
Federation of Community
Networking Testbeds

Master of Science Thesis
Stockholm, Sweden 2014

TRITA-ICT-EX-2014:092

Gerard Marin Nogueras

Master of Science Thesis

Federation of Community
Networking Testbeds

Gerard Marin Nogueras

Supervised by
Prof. Leandro Navarro (UPC)
Prof. Johan Montelius (KTH

June 2014

Master of Science Thesis
Software Engineering of Distributed Systems Master’s Programme

School of Information and Communication Technology
Royal Institute of Technology (KTH), Stockholm, Sweden

Developed at Universitat Politèncinca de Catalunya (UPC),
Barcelona, Spain.

Supervised by Leandro Navarro (UPC) and Johan Montelius (KTH).
Examiner: Johan Montelius

Abstract

Testbeds have become an important facility for the Future Internet
Research and Experimentation since they are a good stage between simu-
lation and production covering areas of the future Internet like Community
Networking. The range of possibilities offered by testbeds can be extended
using federation. Federation enables the interoperability among testbeds,
thus building an aggregate of facilities in which capabilities are combined
and complemented to support new and more complex research and ex-
perimentation. Besides many advantages however, federation also brings
challenges. In the thesis such challenges are identified and addressed for
the concrete scenario of Community Networking testbeds. In particular
the thesis addresses the federation of Community-Lab, a testbed facility
for experimentation with network technologies and services for community
networks. The main contribution consists of the development of a software
tool to enable the interoperability and federation of the Community-Lab
testbed with other testbeds.

Acknowledgements

I would like to thank Leandro Navarro for all his help, support, feedback and
advise throughout the development of the thesis. Working under his supervision
has been a pleasure. My grateful to Johan Montelius for his supervision as well.

I would also like to thank all the people who have helped or contributed
somehow to this work. In particular, it was an invaluable help to have the
Confine-ORM tool, thanks Marc.

Finally, my gratitude and admiration to my friends and lab-mates for so
many experiences together. Thanks Ester, Mennan, Manos, Vamis, Navaneeth,
Amin, Davide, Óscar, Leila and Esunly.

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Goal . 1
1.3 Methodology . 1
1.4 Validation . 2
1.5 Outline of the thesis . 2

2 Background 3
2.1 Community Networks and Testbeds 3
2.2 The concept of federation . 3

2.2.1 Definition . 3
2.2.2 Federation and experimental infrastructures 4

2.3 CONFINE Community-Lab Testbed 5
2.3.1 Testbed nodes . 6
2.3.2 Testbed management . 6
2.3.3 REST API . 8
2.3.4 CONFINE-ORM . 9
2.3.5 Virtual CONFINE Testbed 9
2.3.6 Sandbox Controller . 9

2.4 Experimental testbed federation
and Fed4FIRE Project . 10

2.5 SFA . 10
2.5.1 RSpec data type . 12
2.5.2 Credentials . 13
2.5.3 URN and HRN . 13

2.6 SFAWrap . 13
2.6.1 Generic part . 14
2.6.2 Testbed-specific part . 15

3 Federation in Community-Lab testbed 17
3.1 Domains and possibilities . 17
3.2 C-Lab Controllers federation . 19
3.3 C-Lab and WiBed . 21
3.4 C-Lab federation with other facilities 22

4 Design 24
4.1 Federation solution adopted . 24
4.2 SFA in C-Lab testbed . 25
4.3 SFA Software layer: SFAWrap . 26
4.4 Architecture . 28
4.5 Design decisions . 29

4.5.1 SFA version . 30
4.5.2 RSpec version . 31

5 Implementation 33
5.1 Environment . 33
5.2 Approach . 33
5.3 C-Lab Shell module . 34
5.4 C-Lab Exceptions module . 35
5.5 C-Lab XRN module . 36
5.6 C-Lab Aggregate module . 36
5.7 C-Lab Registry module . 40
5.8 C-Lab Importer module . 40
5.9 C-Lab Slices module . 40
5.10 C-Lab Driver module . 41
5.11 C-Lab Generic module . 41
5.12 Configuration files . 41
5.13 Challenges . 41

6 An Evaluation 43
6.1 Testing with SFA client tools . 43
6.2 Testing with jFed . 44
6.3 Reference experiment . 45

7 Conclusions 47
7.1 Contributions . 47
7.2 Discussion . 49

7.2.1 The wrapper . 49
7.2.2 SFAWrap . 50
7.2.3 Testbed federation . 50

7.3 Lessons learned . 51
7.4 Future work . 51

Appendix: User Manual 53

List of Figures

1 Community-Lab Node architecture (Source: CONFINE Wiki) . . 7
2 Interactions for Community-Lab testbed (Source: CONFINE Wiki) 8
3 SFA elements and their interaction (Source: own creation) 11
4 High-level components of Community-Lab SFA Wrapper and their

interaction (Source: own creation) 30
5 Architecture of the SFA Wrapper for Community-Lab (SFAWrap

testbed-specific part) (Source: own creation) 31

List of Tables

1 Mapping between SFA and C-Lab concepts 27
2 Mapping between C-Lab and GENI v3 Sliver models 38
3 Details for the mapping from C-Lab names to URN and HRN

identifiers . 38
4 Mapping between C-Lab node and GENI RSpec v3 Node 39
5 Mapping between C-Lab sliver and GENI RSpec v3 Sliver 39

Table of Acronyms and Abbreviations

FIRE Future Internet Research and Experimentation

GENI Global Environment for Network Innovation

CONFINE Community Networks Testbed for the Future Internet

C-Lab Community-Lab

VCT Virtual CONFINE Testbed

CONFINE-ORM CONFINE Object Resource Mapper

CN Community Network

CD Community Device

RD Research Device

SFA Slice-based Facility Architecture

AM Aggregate Manager

CM Component Manager

R Registry

SM Slice Manager

SA Slice Authority

RSpec Resource Specification XML file

URN Uniform Resource Name

HRN Human Readable Name

XRN Refers to any of the both types, HRN or URN

1 Introduction

1.1 Problem

The problem that this thesis aims to solve is essentially an interoperability prob-
lem. Community-Lab, an experimental testbed for research deployed inside sev-
eral community networks to be federated with other experimental testbeds so
that they can interoperate with each other and allow usage with a common,
generic and standard application programming interface (API). To carry out
such federation the testbed must be compliant with a selected standard ar-
chitecture and API, thus allowing the testbed to correctly interact with other
standard-compliant testbeds.

1.2 Goal

The main goal of the thesis is to develop a software layer on the Community-
Lab testbed that enables federation. As said, the software layer will expose a
standard-compliant interface for the testbed so that it can be federated with
other testbeds and used for experiments by testbed agnostic tools using a com-
mon standard API. The thesis includes the study of the different possibilities
for the analysis, design and development of federation support for the testbed.

Other objectives of the thesis include an analysis and reflections about the
concept of federation in a wider context. Possibilities, benefits and limitations
of testbed federation are explored, as well as a discussion about other potential
federation domains for the specific testbed that the thesis addresses.

1.3 Methodology

The methodology followed for carrying out the thesis and its tasks consists of
different phases: analysis, design, implementation, and validation.

The first part is basically a study of state of the art in the area of testbed
federation. Such analysis includes background information on the testbed archi-
tecture and federation related concepts and tools, in particular for the addressed
testbed. A proposed standard for federation of Future Internet Research and
Experimentation (FIRE) facilities, which was already and successfully used in
other projects, is studied in detail to understand the feasibility of its adoption
as a solution for the particular testbed.

After the analysis, the acquired knowledge is applied to make decisions about
the design and architecture of the software federation layer. After design the
implementation phase starts. During the implementation, concepts and tools for
the particular testbed are applied into the software development process. The
code is implemented using a granularity that enables the separation in rather
disjoint functional modules so that they can be tested in parallel during the
implementation process.

The last phase of the process is the evaluation of the implemented software,
integrated with the Community-Lab testbed, to verify its correct behaviour.

1

Different tests will be carried out during the evaluation process.

1.4 Validation

Validation of the implemented software tool is understood as a key aspect in
this thesis as this federation service becomes part of the Community-Lab testbed
and provides the federation API. A good and complete process of validation is
considered necessary to guarantee a correct behaviour and the fulfillment of
the requirements. Therefore, the validation process consists of an evaluation
including different tests such as functional test from the end-user point of view,
automatic functional tests and a reference experiment test. The validation phase
allows to ensure the correct, expected behaviour of the software as well as its
quality. It also includes a discussion about maintainability and future extensions
of the implemented software.

1.5 Outline of the thesis

The thesis is structured as follows:
Chapter 2 presents the background to the work, with several subsections

that situate the context and introduce testbed and federation related concepts
relevant for this thesis.

Chapter 3 describes the federation scenario for the particular testbed ad-
dressed in this thesis and includes a discussion about potential federation do-
mains for such a testbed.

Chapter 4 presents the Design of the software. This is the first chapter in-
cluding details about the selected solution model and how such model is applied
on the specific testbed.

Chapter 5 contains a description of the Implementation process of the soft-
ware component that enables the federation of the testbed. The implementation
is presented with considerable amount of detail to fully understand the process
and the decisions made throughout it.

Chapter 6 presents the Evaluation of the implemented software, describing
in detail the different tests performed to validate the correctness of the solution.

The conclusions and a final discussion are presented in Chapter 7. This
chapter reflects on the work done, the results obtained, and the lessons learned
throughout its realization.

The Appendix contains a manual for the user of the software. The manual
can be seen as a guide that provides the details to use and understand the
implemented software, from the installation and deployment to the usage and
its potential. Writing such end-user manual was considered as a necessary task
to deliver a complete piece of engineering work.

2

2 Background

This chapter presents the necessary background for the thesis. The section 2.1
addresses the need for testbeds in the area of community networking and the
section 2.2 addresses the concept of federation as it is understood in this thesis.
The remaining sections of the chapter introduce respectively the Community-
Lab testbed, the Fed4FIRE project, the SFA model and the SFAWrap software,
which all serve as a context and tools for the development of the thesis.

2.1 Community Networks and Testbeds

Community Networks are an emerging model for the Future Internet. Commu-
nity Networks are defined in [1] as “large scale, self-organized and decentralized
networks, built and operated by citizens for citizens”. Such networks appeared
as an alternative low-cost connectivity solution for underdeveloped countries
and isolated areas. However, these kind of networks have become an interesting
research facility and they are nowadays developed in rural and urban, rich and
poor areas across the world [1]. Examples of community networks in Europe
are: Guifi.net (Catalonia) [2], AWMN (Athens) [3], FunkFeuer (Wien) [4].

Community networks are dynamic and diverse, as they are composed of sev-
eral types of links and nodes and offer different contents and services. Partici-
pation to a community network is open to anyone, which leads to a self-growing
in topology and capacity based not only on planned deployment but also on
immediate, unplanned demand [5]. Thus, community networks show a highly
heterogeneous, unique nature even with a certain level of unpredictability on
their behaviour. The mentioned characteristics make these networks hard to
emulate and makes research results difficult to validate and uncertain. At this
end, experimental testbeds become a suitable facility to support the research
and experimentation in the area of community networking.

A testbed can be seen as a platform for experimentation that provides in-
frastructure and resources for running experiments in a rigorous, transparent
and repeatable way. In particular, the testbed can be developed on top of a
community network so the mentioned emulation difficulties are overcome. Thus
the testbed becomes a platform for experimentally driven research to support
the growth of community networks and improve their scalability and sustain-
ability [5].

2.2 The concept of federation

2.2.1 Definition

The concept of federation is widely used in the context of communication net-
works. It was already introduced in the 90s, referring to the capability of inter-
connecting different transport networks to exchange data according to a common
agreement [6] and since then the concept has evolved together with the Internet
and communication technologies.

3

Current Future Internet research trends have revealed the need for federa-
tion, for example to guarantee the scalability of distributed systems growing in
a non-planning fashion and to build new complex services by composing exist-
ing services that span multiple domains [7] [8] [9]. Therefore, interoperability,
collaboration, coordination and sharing among different domains are necessary.
Such new trends have contributed to refine the original definition of the term.
Although multiple definitions exist, depending on the context in which federa-
tion is applied, there are some common key points that can be identified [10].

In particular this thesis addresses the federation of testbeds. A suitable
definition in such context is given by Panlab [11]:

“A model for the establishment of a large scale and diverse infrastructure for
the communication technologies, services, and applications and can generally be
seen as an interconnection of two or more independent administrative domains
for the creation of a richer environment and for the increased multilateral ben-
efits of the users of the individual domains”

Federation can be seen as a solution for interoperability of facilities while
keeping their scalability and autonomy. In other words, it refers to the ability
of multiple systems to interact and work together to achieve a common goal. In
particular for testbeds, federation helps building a global pool of facilities that
can be accessed and used transparently through a unified, standard interface,
thus building a global, larger and more complete testbed.

From the definitions given common points about federation can be identified.
Federation implies a cooperation among federated components, which usually
refers to the ability of federated components to leverage capabilities offered by
other components in the federation. Capabilities offered depend on the specific
domain and include for example infrastructure, resources (particular case for
testbeds), services or applications [10]. Such sharing of capabilities is transpar-
ent from the user’s point of view. Transparency implies that a user does not
need to be aware of which federated component is offering a particular capabil-
ity; from the user’s point of view the federated system behaves as a single system
with a standard way of accessing any of its components and capabilities [6] [8].

Although federation enables interoperability among components, they keep
their autonomy to operate in isolation. Federation does not imply losing auton-
omy in terms of self management and control for the federated components [7].
Therefore, components continue working correctly on their specific domains.

