while the user is
moving. Finally, the comparative evaluation showed promising
quantitative results.

This investigation is unfolding with focus on the usage of
socialized context data to find the second or nth access point.
In addition, efforts have been done to determine optimal QoS
conditions and localization to download the shared RSS feeds.
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