2.2.2 Federation and experimental infrastructures

Federation is becoming a very important concept in the context of Future In-
ternet Research and Experimentation (FIRE) facilities. The range of FIRE
facilities is wide and includes a complex, heterogeneous variety of facilities and
tools, from Internet communities and networks to clouds, services and end-user
applications. Although most of these facilities are designed to work in isolation,
like testbeds, the true potential arises from their combination. By mixing and
integrating the different resources and capabilities offered by the different fa-
cilities, a larger, diverse platform can be build, allowing to bring new research

4

ideas and possibilities. The benefits and capabilities of the facilities increase
when they inter-operate.

Federation shows other benefits a part from the capability to build a larger,
heterogeneous system from multiple single systems belonging to different do-
mains. The participation in a federation is a means to reduce the cost of
infrastructure by the sharing of resources. When federated, a system can be
used by a set of users much wider than the domain-specific set so the resources
are more exploited and the social and economical global benefit is higher [12].
Federation is also a key concept for scalability of distributed systems and for
building a composite distributed system or service federating single disconnected
components [13]. Testbeds and other experimental facilities benefit from the ad-
vantages given by federation.

Similarly to the testbed scenario, federation also applies to the context of
cloud. Multiple isolated clouds can be federated to compose a larger cloud, ex-
posing the resources from each federated cloud as if they belonged to the same
cloud. The federation might allow to improve the performance of individual
clouds, optimizing the use of resources by using brokering agents. This idea is
aligned with testbed federation. Actually testbeds can be seen as special case
of clouds. A testbed, like a cloud, is a platform providing a pool of resources
that are offered to the user as a service. While the cloud architecture offers
different abstraction levels (Infrastructure as a Service, Platform as a Service,
Software as a Service), a testbed can be seen as a special case of a cloud offering
Experimentation as a Service (EaaS). In other words, a special cloud offering
the service of defining and running experiments on a set of selected nodes. As
a summary, federation is an important tool to leverage and improve the capa-
bilities of facilities, specially in the FIRE scenario. Although being challenging,
federation shows numerous benefits that help research and experimentation, and
open a new range of possibilities.

2.3 CONFINE Community-Lab Testbed

Community-Lab (in short: C-Lab) [14] is a global facility for a experimentally-
driven research in community networks. It is developed as part of CONFINE
[15], a European research project that aims to provide a complete testbed plat-
form for Future Internet Research and Experimentation (FIRE) infrastructures
in Europe. C-Lab is a testbed for experimentation with network technologies
and services in community networking. It provides researchers with tools to
deploy, run, monitor and experiment with services, protocols and applications
on real-world community IP networks. The motivation behind the testbed plat-
form developed is to support and study the evolution of community networks in
terms of their scalability and sustainability by providing the means to conduct
experimentally driven research [1] [5].

The C-Lab testbed infrastructure is deployed on existing community net-
works [16]. Thus, the experiments performed do not run on a simulation of a
community network but embedded on real community network. C-Lab consists
of a set of testbed nodes connected to existing nodes of community networks,

5

so that they leverage the connectivity that the community nodes offer. The
testbed nodes are connected among them and to the Internet by a community
network.

The C-Lab testbed is currently in a production status, with 126 testbed
nodes (2nd February 2014). Different existing community networks in produc-
tion state participate in the testbed plugging in testbed nodes (research devices)
to their community network nodes (community devices). These networks are
AWMN (Athens, Greece), FunkFeuer (Wien, Austria), Guifi.net (Catalonia),
Wireless België (Belgium), Ninux (Italy). Also different universities and re-
search organizations participate in the project by maintaining testbed nodes.
Universities such as UPC (Barcelona, Catalonia) [17], KTH (Stokcholm, Swe-
den) [18] and University of Tor Vergata (Rome, Italy) [19]; research organiza-
tions such as Pangea (Barcelona, Catalonia) [20], SICS (Sweden) [21], iMinds
(Belgium) [22] and Unidata (Italy).

2.3.1 Testbed nodes

A C-Lab testbed node [23] consists mainly of a Research Device (RD) in which
experiments and services are run. The RD is connected to a Community Device
(CD) that is part of a Community Network (CN) and gives the RD access to
the this community network. Thus the CD not only relays traffic related to the
C-Lab testbed but also traffic of the CN unrelated with the testbed.

Keeping the research devices of the testbed (where the experiments are run)
separate from the community devices that actually form the community network
offers some advantages. On one hand, it avoids running experiments directly on
CD and preserves their stability and thus, the stability of the CN. On the other
hand, this separation facilitates the addition of testbed nodes to any CN and
increases their compatibility with any CD. The addition of new testbed nodes
consists of connecting a device to an existing CD with minimum or no C-Lab
specific changes to its configuration.

Optionally, the RD can be connected to a recovery device. The purpose of
the recovery device is to force remote reboot of the RD in case of malfunction,
avoiding the need for hands-on access.

The mentioned devices (CD, RD and recovery device) are connected among
them by a wired local network. In this network the CD acts a gateway for
the RD, providing access to the CN and to the Internet. Multiple RD can be
connected to the local network, all using the same CD as a gateway. The local
network can also be shared with other non C-Lab devices like CN clients that
use the CD as a gateway. Note that, strictly, the devices that form the testbed
are the RDs, so the C-Lab testbed nodes are homogeneous. The Figure 1 shows
the components and architecture of a Community-Lab testbed node.

2.3.2 Testbed management

The management of the testbed is done in a centralized way by one or several
testbed servers. A testbed server is a normal computer whose minimum require-

6

Figure 1: Community-Lab Node architecture (Source: CONFINE Wiki)

ment is to be directly accessible from the Community network and it acts as
the controller of the testbed.

The testbed server provides access to a database (Registry) that contains
the configuration for all the elements of the testbed. Moreover, it exposes the
resources offered by the nodes that form the testbed. The resources are shared
(and isolated) among users by using the concepts of slices and slivers from the
Slice-based Facility Architecture (SFA), explained in detail on the next section.
Briefly, the resources on each node are split into multiple portions (slivers)
that are assigned to users. For running distributed experiments users can be
assigned multiple slivers, grouped in a collection of slivers (slice). Reservation
and release of resources are dynamic. In particular, reservation is not permanent
and it automatically expires after some time.

In C-Lab three different actors can be identified. Testbed administrator is
the actor in charge of managing testbed servers. Technicians are the actors who
manage the nodes, which are owned by community members. Finally, testbed
researchers are the users of the resources offered by the testbed. They define,
run and manage the experiments in the testbed nodes.

7

2.3.3 REST API

The management of the testbed is based on a pull strategy in which components
query the testbed registry to discover changes to their configuration and new
action to perform. The pull strategy is implemented by a REST API [24] that
servers and nodes expose. The REST API can be used by users to communicate
with nodes and servers, but also by nodes that interact with servers to pull
information. The Figure 2 illustrates the interactions explained in this section
and the previous section.

Figure 2: Interactions for Community-Lab testbed (Source: CONFINE Wiki)

In the following lines some implementation details of the REST API are
presented:

• The REST API is implemented on top of HTTP secured with SSL.

• It is a navigable API. Resources include links to the API base, configura-
tions and functions.

• Resources are described using JSON objects.

• Resources may include other resources. In such case, the description of the
included resource does not contain the whole JSON description object but

8

a reduced version with a URI member from where the whole description
can be retrieved.

• Lists of resources are represented as arrays of JSON objects. They allow
member selection, filtering and combining.

2.3.4 CONFINE-ORM

Confine-ORM [25], which stands for Confine Object REST Mapper or Confine
Object Resource Mapper, is a high-level Python library that exposes the REST
API of the C-Lab testbed through a set of Python objects and methods that
encapsulate the HTTP communication involved with the Confine REST API.
Thus the library exposes high-level operations of the testbed such as create,
update or delete on the nodes, slices and slivers. ORM is based on general
design patters of the testbed REST API so it is able to navigate across the API
and auto-discover the exposed objects and operations. Such feature gives to the
ORM library an auto-maintenance behaviour.

Confine-ORM was initially developed as a tool for accelerating the testing of
the testbed. However, due to its high-level functionality it becomes a client-side
tool to easily interact with the Confine REST API and the Controller of the
testbed through a programmatic interface.

2.3.5 Virtual CONFINE Testbed

The Virtual Confine Testbed (VCT) [26] is a virtual platform emulating the
real Confine C-Lab testbed infrastructure in a local machine by using advanced
virtualisation techniques. It provides an environment to quickly create a virtual
network of CONFINE testbed nodes so a user can get familiar with the Confine
software distribution, prepare experiments for real testbed and even extend real
Confine networks with virtual links and nodes.

Besides the mentioned functionality for the end-user, an important purpose
of VCT is to facilitate the development and testing of software and components
for the C-Lab testbed. Such research and development tasks often compromise
the stability and correct behaviour of the testbed. VCT offers a platform for
these purposes while avoiding any damage to the real testbed. Moreover, VCT
is a local platform, which facilitates the management, control and deployment
operations throughout the research process.

2.3.6 Sandbox Controller

Besides the general CONFINE controller [27] that manages the real testbed and
is publicly accessible, CONFINE also offers a sandbox controller for research and
experimentation purposes. The idea of sandbox controller [28] is similar to VCT
since the sandbox controller provides an environment in which code or content
changes can be tested without affecting the production system [29]. It differs
from VCT in that the environment provided is not local; the nodes managed by
the sandbox controller must be real CONFINE nodes, like for the real controller.

9

The sandbox controller is publicly available as well but it only manages very
few nodes.

2.4 Experimental testbed federation
and Fed4FIRE Project

Federation of experimental testbeds is seen nowadays as a good activity to
exploit the capabilities of such facilities and extend the range of possibilities for
the Future Internet Research and Experimentation (FIRE). Therefore, many
projects focus their efforts on the federation task; Fed4FIRE is one of this
projects.

Fed4FIRE is an Integrating Project under the European Union’s Seventh
Framework Programme (FP7) [30]. Fed4FIRE, which stands for “Federation for
Future Internet Research and Experimentation”, aims to implement a federation
framework for a set of European facilities for research and experimentation. The
facilities willing to be federated are heterogeneous and address different domains
within the Future Internet ecosystem. The Community-Lab testbed is one of
these FIRE European facilities. Thus, the federation tasks developed in this
thesis are a part of the Community-Lab contribution to the Fed4FIRE project.

2.5 SFA

The Slice-based Facility Architecture (SFA) is an architecture specification for
testbeds that standardizes the sharing of the resources of a testbed and facili-
tates the federation with other testbeds [31].

SFA provides a proper framework that enables key operations on the pool of
resources offered by the testbed. Basically, SFA allows to perform resource allo-
cation, resource management, resource sharing and resource usage (for running
experiments). For such purposes SFA defines different abstractions, managers
and principals [32]. The Figure 3 illustrates such elements and the interaction
among them.

Abstractions

Testbeds consist of a set of nodes that provide resources. SFA uses the con-
cepts of components, slivers and slices to handle those resources and share them
among researchers:

• Component, which represents the minimal aggregation of physical re-
sources that can be managed.

• Sliver, which is the portion of such resources let to a researcher.

• Slice, which is a collection of slivers assigned to a researcher to perform
an experiment.

10

Figure 3: SFA elements and their interaction (Source: own creation)

Slices can be seen as containers of slivers used by users to group a set of slivers
in which a specific experiment is run. Therefore, slices become the primary
abstraction for accounting and accountability. The life-cycle of a slice consists
of three stages that must be followed in order: (i) register: the slice exists only
as a name bound to a set of users; (ii) instantiate: the slice is instantiated in
the required components, being granted of a set of resources; and (iii) activate:
the slice becomes active and runs code on behalf of the researcher.

Managers

The defined abstractions are managed by a set of managers. The managers
expose a specific interface that allows the control of the resources that they
are responsible for. Depending on the abstractions managed three different
managers are defined:

• Component Manager (CM), manages single component abstractions.

• Aggregate Manager (AM), manages a collection of components that be-
haves as a single aggregate component.

• Slice Manager (SM), enables the management of slices and slivers, acting
as a proxy to the corresponding Aggregate Manager responsible for the
resources of the slice or sliver.

11

Besides the mentioned managers there is another important component in
the architecture of SFA, the Registry (R). The Registry keeps track of all the
object abstractions of the testbed storing them in a database as SFA records.
The Registry can be read and modified through its interface, that allow CRUD
operations [33] on the SFA records. It also handles permissions for the testbed
objects by the usage of credentials. The Registry is responsible for issuing and
checking credentials to operate on the testbed objects.

Principals

Principals refer to the the different actors or roles that can be identified on SFA.
Among the roles defined by the principals there are the authorities. Authorities
represent testbeds, part of testbeds or communities of users. The objects ab-
stractions of SFA are registered in the context of an authority that is responsible
for their correct behaviour. In SFA three principals are defined:

• Management Authority (MA), responsible for a set of physical components
and ensuring specified allocation policies.

• Slice Authority (SA), responsible for slices, their access and their control.

• User, a person that plays one or more roles in a facility.

Some example of users are: a researcher user that runs an experiment or
service in a slice, an operator of the testbed that manages a part of the physical
resources, or a client that uses the services deployed in slices.

Federation

The SFA architecture also helps to provide a standard interface for federation.
Different testbeds following the SFA specification can be easily federated to work
together. The goal is to provide a minimal interface, a narrow waist, that enables
testbeds of different technologies and/or belonging to different administrative
domains to interoperate without losing control of their resources [34].

2.5.1 RSpec data type

RSpec is an XML document that describes physical resources. Any SFA oper-
ation that needs a description of physical resources uses an RSpec document.
An RSpec documents follows a standard schema defined by the GENI [35] ini-
tiative. The RSpec document has three different purposes and therefore, and
GENI defined three distinct schemes with small language differences to address
these three specific purposes:

• Advertisements, used to describe or advertise the available resources on a
specific Component Manager or Aggregate Manager. The Advertisement
RSpec describes the characteristics that resources offer in order for the
clients to choose which resources are more suitable for their purposes.

12

• Requests, used by a client to specify which resources are selected. The
Request RSpec does not need to contain detailed information about the
selected resources. It only needs information to identify the desired re-
sources and perform the mapping between physical resources and testbed
objects.

• Manifests, used to provide information about the resources being used
in the testbed. A Manifest RSpec is used by the wrapper itself in some
replies, when it is necessary to describe the slivers that are being used by
a client.

There are different versions of the RSpec XML Schemas defined by GENI.
The versions that are currently in use are version 2 [36] and version 3 [37].

2.5.2 Credentials

A credential is an XML document that describes the privileges of an owner on
a target. Normally the owner of a credential is a user and the target for which
the owner has privileges is usually a slice or sliver. Both owner and target of
the credential are unambiguously identified by a using unique identifiers. The
credential is issued by the Registry and it is signed by an authority to guarantee
its authenticity. The credential has an expiration date after which it is not valid
anymore.

There are different types of credentials supported in SFA: GENI SFA version
2 [38], GENI SFA version 3 [39] and GENI ABAC [40].

2.5.3 URN and HRN

Two different unique identifiers are used to unambiguously identify objects of the
testbed: Uniform Resource Name (URN) and Human Readable Names (HRN).

The URN is a uniform resource identifier used in computing that follows a
standard scheme. In particular, URNs in SFA have the format:

urn:publicid:IDN+<authority string>+<type>+<name>

where type identifies the type of object or record (authority, user, slice, sliver,
node).

The HRN is a specific identifier of SFA. As the name suggests, it is easily
readable by humans, in contrast with the URNs. The HRN of an object allows
to identify the sequence of authorities that are responsible for the object. This
hierarchy results in HRNs with the format:

top level authority.sub authority.sub authority.name

2.6 SFAWrap

SFAWrap is a free software that allows to federate a testbed into the emerging
SFA-based global federation of testbeds. The software package provides a set of

13

general components to help any testbed to expose a SFA-compliant interface,
which integrate the generic part of the code. It also includes a set of skele-
ton classes to be implemented for each particular testbed, which integrate the
testbed-specific part.

2.6.1 Generic part

The generic part of the code provides a set of packages and modules that imple-
ment general and not-testbed-specific components and elements of the wrapper.
The generic code implements all the standard processing related to SFA that
does not depend on the testbed. Basically, what is included in the generic part
of the code is:

• SFA interfaces and Servers. The generic part of the code exposes the
SFA standard interfaces that receive SFA calls from SFA clients. All these
calls follow the standards of SFA so they are completely generic and no
testbed-dependent. The interfaces are exposed through a set of XML-RPC
servers implemented as multi-threading servers.

• Authentication and authorization. The generic part of the code han-
dles the authentication and authorization operations performed in SFA.
The management of credentials as well as their creation is performed by
the generic code. The mechanisms used are typical of SFA and indepen-
dent of the testbed. Therefore, when a SFA call is received by a server,
the generic code performs all the checks on the mandatory credentials
presented by the caller. In other words, it checks that the credential pre-
sented shows that the caller has the necessary privileged to perform the
requested operation.

• Generic Registry. A generic SFA registry is also implemented following
the standards of SFA in terms of records, formats and identifiers. The reg-
istry is queried and/or updated in most of the operations, so it represents
all the objects of the testbed created through the SFA interface.

• GENI RSpec management. The generic part of the code includes mod-
ules to manage the standard GENI RSpecs, version 2 and version 3. The
module provides methods to correctly create and manipulate the RSpec
documents. However, each testbed can define its own version of RSpec
including specific elements to represent characteristics of the testbed. In
this case it is necessary to define new modules and classes to manipulate
the new RSpec version, similarly to the generic modules that manage the
GENI RSpecs.

• Client tools. Two client tools are also included in the generic code. The
client tools are implemented as command-line tools that allow to configure
the SFA endpoint and send SFA calls to it.

14

2.6.2 Testbed-specific part

In addition to the generic part of the code, SFAWrap has a testbed-specific
part. Basically, this part of the code acts as a ”glue” between the generic part
of the wrapper and the testbed. It is in charge of translating the API of the
specific testbed and adapt it to the SFA operations as the wrapper requires. The
testbed-specific part is what is really needed to implement a SFAWraper for a
new testbed. Basically, the testbed-specific part consists of a driver that exposes
the standard SFA operations that the generic part requires, but using the API of
the testbed to correctly implement the operations. The driver includes several
modules with functionality that will be explained in more detail in the next
paragraphs.

Dummy testbed

In order to make easier the task of implementing the testbed-specific part of
the wrapper, the code includes an implementation example of the driver for
a Dummy testbed. The Dummy testbed is a fake testbed implemented as a
Python module and it provides a typical testbed API. The testbed API is used
to implement the driver for the Dummy testbed, so that the SFAWrapper can
be configured to operate with the Dummy testbed. The testbed is fake as it
only provides an API with the empty methods that reply correctly, but they do
not have any effect in terms of resource reservation. The purpose of the Dummy
testbed is to show how the wrapper works and what is needed to implement and
configure a driver for a testbed. The effects that operations have on the testbed
can be seen by querying the registry that stores all the records of the testbed.

The Dummy driver is an example of implementation and it can actually be
used as a template for new testbeds. Dummy driver includes all the necessary
modules and methods that are required to implement a SFA wrapper for a
testbed. It is a guide that a developer can use to understand which modules
integrate the driver and what the methods in these modules are and what their
tasks are.

Implemented wrappers for other testbeds

In addition to the Dummy testbed example, the SFAWrap code also includes
other examples of implemented drivers for real testbeds. The drivers, together
with the SFAWrap and the generic code provide an SFA interface for the testbeds.
The drivers are ready to be used so the SFAWrapper can be configured to op-
erate with one of these drivers and interact with a real instance of a testbed
through the SFA interface that the wrapper provides. The different drivers
that SFAWrap includes that can be configured to be used are called flavours.
To configure a flavour in SFeAWrap some configuration parameters are needed.
These parameters depend on each testbed and driver, and they have default
parameters for the included flavours.

The flavours included in the SFAWrap package code are:

15

• CorteXlab [41], an heterogeneous radio testbed to evaluate different as-
pects of cognitive radio in real environment.

• Federica [42], an experimental network infrastructure for trialing new net-
working technologies.

• IoTlab [43], a testbed infrastructure for multidisciplinary experiments with
more end-user interactions by extending the testbed with the potential of
crowdsourcing.

• Nitos [44], a wireless experimental testbed that is designed to evaluate
networking protocols and applications.

• OpenStack [45], testbeds based on the OpenStack Open Source Cloud
Computing Software to build a Cloud.

• PlanetLab [46], a network of open computers distributed across the world
and available for the development of new network services.

Add a new flavour

For using SFAWrap with a new testbed is necessary to add a new flavour. The
task of adding a flavour consists of implementing the driver for the testbed and
adding the required configuration to allow the wrapper to use the driver.

The implementation of the driver basically implies to wrap the methods
offered by the testbed API in such a way that the required SFA method behave
as expected on the testbed.

The configuration needed for a flavour depends on each testbed and the
parameters that a testbed required for usage. Usually, the configuration for a
testbed includes information about the endpoint or URL where the testbed API
is exposed and the account information of the user. Some testbeds also include
specific options or configuration parameters that apply in their specific domain.

The configuration for each flavour can be set at the moment of selecting the
flavour and initiating the wrapper. However, a default configuration is specified
and usually the user can keep it for a correct usage of the wrapper. The default
configuration is stored in a XML file. This XML file must be modified for each
new flavour that is willing to be added in the SFAWrap.

16

3 Federation in Community-Lab testbed

This chapter discusses the testbed federation scenario. Section 3.1 discusses the
different domains and possibilities in such general scenario. Sections 3.2, 3.3
and 3.4 focuses on the particular testbed Community-Lab, identifying concrete
federation scenarios for this testbed. Namely, multiple controllers federation in
3.1, federation with WiBed testbed in 3.2 and federation with other external
facilities in 3.4.

3.1 Domains and possibilities

In a federation scenario among heterogeneous facilities (e.g. testbeds) there is
a trade-off between the level of homogeneity achieved by the federation and
the ability to leverage the particular features of the facilities. This trade-off is
related to the desired level of federation among the facilities. In other words,
what constitutes the inter-interoperability provided by the federation.

From the point of view of a user, federation might provide a unified sin-
gle interface to interact with all the federated facilities, rather than using a
specific interface for each facility. In such unified interface the process of in-
teracting with the facilities is the same for all of them, which means that the
heterogeneity of the different facilities must be absorbed by this process. In
terms of testbeds, the typical use case basically consists of discovering avail-
able resources, allocating and instantiating resources and using the resources by
deploying and running experiments on them. Depending on the nature of the
testbeds and their architecture and native resource model this unification task
can be difficult or even infeasible.

Still talking from the user side, the facilities usually require to create an
account to use them, granting a set of permissions for the user. The unification
of the interface might somehow imply an accounting federation as well. After a
user logs in he should be able to interact with the federated facilities, perhaps
having different permissions on them. Federation usually consists of allowing the
interoperability of existing facilities without these facilities losing any control
or previous functionality. For authentication and authorization, each facility
will keep working with its own accounts (and interface if applicable) and with
the accounts from the federation domain, either from a central registry for the
federated facilities or from multiple trusted domains.

The final end of the federation is to enable the combination of functionality,
features and capabilities offered by the different federated facilities for allowing
more complete, cross-domain research. In other words, design experiments using
a combination of heterogeneous resources that can inter-operate, so that the
aggregate of their offered features can be exploited. A wide federation can
include many facilities so it might be difficult to know for a user which features
are provided by each of them. Instead, the user might specify which are the
requirements in terms of resources that are needed for the experiment to be
performed. The mapping between this set of requirements and the resources
reserved in the different federated facilities can be done by a broker agent. Apart

17

from a criteria about functionality, the broker can also take into account metrics
of cost, load or performance to decide the most suitable facility to allocate the
resources. The broker acts as a federation central agent in this scenario because,
carrying out the federation-related tasks automatically on behalf of the user.

Federation implies a standardization for example in terms of the process of
resource reservation. Besides that process, standardization can be extended to
other levels, such as the definition of experiments, or orchestration, instrumen-
tation and monitoring of experiments. The process of designing and deploying
an experiment on a set of reserved resources may depend on the particular fa-
cility and its process for this task. When combining resources that could belong
to different heterogeneous facilities in the same experiment, the need for stan-
dardizing this process becomes evident. An equivalent scenario can be identified
for the instrumentation of the resources and the monitoring of the experiment.
Then, general tools for carrying out such tasks in aggregate of federated facili-
ties are needed. In general, having such a unified interface allows the usage of
generic (non-testbed specific) tools to interact with the testbed.

The idea of brokering can also be extend to the domains mentioned on
the previous paragraph. In addition to the description of resources, a broker
may receive the experiment description, so it can deploy the experiment on
the resources after the reservation process is finished. The deployment process
could even vary depending on the facility containing the resource and the broker
could hide this heterogeneity to the user. However, the lack of standards for
all these processes might lead to sustainability and scalability problems if the
broker (or the federation entity) needs to deal differently with each federated
facility. Therefore, as pointed out previously in this section, federation is closely
related to the standardization of processes and models used in the underlying
facilities.

Federation implies the interoperability among different domains and there-
fore, the concept of transparency is also important. It addresses questions like
“does the user needs to be aware of the different federated domains?” or “what
the user needs to know to about the federated domains to work with them?”.
By definition, federation implies a certain level of transparency enabling such
interoperability. Moreover, the level of transparency can be total if the federa-
tion entity behaves as a single entity (although being integrated by an aggregate
of entities) from the point of view of the user. On the other hand, this trans-
parency might be reduced due to, for example, issues related to the underlying
communication among the facilities. Resources in the federated facilities will
need to communicate with each other, which means that they must be reach-
able. However, facilities can use networking solutions, such as NATs or VPNs,
which avoid these publicly-reachable feature. Particular steps are then needed
to set up such communication, thus reducing the level of transparency from a
user point of view.

In summary, there can be different domains or levels of abstraction in which
federation applies. The level of transparency that the user perceives depends on
the the domains in which federation among the facilities is carried out. Interface,
accountability, brokering, resource sharing or networking are different domains

18

in which federation applies.
Next sections bring some of the ideas discussed along this section to the

context of C-Lab testbed, identifying some possible federation scenarios for this
particular testbed.

3.2 C-Lab Controllers federation

Currently the C-Lab testbed uses a single controller that manages the resources
of the testbed and exposes the API of a single, centralized registry that keeps
track of all the objects in the testbed and their configuration. The controller
modifies the registry according to the user operations performed; modifications
in the configuration of objects are eventually applied since the objects them-
selves query the registry through the controller API following a pull style.

The single registry (and its controller) manages all the nodes (resources) of
the testbed, which are distributed across Europe: Barcelona (Spain), Antwerp
(Belgium), Wien (Austria), Athens (Greece), and Rome (Italy). More con-
trollers could be added (for example one for each region) so that the resource
control is distributed and the load of the single controller is split up among
them. Other advantages of the scenario with multiple controllers are that the
network latency from the nodes to the controller will decrease and that the
controllers can allow different policies in the different regions.

Controllers then would need to be federated to allow the interoperability
among them. Such federation scenario corresponds, in fact, to the distribution
of the single Registry. There will be several distributed instances of the registry
rather than a single, centralized one, with each instance taking care of a subset
of testbed objects and resources.

The federation among the controllers can be done using different approaches.
Note that in this case we are federating homogeneous testbeds, i.e. federating
controller testbeds that expose exactly the same API. Therefore, no new stan-
dard interface or layer needs to be implemented, but using the existing API to
enable the interoperability among different instances of the controller.

API extension with References to federated controllers

One of the options for carrying out the federation is that each controller stores
references (links or pointers) to the other federated controllers and uses these
references to interact with them. Extending the controller API, such references
may be stored in a (now non-existing) federation directory. Thus, the controller
can (automatically or by explicit request from the user) use the references for
contacting the federated controllers in any operation. The references to the
controllers will logically correspond to the base URI of each controller, from
which all the API is reachable by simple navigation.

For example, imagine a federation system with federated controllers A, B and
C. A user invokes a node list operation on the controller A. The controller A
will list its own nodes, showing the information from the node API; then the
controller will get the base URIs of the federated controllers form the federation

19

directory; using these links, the controller A can retrieve a list of node URIs
from the controller B and the controller C, or even the information of the node
API can be retrieved. The final result for the node list operation on controller
A would be either a list of nodes that contains the API information of nodes
from controller A, B and C or a mixed list with API information of nodes from
controller A and a list of node URIs from controller B, C (from which node
API information can be retrieved). The idea is the same when using (instead of
listing) a node from a federated controller. The operations will be invoked on
a remote URI rather than a local one, so the operation will be handled by the
federated controller.

The approach of using references to federated objects offers a certain level
of transparency. Such transparency can be total when allowing the controllers
to perform recursive queries on the federated controllers through their refer-
ences, so the raw API information can be retrieved and showed as if it was
local. However there is an important drawback on such approach: the need to
modify/extend the controller API. The API needs to accommodate modifica-
tions to deal with the federation directory and the references to the federated
controllers. Conceptually that would mean that for designing a new service,
such as federation, the core of the system is being modified. This does not seem
a good practice, besides the obvious sustainability problems of adapting all the
existing services to the required modifications. Instead, keeping the core of the
system as simple as possible and moving the complexity to higher-layers seems a
more reasonable choice (and already adopted in many areas of computer science
like Microkernel [47] and the Web [48]). In terms of the testbed, the controller
API should not be modified to implement the new federation service.

Higher-level federation service with Proxy controllers

In this approach the idea is to keep the controller API as simple as possible
and build the new services, such as federation, as higher-level components or
applications. The federation is implemented besides the controller API as a user
service. The service maintains the federation directory with the base URIs of the
federated controllers. Unlike the previous approach, the controller behaves as a
single, isolated controller without knowing anything about federation, and it is
the user by explicit usage of the federation service who enables the federation.
The user selects when performing a certain operation to a federated controller.
The controller API does not need any modification and it remains simple, at
the cost of losing transparency on the federation scenario. In this scenario the
user is federation-aware.

Although being a more simple approach, there are some open issues that
must be considered. The federation service implemented will allow the user
to invoke certain operations on remote controllers. Thus, such operations are
performed by logged users that belong to groups and are associated with given
slices. Both the user and the slice are objects that belong to the local controller
and are stored in the registry for which the local controller exposes the API. A
federated controller does not know anything about the content of other federated

20

registries. Therefore, the federated controller will not know the mentioned user
and slice objects from the local controller. This raises a problem of how to
perform the operations on the federated controllers; to which user and slice the
operations are associated with. The users can be validated by a chain of trust,
so other controllers recognize them as legitimate, valid users. For other objects,
like slices, the current API uses URIs as references. However, in this scenario
such URIs could reffer to non-local objects rather that only local ones. This
would imply the need of modifying the implementation of the controller (the
API might not need changes) to handle such external URIs.

In this federation scenario, a controller will therefore handle the local re-
quests coming from its own users, and the requests coming from external users.

To optimize the traffic and reduce the load of each controller a Proxy con-
troller can be used. The Proxy controller is a replicated instance of the controller
that receives the requests. It is provided with a cache system that stores the re-
sults of previous read-only operations. Thus the Proxy can immediately reply to
the read-only/no-modification operations with the information from the cache.
Periodically the information of the cache expires and the Proxy will forward the
call to the real controller. The eventually-consistent model that is used in the
Community-Lab testbed matches with the consistency of this Proxy approach.

The usage of a Proxy controller could also help reducing the load of the con-
troller for write/update operations. Leveraging again the eventually-consistent
model, the Proxy controller could immediately acknowledge the write/update
operations, and queue the operation requests to be sent later to the controller.
The Proxy could wait for having a batch of (related) operations before sending
them to the real controller; if the operations consists of accessing a database and
performing some modifications, such behaviour could optimize the tasks. The
modifications would be queried by the objects of the testbed following the pull
strategy and the changes would be eventually applied. This modification would
need further study to evaluate the potential improvement of the performance
and the impact on the changes-application time.

3.3 C-Lab and WiBed

In C-Lab node virtualisation techniques are used to allow running different ex-
periments in parallel on the same node. However, the adoption of virtualisation
has two main drawbacks: (1) higher node costs due to increased requirements on
computing resources, which might reduce the number of nodes being deployed;
(2) restricting access to lower layers of operating system and communication
stack due to the need of ensuring isolation of experimentation resources, which
restrains the range of supported experiments [49]. To overcome such draw-
backs the testbed platform Wibed was developed (without using virtualisation
techniques) as a complement to the C-Lab testbed.

Wibed [50] is a platform for facilitating the deployment and management
of testbeds based on commodity IEEE802.11 routers, which enables the ex-
perimentation with wireless technology including the modification of low-level
system components (physical and link layer mechanisms, network and transport

21

layer protocols). The Wibed platform has been used to deploy the UPC CN-A
testbed that consists of 50 nodes over six buildings of Universitat Politècnica
de Catalunya (UPC) Campus Nord, Barcelona. UPC CN-A testbed is willing
to be federated with Community-Lab testbed. This way, C-Lab can increase
the range of supported experiments by leveraging the advantages of accessing
low-level communication layers in UPC CN-A testbed nodes.

Although C-Lab and Wibed UPC CN-A testbeds are different in terms of
architecture and offered functionality, the design efforts in the Wibed API are
in the direction of developing a (maybe reduced) API equivalent to C-Lab API.
It means that Wibed-based testbeds will expose an API (or at least a subset
of) compatible with C-Lab API. In that sense, Wibed specific concepts will
need to be mapped into SFA concepts. The federation scenario between Wibed
testbed and C-Lab testbed is similar to the multiple C-Lab controller federation
scenario. Basically, the idea is again to federate two testbeds (or the controllers
of the testbeds) that expose an homogeneous API.

As analysed in previous section, the approach of Higher-level federation ser-
vice based on Proxy controllers might be a suitable approach for such task.
Assuming that the Wibed Controller API is equivalent to the Community-Lab
Controller API and it is also compliant with the SFA model, the Wibed con-
troller can be included in the federation service, and used as a federated con-
troller.

3.4 C-Lab federation with other facilities

Extending the federation to a wider scenario, C-Lab can be federated with other
heterogeneous facilities, i.e. facilities based on other architectures, models and
with different APIs. In the previous sections a particular solution for federating
multiple C-Lab controllers and Wibed controllers was discussed, leveraging the
homogeneity of the API and the architecture. However, in the current scenario
the heterogeneity of the facilities being federated reveals the need of a standard-
ization in the federation, for complexity and scalability reasons. The idea is to
establish a standard model for federation so that the facilities compliant with
such model can be easily federated; that is, follow an architecture model and
expose a standard API.

SFA has been adopted as the federation standard for testbeds. If the testbeds
provide somehow a SFA-compliant interface, the scenario turns into a scenario
with homogeneous testbeds and the same federation solution works for all them.
The SFA interface can be implemented as layer that adapts and maps the specific
testbed to SFA. The implementation of such layer for C-Lab is the final goal of
this thesis.

In this general scenario, the federation between C-Lab and Wibed can be
seen in two different ways. On one hand, C-Lab and Wibed can be seen as differ-
ent testbeds, so each one exposes its SFA interface on top of its corresponding
API. In this case, this general federation solution (SFA interface) could even
be used for the particular federation between the two testbeds. On the other
hand, the Wibed testbed can be seen as a part of the C-Lab testbed, which can

22

be achieved by using the particular federation solution on previous section. In
this case, only the C-Lab controller will expose the SFA interface. The C-Lab
controller acts as an aggregate of testbeds and the federation between C-Lab
and Wibed is transparent to SFA users.

23

4 Design

The problem to be solved is the federation of C-Lab with other testbeds and
FIRE facilities. Such goal is accomplished by designing a software tool to be
used as a complement for the C-Lab testbed to enable the federation. The
design of this federation tool is exposed in this chapter. Section 4.1 presents
the solution adopted, that is, using SFA for federation. Section 4.2 explains
how this model is applied to Community-Lab. Sections 4.3 and 4.4 describe the
federation tool implemented and its architecture respectively. Finally, the most
important design decisions are presented in section 4.5.

4.1 Federation solution adopted

The study of the different solutions for federating the testbeds, and in particular
for the C-Lab testbed, was out of the scope of this thesis. The federation of
the C-Lab testbed is a part of a larger European project whose goal is to build
a global infrastructure of experimental facilities, such as testbeds, for Future
Internet Research and Experimentation (FIRE). At this end, a standard for
interaction and interoperability among the facilities is needed as a federation
solution. A survey of the different possibilities to federate the facilities was
performed as a first step in the Fed4FIRE [13] and CONFINE [51] European
projects.

. In the survey [13] the architectural requirements for the federation solu-
tion were identified and based on that four different architectural approaches
considered the most relevant architectural candidates were evaluated. It was
concluded that Heterogeneous federation was the most suitable approach. The
solution consists of an heterogeneous federation where all testbeds run their
native testbed management software, but common, standardized interfaces run
on top such testbed management software to enable federation. Mutual un-
derstanding and interoperability are thus achieved through these standardized
interfaces.

The next step in the context of the Fed4FIRE project once decided the
architectural model was to define the standardized interface. In other words,
described the API exposed by the common interfaces through which testbeds
can interoperate and be federated. The experience of PlanetLab project [46]
was a valuable point of reference for such task.

PlanetLab is a group of computers available as a testbed for computer net-
working and distributed systems research [52]. The project started in US in
2002 and the initial deployment consisted of 100 nodes at 42 sites across the
country, with all sites governed and managed by the PlanetLab Central [53]
authority. The extension of the project to Europe started in 2004, deploying
new nodes at sites across Europe managed by their own authority PlanetLab
Europe [54]. Later in 2007, OneLab project [55] put its effort on federating the
different PlanetLab authorities to build a global, worldwide testbed platform.
In order to achieve such goal, Slice-based Facility Architecture (SFA) [56] ap-
proach was adopted. Nowadays, PlanetLab testbed consists of 1188 nodes at

24

582 sites worldwide (April 2014), managed by federated PlanetLab Central and
PlanetLab Europe authorities.

The PlanetLab federation model was taken as a reference for federation of
facilities and testbeds in the European project that serves as a context for this
thesis, so the the common interface that the facilities need to provide on top
their management software follow the SFA specification.

Summarizing, the federation solution adopted for federating C-Lab with
other testbeds was not a design decision but a requirement imposed by the
European project. It consists of an heterogeneous federation model in which
testbeds provide a standardized SFA interface on top of their management soft-
ware to enable interoperability among them. The SFA interface is developed
as a software layer that acts a ”translator” between SFA and testbed-specific
domain.

4.2 SFA in C-Lab testbed

The architecture of C-Lab testbed is highly based on SFA [57], since it has
become the most important and standard specification for testbed architecture
and federation due to the influence of PlanetLab. Thus C-Lab testbed uses the
abstractions defined by SFA: components, slices and slivers.

In C-Lab the components are nodes implemented by Research Devices. The
nodes that conform the testbed are homogeneous and all have the same char-
acteristics. The idea of homogeneity is also extended to slivers. Slivers are the
portions of the resources that are assigned to a user. Such portions are homoge-
neous and are implemented as virtual machines inside the nodes conforming the
testbed. In both abstractions nodes and slivers, the hardware resources are not
customizable and they are pre-defined. It means that all the slivers that a user
can request are equal in terms of hardware characteristics. The customizable
characteristics are reduced to the set of network interfaces available in the sliver.
In terms of software characteristics the user can define the image of the OS to
be used in the sliver.

C-Lab also supports the concept of slices. Like in SFA, slices are the primary
abstraction for accounting and accountability. A slice is a collection of slivers
assigned to a researcher and it represents the set of resources borrowed to a user
to perform an experiment. The resources, that is slivers belonging to slices, are
assigned and released dynamically. To control such dynamism slices and slivers
have a state parameter.

The slice concept in SFA is simpler and lighter than the one in C-Lab. While
in SFA a slice is seen as container for slivers that does not support any kind of
configuration, in C-Lab there are some configurable characteristics of the slice
that when set, are inherited by all the slivers belonging to that slice.

Another important difference between SFA and C-Lab is how they manage
the nodes, slices and slivers abstractions. In SFA there are different manager
modules for that purpose. Component Manager is the module that manages
a component or node. When the same component manager manages multiple
components it is called Aggregate Manager. The slices and slivers are managed

25

by the Slice Manager. In C-Lab the management of nodes, slices and slivers
is centralized and it is carried out by a single component, the controller of the
testbed.

In SFA there is also a Registry entity that keeps track of the different objects
of the testbed, such as slices, slivers and users, assigning a unique global identi-
fier to each object. Such database also exists in C-Lab testbed and it keeps the
state and configuration of all the objects. Periodically the objects retrieve their
configuration and perform the necessary actions, thus following a pull strategy.
The Registry database in C-Lab is maintained by the controller of the testbed.
There is another important abstraction in SFA that the Registry keeps track of
and that is not directly mapped into any abstraction of C-Lab: the authorities.

Authorities represent testbeds, parts of testbeds or communities of users.
These authorities are in charge of the objects registered with them and are the
entities that take care of authentication and authorization for the usage of such
objects. SFA uses certificates and credentials to grant rights to a particular
principal or user. These certificates are issued by a trusted authority and are
manipulated by the managers.

In C-Lab the notion of authority does not exist. Instead, C-Lab defines the
concept of group. Each abstraction among nodes, slices, slivers belong to a
group of users. The users that are part of a group are possible candidates to
have rights over the resources that belong to this group. At the same time, a
user can be a member of multiple groups, with different permissions and rights
in each group.

The mapping between concepts and abstractions of C-Lab and SFA is quite
direct and easy in most cases, due to the fact that C-Lab bases it model on
SFA. However, specific entities or concepts from testbeds that are not SFA-
based might be difficult to map into SFA standard concepts. Table 1 shows
a summary of the mapping between concepts from SFA domain and C-Lab
domain.

4.3 SFA Software layer: SFAWrap

Different options for implementing the SFA software layer were discussed in
the context of the European project. Each testbed partner selects the most
suitable option depending on the its characteristics and architecture. Basically
the options are divided in to branches:

(a) Implement the SFA software layer using the SFAWrap tool

(b) Implement an own, specific solution. For example, implement a software
SFA-translation layer from scratch, implement directly a SFA-compliant
testbed, or any hybrid solution between them

For C-Lab the option selected was the usage of SFAWrap. The reasons for
making such decision are:

• C-Lab testbed was fully implemented and developed so the option of di-
rectly implementing a SFA-compliant testbed was discarded

26

SFA C-Lab Comments

Components Nodes Nodes implemented as Research De-
vices. Homogeneous, different net-
work domains

Slivers Slivers Homogeneous. Implemented as VMs
in nodes. Customizable network in-
terfaces and OS image

Slices Slices C-Lab slice is heavier entity: config-
urable characteristics inherited by its
slivers

Component Manager Controller Centralized controller manages Nodes

Aggregate Manager Controller Centralized controller manages Nodes

Slice Manager Controller Centralized controller manages Slices
and Slivers

Registry Controller Controller keeps a database of testbed
objects

Authority Group Authority concept does not exist in C-
Lab. Instead, group is used to define
ownership for nodes, slices and slivers

Table 1: Mapping between SFA and C-Lab concepts

• C-Lab architecture is highly based on SFA model which makes feasible the
adaption of testbed-specific concepts (entities, objects, functionality...) to
SFA domain

• Existence of Confine-ORM library, a Python library that encapsulates the
REST API of C-Lab testbed. SFAWrap is also written in Python and it
requires to implement the SFA standard methods for the testbed being
adapted. Therefore, ORM is extremely suitable and useful for such task

• SFAWrap already provides generic features and functionality related to
SFA (XML-RPC servers, credentials and authority management, support
for Registry)

• SFAWrap offers integrated command-line client tools that can be used for
testing during the development process

• SFAWrap includes some examples of existing wrappers for other testbeds,
as well as a Dummy testbed example that can be use as a guide

The reasons listed above revealed the a priori feasibility of using SFAWrap
for C-Lab. The fact that C-Lab testbed is based on SFA model allows the pos-

27

sibility of using SFAWrap; for non SFA-based testbeds the translation between
testbed-specific and SFA domain might be more complex and designing and ad-
hoc wrapper from scratch might be easier. If possible, using SFAWrap seems to
be a better option since generic features offered by the package can be leveraged
instead of implementing them from scratch.

4.4 Architecture

The development of SFAWrap for C-Lab started with the study of the Dummy
Driver that, as previously said, can be used as a template for new drivers,
in terms of architecture, modules and methods. It is an implementation of
SFAWrap for a fake Dummy testbed. The testbed is simulated through a
dummy testbed api.py module that acts as a server for the testbed, expos-
ing an example interface that in fact does nothing but replying successfully to
the received calls without performing any action in terms of resource allocation
or provision.

The Dummy Driver consists of five Python modules, each module in charge of
a different functionality in the wrapper. These modules are: dummy driver.py,
dummy aggregate.py, dummy slices.py, dummy shell.py, and dummy xrn.py.
The implemented driver for C-Lab follows the same idea, separating the modules
by functionality, even with a higher granularity than Dummy driver.

The modules and their corresponding functionality for C-Lab driver are the
following:

• clab driver.py, driver module with the operations that the SFAWrap
driver requires. Its methods encapsulate calls to other clab * modules.

• clab aggregate.py, module that exposes the Aggregate Manager API
(GENI AM API v3 [58]) for the C-Lab testbed.

• clab registry.py, module that exposes the SFA Registry API for the
C-Lab testbed.

• clab slices.py, auxiliary module that checks the nodes and slices in the
operations of the AM.

• clab shell.py, module that exposes the API of the testbed through
XML-RPC calls to the REST API of C-Lab testbed. It uses the ORM
library as a programmatic interface for accessing the REST API.

• clab xrn.py, auxiliary module that handles the translation between URN
and HRN names to testbed-specific names and viceversa.

• clab exceptions.py, module that defines the possible testbed-specific
exceptions handled by the driver.

• clab logging.py, auxiliary module to generate log files for the driver.

28

In addition to the mentioned modules, that correspond specifically to the
modules that integrate the driver of SFAWrap, there are two more modules
needed for a complete and correct behaviour of the wrapper:

• clab importer.py, module that reads the database of the testbed and im-
ports all the elements to the SFA Registry database, properly translating
the information into SFA records.

• clab.py, generic module that specifies which are the modules and methods
of the driver that the generic part of the code has to call for each operation
when using the C-Lab flavour.

The modules listed above implement the structure of the driver. The granu-
larity and division used is based on the Dummy driver example. However, there
are some differences since the Dummy driver was an extremely simple example
and the driver for C-Lab required more content. The Dummy driver only in-
cludes the modules dummy driver.py, dummy aggregate.py, dummy slices.py,
dummy shell.py and dummy xrn.py. For these modules the functionality in C-
Lab driver is the same than in Dummy driver. Apart from these modules, the
C-Lab driver incorporates more modules as explained above. In the Dummy
driver, the operations related to the SFA Registry were implemented in the
dummy driver.py itself. For the C-Lab driver, it was seen as a cleaner, more
structured option to keep the SFA Registry operations in a separated module,
following the style of the AM module. The other difference is the incorporation
of the modules clab exceptions.py and clab logging.py. These are mod-
ules related to specific characteristics of the C-Lab testbed. The first module
was included to handle potential exception raised in the clab shell.py opera-
tions that operate with the REST API of the testbed. It was also thought as a
good idea to keep a log file for the operations performed on the testbed by the
SFAWrapper. The clab logging.py module implements such feature.

The rest of the modules follow the template of the Dummy driver, but being
specifically adapted to the C-Lab testbed when that was needed.

The Figure 4 shows the high-level components that integrate the SFA wrap-
per for Community-Lab. The Figure 5 shows with more detail the internal
architecture of the wrapper, its different modules and the interaction among
them and it graphically summarizes the explanation presented in this section.

4.5 Design decisions

Once adopted SFAWrap as a solution for federating C-Lab testbed with other
experimental testbeds and facilities, there are some design decisions to be made
for SFAWrap itself. Such decisions are related to the versions of SFA and RSpec.
It was left to each testbed partner in Fed4FIRE to decide which version of SFA
and RSpec to use in the implementation of the wrapper.

29

Figure 4: High-level components of Community-Lab SFA Wrapper and their
interaction (Source: own creation)

4.5.1 SFA version

SFAWrap supports different versions of SFA: version 1, 2 and 3. These versions
correspond to the API version of the Aggregate Manager (AM) component used
when exposing the SFA interface through the SFAWrap. The AM API used in
SFAWrap is defined by the GENI project. Different versions of the AM API are
defined: AM API version 1 [59], AM API version 2 [60], AM API version 3 [58].

The version selected for C-Lab SFAWrap is GENI AM API version 3, so the
AM interface exposed by the SFAWrap is compliant with this version. One of
the reasons for the election is that the adoption of the newest current version
was suggested from the European project. On the other hand, version 3 is the
version that best adapts to C-Lab testbed and its model. One of the important
changes between version 2 (and also version 1) and version 3 is that the operation
of sliver creation is broken into 3 steps:

30

Figure 5: Architecture of the SFA Wrapper for Community-Lab (SFAWrap
testbed-specific part) (Source: own creation)

1. Allocate. Reservation of resources

2. Provision. Instantiation of the resources

3. PerformOperationalAction(geni start). To start or boot the resources

This 3-steps process matches perfectly the process of sliver creation in C-Lab
testbed: Register (Allocate), Deploly (Provision), Start (PerformOperationalAc-
tion(geni start)). Therefore, AM API version 3 is seen as the best choice.

4.5.2 RSpec version

Resources are described in SFA and SFAWrap special XML documents called
RSpec (resource specification). These RSpec documents follow XML schemas

31

that must be publicly available. SFAWrap uses by default standard schemas
defined by the GENI project. There are different versions of these standard
schemas: GENI RSpec version 2 [36], GENI RSpec version 3 [37].

Apart from the standard schemas, an Aggregate Manager can use its own
schema to define its alternate RSpec format. Thus specific elements to describe
testbed-specific characteristics can be added to the standard RSpec. The schema
defining the new RSpec must be publicly available.

It a design decision to select the RSpec types and versions that the SFAWrap
for C-Lab supports. It is necessary that the wrapper supports one standard
RSpec type for compatibility reasons. The decision therefore, as was suggested
from the project, was to support the newest RSpec standard version, RSpec
version 3.

Extending the RSpec to define a specific schema for C-Lab in order to include
some specific elements of the testbed was also considered as a possibility. This
task however was left for later or future work since defining a new RSpec requires
a considerable amount of work, no only for defining the new RSpec schema itself
but also to adapt SFAWrap for using this new RSpec type.

32

5 Implementation

This chapter presents the implementation process of the federation tool, C-Lab
SFA Wrapper, whose design was presented in the previous chapter. Section 5.1
introduces the environment used for such process and 5.2 the approach that
drove this implementation. From section 5.3 to 5.11 (both included) the dif-
ferent modules that integrate the wrapper are explained. Section 5.12 explains
how the wrapper is configured and which files are needed for this configura-
tion. Finally, section 5.13 presents the most relevant challenges faced during
the implementation and how they were solved.

5.1 Environment

SFAWrap for C-Lab was developed in an environment based on VCT (Virtual
Confine Testbed). As explained in the background, VCT provides a simulation
of the real C-Lab testbed in a local host, by using vitalization techniques (Linux
Containers). It provides a suitable environment for developing the wrapper,
since one can operate on the testbed and its controller without affecting the
real testbed, and with the control that offers a localhost system.

Confine-ORM was another important element of the development environ-
ment and a key component to interact with the controller of the testbed through
a programmatic interface. ORM was used not only as a library in the develop-
ment of the code, but also for parallel testing via the Python console during the
code development process.

The last important component of the development environment is the SFA
package, which includes the SFAWrap code package. The implementation of the
wrapper consists of extending the code of SFAWrap with a driver for C-Lab,
with all the needed components. The command-line client tools of the SFA
package were also an important element for parallel testing.

5.2 Approach

The development approach for the code of the wrapper combine a top-down
analysis with a bottom-up implementation. The top-down approach is adopted
in the first phase of the process to get an overview of the system. The result
of this phase is a big picture of the wrapper, identifying the modules that will
integrate it and their functionality. Such big picture is possible thanks to the
previous analysis of existing wrappers for other testbeds that are used as a refer-
ence, and in particular, from the analysis of the Dummy flavour. The top-down
approach was applied on the Dummy wrapper allowing the breaking down of the
whole system into its modules and subsystems. The decomposition was carried
out by following the flow of an SFA call on the wrapper through the different
modules to understand their functionality. This first top-down approach of the
process lead to the complete understanding of the system components and their
behaviour.

33

The coding phase once the modules were identified was based on a bottom-
up approach. The lower level modules, the closest to the testbed, were imple-
mented as individual components. The modules were specified in detail and
implemented (first implementation). The implementation was refined by a test-
ing process throughout several rounds until the module worked correctly. Once
properly implemented and tested, the different lower level modules were pieced
together to build the more complex, higher level modules.

The motivation behind this combined approach is the following. On one
hand, the fact of using a software package in which a generic part of the code
is already implemented and that includes examples of the system being imple-
mented, suggests the usage of a top-down approach. It is necessary to have
an overview of the whole system and then shed light on the black boxes that
integrate it, from higher level to lower level. Starting this analysis from the top
allows to see which are the requirements for the lower level components; what
these low level components need to provide to higher level ones. Thus, the anal-
ysis stops once it reaches low levels that directly depend on a particular testbed
and its implementation, which may highly differ from the implementation of
C-Lab testbed.

On the other hand, for the coding process a bottom-up approach is followed,
implementing and testing first lowest level modules. The early testing process
helps identifying errors soon and avoiding carrying errors around during inte-
gration of components. The wrapper and its components shows a hierarchical
structure in which lower level components are used by higher level components,
until reaching the generic level components. The requirements in terms of oper-
ations and functionality for low level components were obtained in the previous
top-down phase. The requirements then can be mapped to a set of low level
operations that the closest modules to the testbed must provide. These low level
modules act as a library for higher level modules, thus building the complete
stack of the system.

5.3 C-Lab Shell module

The C-Lab Shell module is a simple XML-RPC shell to the C-Lab testbed API.
It provides high level methods wrapping the REST API of the testbed and can
be seen as a high-level library to interact with the testbed.

The C-Lab Shell module uses the Confine-ORM high-level Python library.
The idea behind this library and the shell module is basically the same: to offer
a high-level programmatic API to interact with the testbed. The shell modules
extends the functionality provided by the ORM library with more advanced and
complex operations.

The implementation process consists of a first iteration in which the basic
operations with general functionality were implemented. The implementation of
such methods was simple, and mostly required the encapsulation of direct calls
to the ORM library with some small modifications. This first iteration included
the basic operations for the elements of the testbed: get, update, create and
delete on nodes, slices, slivers, users, groups, templates (some operations only

34

are applicable for a subset of objects). The get methods offer filtering options
to get a specific object or list of objects.

Subsequent iterations on the implementation process addressed operations
with more specific functionality, related to some requirements or features that
are useful for the wrapper. The need of implementing such operations arose
in the process of developing other modules, such as the Aggregate Manager
(clab aggregate.py), the Registry (clab registry.py) or the Slice Manager
(clab slices.py). The following list shows the most relevant operations and
their functionality:

• Get the current state of a node or sliver.

• Get the IPV6 Management Network address of the sliver.

• Get available nodes for a slice (nodes in a correct state that do not contain
a sliver for such slice).

• Renew methods for slices and slivers (update/extend their expiration date).

• Upload experiment data file to a slice or sliver. The experiment data file
is used to upload an initialization script for the slivers that will be run at
the end of the boot process.

5.4 C-Lab Exceptions module

The C-Lab Exceptions module defines the different exceptions that may arise
from the usage of the Shell module. Some of the considered use cases for the
shell module can lead to error situations. The exceptions defined in the module
are raised by the methods of the shell method when the corresponding error
occurs, so it can be handled by higher-level modules in the hierarchy.

Confine-ORM already catches some errors resulting from the interaction with
the testbed and express them as Confine-ORM exceptions. Thus, some C-Lab
exceptions consist of wrapping ORM exceptions whereas others deal specifically
with errors not considered by Confine-ORM. The exceptions defined are:

• IncorrectURI, when retrieving any URI from the testbed that it is in-
correct (malformed, unexisting or invalid).

• OperationFailed, when the operation being performed fails.

• ResourceNotFound, when the object requested is not found.

• NotAvailableNodes, when there are no available nodes for creating a
sliver in a specific slice.

35

5.5 C-Lab XRN module

The C-Lab XRN module addresses the translation from C-Lab names to HRN
or URN used in SFA. The module implements bidirectional translations for the
names of all the objects in the testbed.

The implementation of this module is highly based on the Dummy XRN
module. However there are some differences because of special cases that must
be considered in the C-Lab scenario.

• “@” in sliver identifier. In C-Lab the identifier of the sliver has the for-
mat slice id@node id. The “@” is not valid for HRN and URN identifiers
so when translating, it is replaced by the character “a”.

• “.” in object names. Some objects in C-Lab testbed are named us-
ing the character “.” as a separator (specially user names). This causes
problems when using HRN, since SFA interprets the “.” as a separator
for authorities and sub-authorities. Therefore, the “.” is replaced by the
sequence “ ” when translating, thus creating a bidirectional translation.

5.6 C-Lab Aggregate module

C-Lab Aggregate module implements the Aggregate Manager (AM) interface
corresponding to GENI AM API v3 [58] in which a list of methods and their
functionality is specified. Each method was implemented using the previous im-
plemented modules. The list of methods includes: get version, list resources,
describe, allocate, provision, perform operational action, renew, delete,
shutdown and status. The methods use calls to the Shell module to interact
with the testbed, and using the XRN module to bidirectionally translate be-
tween C-Lab and SFA domains when needed.

Mapping the Sliver model

The AM offers methods to handle the resources of the testbed. As men-
tioned on previous section of the document, for the GENI AM API v3 the
process of creating slivers is split in three steps. Each of these steps cor-
respond to a specific method of the list: (1) allocate, (2) provision, (3)
perform operational action(geni start). This process matches the process
of creating slivers in C-Lab, also split in three equivalent steps: (1) register,
(2) deploy, (3) start.

The call to each of the methods causes a change in the status of the resources,
i.e. the slivers. This call is asynchronous (non-blocking) in the sense that it
immediately returns without waiting for the status transition. Eventually, the
status changes according to the performed operation. In the C-Lab testbed this
behaviour is expressed as two parameters representing the status of a sliver: set
state and current state.

The current state is the real state of the sliver whereas the set state is the
desired state of the sliver. Thus, when a method is called to modify the state of a

36

sliver, the set state is changed and the methods returns immediately. Eventually
this state will be applied to the sliver, so its current state will change, matching
the set state.

The GENI AM API v3 defines a set of states in which a sliver can be through-
out its creation process, the Sliver Allocation states [61]. Similarly, once the
sliver creation process (allocation and provision) has finished the slivers are
ready to be used. The GENI AM API v3 defines another set of states to de-
scribe the life-cycle of a sliver, the Sliver Operational states [62]. The transition
between operational states is caused by Sliver Operational actions [63].

The GENI Sliver model (Creation process, Allocation states, Operational
states, Operational actions) has its equivalent in the C-Lab domain. Apart from
the 3-steps sliver creation process, C-Lab model also defines different actions
that can be performed on the slivers and trigger changes on their state [64]. In
the process of implementing the C-Lab Aggregate module, a complete mapping
between the concepts of C-Lab and GENI Sliver model was done. Some concepts
have their direct equivalent and some others are more complex. Table 2 shows
the complete mapping between the two domains.

Mapping the RSpec

Another important task in the implementation of C-Lab Aggregate is to map the
C-Lab concepts into a RSpec for describing resources of the testbed, i.e. nodes
and slivers. All the methods in Aggregate module use directly or indirectly
RSpecs. In C-Lab testbed API nodes and slivers have a set of parameters
that describe their characteristics. These parameters must be expressed using
a RSpec in the wrapper. As explained in Designed section the format of RSpec
selected for the wrapper is GENI RSpec v3. Therefore, the parameters of nodes
and slivers in C-Lab must be mapped into elements of the standard RSpec.

Such mapping includes the translation of the C-Lab object names to URN
and HRN identifiers. Table 3 shows the details of this translation. The mapping
of the C-Lab node parameters into the RSpec is showed in Table 4 and Table 5
shows the mapping for the C-Lab sliver.

Cache system

The Aggregate Manager module also implements a Cache system that caches the
result of some read-only, very costly (time consuming) operations. In particular,
the cache system is used with the list resources operation. This operation
lists all the resources of the testbed that are managed by this AM, that is, the
nodes of the testbed and some of their features. At this end, the AM interacts
with the testbed controller to request the list of the nodes; then the AM adapts
the node description to the SFA, RSpec model. This operation as described is
very costly in terms of time. There are approximately 150 nodes in the testbed
and the time for the controller to reply with the information of the nodes might
be high, which leads to even higher time for the list resources operation (up
to 180 sec).

37

C-Lab GENI v3

Creation process actions

Register Allocate

Deploy Provision

Start PerformOpAction(geni start)

Allocation states

sliver does not exist yet geni unallocated

registered geni allocated

deployed geni provisioned

fail alloc geni failed

fail deploy geni failed

Operational states

allocating geni pending allocation

deploying geni notready

starting geni configuring

started geni ready

fail start geni failed

Table 2: Mapping between C-Lab and GENI v3 Sliver models

Details of C-Lab names to XRN mapping

Authority clab

Sub-authority clab

Chain of authorities clab

HRN format clab.object name

URN format urn:publicid:IDN+clab+obj type+obj name

Table 3: Details for the mapping from C-Lab names to URN and HRN iden-
tifiers

38

GENI RSpec v3 C-Lab Node

component manager id urn of the AM authority

component id urn of the node

component name Name of the node

authority id urn of the Slice authority

sliver id urn of the sliver

available true if current state of the node is
PRODUCTION

boot state translation of current state of the node

hardware types architecture parameter of the node

interfaces information of ifaces parameter of the node

slivers RSpec for slivers of the node

services login information containing information for
ssh access to the sliver (username, ipv6 addr)

Table 4: Mapping between C-Lab node and GENI RSpec v3 Node

GENI RSpec v3 C-Lab Sliver

sliver id urn of the sliver

name Name of the sliver

type Constant value RD sliver, which stands for
Research Device sliver

disk image Information about the template of the sliver

Table 5: Mapping between C-Lab sliver and GENI RSpec v3 Sliver

39

The cache system improves this response time and reduces the load of the
testbed controller. The result of list resources operation is cached for X
minutes, being X a configurable parameter of the wrapper. By default, this time
is 30 minutes. There is a trade-off between how often the wrapper queries the
testbed controller (it discovers new, recently added nodes and discards removed
nodes) and how up-to-date the results shown are. The value of 30 min is a
reasonable value according to the stability of the tesbted and the necessary
time to deploy new nodes.

5.7 C-Lab Registry module

The C-Lab Registry module implements the interface and the methods related
to the management of the Registry. The Registry is a database that keeps
track of the objects in the testbed. The SFAWrap generic code exports a
Registry interface based on the Planetlab Slice Registry interface. The pur-
pose of the C-Lab Registry module is to wrap the C-Lab specific Registry in-
stance by exposing a set of methods that the generic Registry of SFAWrap
will use. This set of methods implement the basic operations on the records
of the registry: register, update, remove and also update relation and
augment records with testbed info. The implementation of these methods
is carried out by using the Shell module that includes methods to interact with
the Registry instance of the C-Lab testbed. The management of the records
stored in the Registry also implies some translation between XRN identifiers
and C-Lab specific names, which requires also the use of the C-Lab XRN mod-
ule.

5.8 C-Lab Importer module

The C-Lab Importer module implements a very important and useful tool closely
related to the C-Lab Registry module. It allows to import all the objects of
the C-Lab testbed to the Planetlab Slice Registry of the SFAWrap so that
both registries get synchronized. The import process consists of reading all
the objects of the C-Lab Registry instance, translate all the records to SFA
records and store them in the Planetlab Slice Registry of the SFAWrap.

The importer module is called automatically when starting the wrapper in
order to perform an initial synchronization of the registries. From this point
on, the registries are kept synchronized by the wrapper itself. The registry
in SFAWrap is modified whenever an operation requires so; the C-Lab specific
registry is updated automatically by the testbed server when the wrapper calls
the specific operation on the testbed.

5.9 C-Lab Slices module

The C-Lab Slices module implements several methods to check the objects in-
volved in the process of sliver creation. In particular, it offers methods to verify
that the nodes and slices involved in the creation of a new sliver exist and are

40

in a correct state. The implementation of the methods in this module uses the
Shell module to interact with the testbed Registry to perform the necessary
verifications.

5.10 C-Lab Driver module

The C-Lab Driver module is the testbed-dependent, highest-level component
of C-Lab SFAWrap. It provides the interfaces of the Aggregate and Registry
by exposing their methods. The Driver module is the called by the generic
modules of the wrapper. Its implementation consists of wrapping the methods
of Aggregate and Registry modules.

5.11 C-Lab Generic module

The goal of C-Lab Generic module is to become a link between the generic part
of the code and the C-Lab modules. The C-Lab Generic module defines which C-
Lab modules implement the AM, Registry, driver, etc. To discover this relation
generic modules use C-Lab Generic module. Thus, the implementation of such
module basically consists of defining generic functions for each component, that
return a reference to the specific module that implements it.

5.12 Configuration files

Once implemented the different modules that integrate the wrapper for the C-
Lab testbed, there are some configuration steps to be done. Such steps consist
of modifying the SFAWrap generic modules to add the ability of working with
the new testbed wrapper, that is to configure the new testbed flavour. Minor
modifications are needed in some files for this purpose.

Also a default configuration for the C-Lab flavour is added. The configura-
tion includes some parameters such as the URL to access the testbed, the user
and password and other specific parameters.

5.13 Challenges

Throughout the implementation process many challenges were identified. The
next list presents the most relevant ones and how they were solved:

• Current state of nodes and slivers. The node description used in
the REST API of the controller does not provide the current state of the
nodes or slivers. In other words, the testbed controller does not know the
current state of the nodes and their slivers. However, this parameter is
required for the wrapper in some operations so the Shell implements two
operations to get it. In these operations the management network address
of the nodes is used to access them (or specific slivers that they contain)
and send a GET request of the current state.

41

• Automatic registration of new slices when allocating slivers. In
the federation scenario considered for the project, a user from another
trusted administrative domain can use the resources of our testbed. There-
fore, a user can allocate a sliver using a slice credential issued by other
domain. This process implies the creation of an equivalent slice in C-
Lab to map the slice of the trusted domain for which the sliver is being
created. This slice is automatically registered in C-Lab testbed in the
Allocate operation and the Registry instance of the wrapper is properly
updated. The name given to the slice is the complete URN of the slice in
the federated authority that is a unique identifier, so that name clash for
slices is avoided in C-Lab.

• Specification of User SSH keys in Provision. In the Provision op-
eration a user specifies the key(s) that will be later used for accessing the
sliver via SSH. In C-Lab terms, it means that in the Deploy operation
these keys need to be uploaded to the sliver automatically. At this end,
the experiment data feature of C-Lab is used, which basically consists of
uploading a compressed file with a directory tree that will be created in
the sliver and as initialization script that will be run at bootstrap time.
In the Provision operation of the wrapper an experiment data file with a
customized script is created for each sliver. The script contains the public
keys specified by the user, which are copied to the proper directory of
authorized keys.

• Provision reply with sliver login information. According to SFA
specification, the information to access an sliver is given to the user in the
reply of the Provision operation, e.g. information for SSH access to the
sliver. In the context of C-Lab it means that the IPv6 address of the sliver
in the management network overlay (used for ssh-access to slivers) must
be known at Deploy time, which it is not possible since the networking
setup of slivers takes some time after triggering the Deploy operation.
Fortunately the IPv6 address of the sliver follows a specific format and
can be calculated using information that it is already known at Deploy
time [65]. Thus, the IPv6 address of the sliver is calculated and included
together with other parameters in the field login of Provision reply.

42

6 An Evaluation

This chapter presents an evaluation for the implemented C-Lab SFA Wrapper.
The evaluation of our wrapper focuses on its behaviour, i.e. the validity of
its behaviour, rather that its performance. The evaluation process presented
in this chapter aims at validating the behaviour of the wrapper is the different
scenarios and use case that it is going to work with. The sections 6.1, 6.2 and 6.3
present the three part of this evaluation process, which include a testing phase
with generic SFA client tools, testing with the jFed tool and the execution of
our own reference experiment.

6.1 Testing with SFA client tools

The SFA package includes two command-line tools to interact with the SFAWrap:
an administration tool sfaadmin.py, and a client tool sfi.py. These tools were
used for a first evaluation of the wrapper, testing its components and methods
manually. Both tools are documented here [66].

sfaadmin.py

It is a command-line tool that allows the interaction with the wrapper within
an administration context, that is, without using user credentials. sfaadmin.py
utility skips the operation related to the credentials that are performed by
generic components of the wrapper and it directly interacts with the compo-
nents that manage the testbed.

This utility offers a set of basic operations on the Aggregate Manager com-
ponent and the Registry component. The correct behaviour of the operations
was manually checked by using the tool with the C-Lab SFAWrap.

sfi.py

It is a command-line client tool for SFAWrap that allows the interaction with
the Aggregate Manager and Registry components, exposing the complete set of
operations. Operations that act on the resources of the testbed or modify the
state of the Registry require a user credential to guarantee permissions; other
simpler query operations do not require credentials.

sfi.py utility acts as a XML RPC client that sends SFA calls with the
necessary arguments to the XML RPC servers of the SFAWrap. After a generic
processing of the calls in the SFAWrap (that includes the credential validation)
the testbed-specific modules handle the call to apply the specific operation on
the underlying testbed.

This utility provides complete AM API and also operations to manipulate
the Registry. Credentials used with this tool were issued by the SFAWrap itself,
thus belonging to the same administrative domain of the wrapper (no federa-
tion).

43

6.2 Testing with jFed

jFed [67] is a Java based framework developed by iMinds to support SFA testbed
federation client tools. There are three different client applications based on the
jFed framework: jFed Probe, jFed Automated Testing and jFed Experimenter.
Probe and Automated-testing applications were used for the evaluation of C-Lab
SFAWrap.

Configure jFed for C-Lab SFAWrap

To use jFed applications with C-Lab SFAWrap there are some previous steps
that are necessary. jFed works with Emulab authority. iMinds provides an
Emulab-based authority, Virtual Wall 2. It is necessary to get an account and
download the certificate signed by Virtual Wall to work with jFed.

At the testbed side, the Virtual Wall 2 authority needs to be added as a
trusted authority, so the wrapper accepts certificates signed by this authority.
Moreover, the new authority for the C-Lab SFAWrap needs to be added to the
list of configured authorities of jFed. This can easily be done by giving the URL
of the AM and letting jFed scanning it to discover the configuration.

jFed Probe

jFed Probe is a client application to interact with SFA-compliant testbeds (or
testbeds that expose somehow a SFA-compliant interface). The application
offers a command-line version and a graphical user interface.

Similarly to the tests with sfi.py, the Probe application was used to manu-
ally test all the operations offered by the wrapper and validate their behaviour.
The difference here is that the certificate and the credentials used in the op-
erations are not issued by the Registry component of C-Lab SFAWrap, but by
another authority that is accepted as a trusted authority. Therefore, the Probe
application allows to test the wrapper in a federation scenario.

jFed Automated Testing

jFed Automated Testing is a tool to run compliance tests for the different SFA
components of the testbeds, with a command-line and graphical user interface.
It offers a complete suite of tests for the Aggregate Manager and Slice Author-
ity, testing the different methods of the components and reporting results with
information about the failures. This is a very useful tool for the validation task
of the wrapper.

iMinds Automated Scenario Tests

iMinds offers a website with automated scenario tests for testbeds and wrappers
that are publicly available. These scenarios consist of a set of tests and exper-
iments to validate the behaviour of the testbeds, similarly to the Automated
testing application, which automatically, daily run.

44

For C-Lab SFAWrap to be included in this automatic testing scenario there
is a required previous step for the machine that runs the test. The machine
needs to join the COFNINE Management Network overlay (that is, install and
configure a tinc client) to be able to access nodes and slivers through their
management address. Once this step was done, C-Lab was added as a new
default authority in the jFed release and added also to the automated testing
scenarios.

6.3 Reference experiment

A Reference Experiment was also run as a part of the evaluation process. The
reference experiment aims to validate the behaviour of the wrapper in a feder-
ation scenario by allocating certain resources of the testbed and then test their
functionality to guarantee that the wrapper worked as expected. At this end,
the reference experiment was designed with three steps:

1. Resource allocation. Using a credential of a federated authority (Virtual
Wall 2), a new slice is registered in C-Lab SFAWrap and two new slivers
are instantiated.

2. Dummy experiment. Once the slivers are ready for running experiments,
a very simple experiment is perform on them to guarantee their correct be-
havior. The experiment consists of one sliver sending three ping messages
to the other sliver, by running the Linux command ping6 remotely.

3. Report results. Finally, the results of the experiment are reported by
creating a folder with two text files: a file containing the details of the
resource allocation process as well as details about the created slivers; a
file containing the results of the ping command.

The reference experiment is completely automatic, which means that it runs
the 3 steps mentioned above without any user interaction. Before starting the
experiment there are some configuration parameters that must be set (or left as
default). The reference experiment is implemented in Java, leveraging different
libraries that provide useful functionality for the experiment.

For the interaction with the wrapper to create the new slice and slivers,
the source code of the jFed Library is used. This library provides methods to
establish connections to authorities from the jFed Authority List, get credentials
signed by these authorities and allocate resources on the testbeds that they
represent.

For running the experiment in the slivers once they are ready to use, the JSch
from JCraft is used. This library provides a pure Java implementation of SSH2
and allows to connect to an ssh server, transfer files and run remote commands
among other features. The simple ping experiment is implemented as a remote
ping6 command from one sliver to the other. The IPv6 addresses of the slivers
(corresponding to the IPv6 Management Network overlay implemented by tinc)
are an outcome from the first allocation step of the reference experiment.

45

The report of the results basically consists of generating a new directory
with the same name as the slice and generate two text files inside. The file
sliverSetupDetails.txt contains the results of the allocation process, includ-
ing details about the duration of each step as well as details about urns and
addresses of the created slivers. The file pingDetails.txt contains the result of
remotely running the command “ping6 -c3 ipv6 addr of sliver2”” on the
sliver 1.

The results of the Reference Experiment were successful; the allocation pro-
cess finished correctly and the slivers created were demonstrated to work prop-
erly by running the simple ping experiment successfully.

46

7 Conclusions

This thesis addresses the federation of Community Networking testbeds. The
concept of federation and its implications in this scenario has been analysed.
Federation aims at providing interoperability among testbeds and it can address
different abstraction levels. Such interoperability requires homogeneity or stan-
dardization on the facilities, which has to be compatible with the leveraging of
their heterogeneous features.

In particular this thesis has focused on the federation of the Community-
Lab testbed with other testbeds and facilities. At this end and according to the
standardization mentioned above, a new software layer has been developed on
top of the testbed to provide an interface based on the SFA federation standard
for testbeds. Thus, the main contribution is the development of a C-Lab SFA
wrapper software to enable federation of Community-Lab with other testbeds
through SFA.

The remaining of this chapter is organized as follows: a more detailed list
of contributions is presented in section 7.1. A discussion about the results
achieved is presented in section 7.2. Finally, sections 7.3 and 7.4 address the
lessons learned and the future work respectively.

7.1 Contributions

This section summarizes the contributions made as part of this thesis.

C-Lab SFA wrapper

A SFA interface for Community-Lab testbed was developed. Such interface is
a wrapper based on the SFAWrap code, which basically provides a SFA AM
interface. The wrapper was deployed on a server for public access.

C-Lab SFA wrapper AM https://84.88.85.16:12346

Automated testing results

The project that serves as a context for the development of the SFA wrapper
for Community-Lab offers a website to show the results of automated tests run
on the deployed wrappers to validate its behaviour and functionality. Since the
C-Lab SFA wrapper was deployed on a server, it was included to the set of
wrappers for automated testing.

47

Results of automated testing
for the C-Lab SFA wrapper

https://flsmonitor.fed4fire.eu/

Results of Login automated
test for the C-Lab SFA
wrapper

http://monitor.ilabt.iminds.be/

scenarios.php?filter=fed4fire

Code of the wrapper

The code implemented throughout the thesis is publicly available in Github
repositories. The code implemented includes source code for the wrapper writ-
ten in Python and the reference experiment for the wrapper written in Java.

Source code of C-Lab SFA
wrapper

https://github.com/gnogueras/sfa

Source code of the Reference
Experiment

https://github.com/gnogueras/

refexp

Documentation in the CONFINE Wiki

Documentation about the usage and the architecture of the C-Lab SFA wrapper
was included to the Wiki of the testbed. A tutorial about using the jFed tool
with the wrapper was also written for the Wiki.

Usage of the wrapper https://wiki.confine-project.eu/

usage:sfawrapper

Architecture of the wrapper https://wiki.confine-project.eu/

usage:sfawrapper

Tutorial jFed and wrapper https://wiki.confine-project.eu/

tutorials:sfawrapper

Documentation in the Fed4FIRE website

A short explanation introducing the Community-Lab testbed was written for
the Fed4FIRE testbeds documentation website.

Explanation about C-Lab in
the Fed4FIRE website

http://doc.fed4fire.eu/

testbeds.html#community-lab-c-lab

48

7.2 Discussion

7.2.1 The wrapper

The SFA wrapper for Community-Lab works correctly, as the different tests of
the evaluation process have shown. The wrapper provides the user with another
interface (instead of the Dashboard) to interact with the testbed. The interface
exposes the set of operations defined by SFA. These operations allow the user to
use and manage the resources offered by the testbed. All the operations work
properly (as expected in SFA) except the Renew operation that has certain
limitations. Due to restrictions from the Community-Lab testbed itself, the
expiration date of slices and slivers can be set to a maximum of 30 days from
the current date. Therefore, attempts to set the expiration date beyond this
limit (that could be requested through the Renew operation of SFA) will not
have any effect.

The main limitation of the implemented wrapper is the reduction of the cus-
tomization capability when instantiating new slivers. In the Community-Lab
testbed there are many customizable aspects of the sliver such as network in-
terfaces, template, experiment data, overlay, etc. Most of these features are
not customizable through the SFA wrapper, which means that the user cannot
choose or specify them when interacting with the testbed through the wrapper.
This is because the wrapper only supports the standard GENI RSpec v3 to de-
scribe the resources, i.e. slivers, that the user is instantiating. The customizable
features of the slivers do not have any equivalent element or field in the stan-
dard RSpec, so they cannot be mapped to SFA domain. Currently, the wrapper
solves this problem using a default configuration for the sliver parameters that
are not specified in the RSpec. The design of a new RSpec for Community-
Lab (perhaps an extension of the standard GENI RSpec v3) would solve this
problem. Such task is left as future work.

Another limitation is related to the management of the slices through the
wrapper. The wrapper for Community-Lab provides a SFA AM that allows
to manage the resources of the testbed, i.e. nodes and slivers. Through the
AM of the wrapper a user can register, deploy, start, stop, update, renew and
delete slivers in the testbed. The AM, by definition, does not manage slices,
so the wrapper does not provide any SFA interface to manage slices. However
in the Community-Lab testbed, a new sliver can only be created in the context
of a slice. In other words, a user can create a new sliver only for an existing
slice. In a federation scenario such slice will belong to a federated authority
and will contain slivers of multiple federated testbeds. The creation of a sliver
through the SFA wrapper requires to present the credential of the slice issued
by the federated, trusted authority. The wrapper creates then an equivalent
(proxy) slice in the Community-Lab testbed, so the new sliver can be allocated
in Community-Lab within the context of such equivalent slice. The problem of
this behaviour is that the SFA user has no way of deleting the equivalent slice
through the SFA wrapper. Even after deleting all the slivers in the slice, the slice
will remain in the Community-Lab testbed until it expires and is automatically

49

deleted. The problem does not seem to be critical and it can be tolerated,
because slices do not use any resources.

7.2.2 SFAWrap

The development of a SFA wrapper based on the SFAWrap software package
was a suggestion from the project to provide a SFA interface for testbed feder-
ation. Other solutions (particular solutions not based on SFAWrap) could also
be considered, as some testbed partners of the project used them. In the case
of Community-Lab the usage of SFAWrap helped and facilitated the work a lot.
SFAWrap includes modules dealing with the generic functionality implied on
the wrapper, leaving only the testbed-specific modules to be implemented by
the developer. However, its usage also entailed some limitations and problems.

First limitation is the lack of documentation of the written code, which ob-
structed and delayed its understanding. The needed testbed-specific modules
and their functionality and requirements, as well as the functionality of the
generic, existing modules was hard to analyze and understand. Good documen-
tation about the existing code would have help a lot for such task.

Another limitation of SFAWrap is related to the way that generic modules
handle the credentials. The credential validation performed in any operation is
done by the generic part of the code. Once the credential is properly validated,
the generic modules invoke the testbed-specific modules that act on the testbed.
The problem is that no information about a credential or the user performing the
action is passed to the testbed-specific modules. This leads to an anonymous use
of the testbed by the wrapper. It would be desirable to receive the information
about which user invokes each operation on the testbed using the wrapper.
Such requirement was notified to the developers of SFAWrap that considered as
a positive feedback although the problem is not yet addressed.

Finally, although it is not supposed to be modified, some small modifications
were done in the generic part of the SFAWrap code to fulfill all the requirements
from the testbed federation project.

7.2.3 Testbed federation

Testbeds have become an important facility for the Future Internet Research and
Experimentation, since they are a good stage between simulation and production
covering all the areas of the future Internet. If federation is added to such
scenario, then the range of possibilities gets much wider. Testbed federation
allows to build a global aggregate of heterogeneous facilities, interacting and
leveraging each others’ capabilities. Thus, more complex experiments can be
done on a realistic infrastructure built from a combination of testbeds.

Federation provides many new possibilities and benefits, but also a lot of
challenges. Federation does no only mean to build a common interface to in-
teract with multiple facilities, but enable to work with them as if they were a
single facility. Therefore, this federation might be very complex when address-
ing aspects such as accounting, permissions, networking and mapping of specific

50

features. Standardization in terms of architectures, APIs and interfaces helps
and is needed, despite the difficulty that defining standards in a so potentially
heterogeneous scenario represents. The heterogeneity of the facilities is what
gives the richness in terms of offered possibilities and capabilities. The limita-
tions of the federation will be related to how well the federated system is able
to exploit such richness while achieving the desired level of homogeneity.

7.3 Lessons learned

The following list summarizes the conclusions and the lessons learned through-
out the development of the thesis:

• Federation is usually understood as federation of existing facilities. That
was the case of Community-Lab, an existing testbed in production state.
For Community-Lab, federation was taken into account from the begin-
ning and its architecture and model were designed to facilitate a potential
federation in the future. It is good to have potential future possibilities of
a facility from the initial design phase.

• Federation implies a trade-off between the level of homogeneity achieved
and the ability of leveraging the heterogeneous capabilities of the federated
facilities

• Reuse existing code might help a lot. Therefore, to document and com-
ment the code properly is a very important task; it will help other people
that want to reuse it.

• The evaluation and validation is a very important part of the code devel-
opment. Tests for all the use cases are needed, however your evaluation
will be “an evaluation”, as there are may hard to capture small details.

7.4 Future work

During the implementation, the evaluation and the analysis of its limitations,
some improvements on the Community-Lab SFA wrapper were identified. They
have been left as future work:

• New RSpec for C-Lab. In order for the wrapper to be able to exploit all
the capabilities that the Community-Lab testbed provides, a new RSpec
could be defined in which all the features and customizable aspects are
properly mapped. Such RSpec might be an extension of the standard
GENI RSpec v3, including new elements and fields to offer the user the
possibility of customizing their slivers.

• Include modifications on the generic code of SFAWrap to enable the pass
of credentials to the testbed-specific part of the code. This way it would
be possible to identify the user invoking each operation and avoid a com-
pletely anonyomous usage of the wrapper.

51

• Consider the possibility of using the SFA Registry interface (PlanetLab-
SliceRegistry instance) that the SFAWrap implements as a Slice Authority,
and add this authority to the federated authorities of the project. That
would mean to have a Community-Lab Slice Authority that can issue and
sign credentials for users and slices; these credentials can then be used in
the trusted, federated testbeds.

52

Appendix: User Manual

Compatible OS

The compatibility of the wrapper for C-Lab with different operating systems
is bound to the compatibility of their components, specially the SFA package.
Thus the supported OS for the wrapper are:

• Debian OS: Linux Ubuntu (from version 12.04)

• Linux Ubuntu based OS, for example, Linux Mint

• Fedora (from version 14)

A requirement for the OS is to have installed Python 2.7, since ORM library
and the wrapper itself are implemented using such version.

In this thesis the wrapper have been developed and deployed in a Linux
Ubuntu Desktop 13.04 (64 bits), for compatibility reasons with SFA at the time
the thesis started. Nowadays, newer versions of Ubuntu are correctly supported.

Installation of C-Lab SFAWrap

This section explains in detail the installation process of the federation tool
C-Lab SFAWrap in Linux Ubuntu Desktop 13.04. The installation process has
some dependencies (python-pip, git) that need to be installed to successfully
complete. Such dependencies can be installed using the following commands:

apt -get install postgresql python -all -dev

apt -get install python -pip git

Installation process of C-Lab SFAWrap:

1. Install the dependencies for C-Lab SFAWrap

(a) Install SFA packages as explained in [66]

echo "deb http ://build -debian.onelab.eu/sfa/stable -

sfa3 -raring -64/ ./" $>$ /etc/apt/sources.list.d/

sfa.list

apt -get update

apt -get install --force -yes sfa sfa -common

apt -get install --force -yes sfa -client sfa -dummy

(b) Install CONFINE-ORM library as explained in [68]

pip install confine -orm

2. Clone C-Lab SFAWrap repository from GitHub:

3. Patch SFAWrap with C-Lab code

53

(a) Copy clab/ directory to /usr/lib/python2.7/dist-packages/sfa/

(b) Copy clab importer.py to /usr/lib/python2.7/dist-packages/sfa/importer/

(c) Copy clab.py to /usr/lib/python2.7/dist-packages/sfa/generic/

4. Copy default configuration file default config.xml to /etc/sfa/

5. Modify the files: sfa-config-tty (and sfa-config, configs/site config)

Configuration of C-Lab SFAWrap

Once the installation process is finished, the SFAWrap tool needs to be config-
ured to work with C-Lab testbed. In this section the configuration process is
explained in detail.

Configuration process of SFAWrap to work with C-Lab:

1. Run the SFA configuration tool:

sfa -config -tty

2. Select the option for modifying the configuration:

u # for usual changes

3. Enter the following configuration parameters:

sfa_generic_flavour : [clab]

sfa_interface_hrn : [clab]

sfa_registry_root_auth : [clab]

sfa_registry_host : [84.88.85.16]

sfa_aggregate_host : [84.88.85.16]

sfa_sm_host : [84.88.85.16]

sfa_db_host : [84.88.85.16]

sfa_clab_user : [sfawrap]

sfa_clab_password : [********]

sfa_clab_group : [fed4fire]

sfa_clab_url : [https :// controller.community -lab.net/

api/]

sfa_clab_auto_slice_creation : [True]

sfa_clab_auto_node_creation : [False]

sfa_clab_aggregate_caching : [True]

sfa_clab_aggregate_cache_expiration_time : [1800]

sfa_clab_default_template : [Debian Squeeze]

sfa_clab_temp_dir_exp_data : [/home/gerard/clab_sfawrap

/experiment -data/]

4. Make the configuration persisting:

w # to write the changes

54

5. Restart the SFA wrapper to apply the configuration:

r # to restart

6. Exit:

q # to quit

Apart from the configuration of the wrapper there is another necessary step.
The host where the wrapper is installed needs to have access to the nodes and
slivers, for example ssh access. In particular, the wrapper needs to access to
the IPv6 overlay that serves as a management network [69] for the testbed and
connects nodes, slivers and servers. Such overlay is setup using the software
tinc [70] as a backend [71]. A new host can be configured to access this overlay
network and receive a unique IPv6 address. Thus the host can access any
node or sliver through this overlay network. The following lines summarize the
steps to setup the tinc client and the IPv6 overlay (complete information in the
Manual [72]):

7. Get an account in Community-Lab and access the Dashboard [27]

8. Add the new host in the “TINC HOSTS” section.

9. Get customized instructions via the “Help” button in the page of the new
added host. Follow the instructions to complete the process.

jFed with C-Lab SFAWrap

Installation of jFed

jFed is SFA client-application in Java that has been used as a reference applica-
tion to interact and test the wrapper throughout the thesis. jFed is developed
by iMinds and complete information about its installation can be found here [67].

NOTE: jFed was under continuous development during the realisation of the
thesis. The jFed release used for the thesis was r1257.

Configuration of jFed with C-Lab SFAWrap

jFed includes a default list of configured authorities to work with. The C-Lab
SFAWrap AM will be included to the default list in future releases.

However, a user can manually edit the local authority list and add new au-
thorities. jFed provides a scanner tool that makes this task very easy. The
scanner is given the URL of the AM that is willing to be added, and it auto-
matically detects its configuration.

URL of the C-Lab SFAWrap AM to scan: https://84.88.85.16:12346

55

Otherwise the configuration for the new authority can be set manually:

Name: Community-Lab Controller Wrapper

URN: urn:publicid:IDN+clab+authority+am
URN part: clab

Allowed Certificate: content of the file clab.gid

Allowed Certificate Aliases: clab

Authority Server URL’s:

Role version URL

AM 3 https://84.88.85.16:12346

PlanetLabSliceRegistry 1 https://84.88.85.16:12345

Probe GUI Tool

jFed Probe GUI tool is the client application to interact with the configured
authorities. A user needs to present a certificate issued by an authority to
Login. This certificate will be used to get the credentials from the corresponding
Slice Authority. As explained earlier in the document, the C-Lab SFAWrap AM
accepts credentials from the federated authority Virtual Wall. To get these
credentials a user needs and account and certificate from Emulab. Complete
information about the process here [73].

Example of usage

This example shows the process of how to create a new slice with a new sliver
in Community-Lab testbed using jFed Probe GUI tool and the C-Lab SFAWrap
AM. The example assumes that jFed is correctly configured to work with C-
Lab SFAWrap AM and that the user has a valid certificate from the Emulab
Authority. After starting jFed Probe GUI and Login with the certificate:

1. Get userCredential from the iMinds Virtual Wall 2 Authority.
Select the operation getCredential from the ProtoGeni SA interface, in
User amd Slice APIs menu. Call the operation on the authority iMinds
Virtual Wall 2 of the default authority list. The operation will return the
user credential; the credential can be seen in the Processed Geni Reply
Value tab of the reply.

2. Register a new slice in the iMinds Virtual Wall 2 authority.
Select the operation register from the ProtoGeni SA interface, in User
amd Slice APIs menu. Specify as user credential the credential from step
1 and set the slice name. Call the operation on the authority iMinds
Virtual Wall 2 of the default authority list. The operation will return the
slice credential of the new registered slice; the credential can be seen in
the Processed Geni Reply Value tab of the reply.

56

3. Allocate a new sliver in the C-Lab AM using the slice creden-
tial from iMinds Virtual Wall 2 Authority. Select the operation
allocate from the Aggregate Manager v3 interface, in Aggregate Man-
ager APIs menu. Select the slice credential from step 2 in the credential
list and set the slice URN properly. Specify a valid request RSpec to de-
scribe the desired slivers (examples of RSpecs can be found elsewhere []).
Call the operation on the authority of C-Lab SFAWrap AM. The opera-
tion will return a Geni Reply Value with information about the allocated
sliver (URN, state and expiration date), and also a manifest Rspec and
the slice URN. This information can be seen in the Geni Reply Value tab
of the reply.

4. Provision the allocated sliver in the C-Lab AM using the slice
credential from iMinds Virtual Wall 2 Authority. Select the oper-
ation provision from the Aggregate Manager v3 interface, in Aggregate
Manager APIs menu. Select the URN of the allocated sliver from the
list of URNs and the slice credential from step 2 in the credential list. In
the users section select the user and add a new SSH public key that will
be uploaded to the sliver for later SSH access. Call the operation on the
authority of C-Lab SFAWrap AM. The operation will return a Geni Reply
Value similar to the previous one, with updated information about the
provisioned sliver. This information can be seen in the Geni Reply Value
tab of the reply.

5. Start the provisioned sliver in the C-Lab AM using the slice cre-
dential from iMinds Virtual Wall 2 Authority. Select the operation
performOperationalAction from the Aggregate Manager v3 interface, in
Aggregate Manager APIs menu. Select the URN of the provisioned sliver
from the list of URNs and the slice credential from step 2 in the credential
list. In the action section specify geni start (it is the action by default).
Call the operation on the authority of C-Lab SFAWrap AM. The opera-
tion will return a Geni Reply Value with updated information about the
sliver, indicating the allocation and operaitonal status. This information
can be seen in the Geni Reply Value tab of the reply.

6. Wait for the sliver to be Ready. After the performOperationalAction
operation, the sliver will be eventually ready for being used. To check it
the sliver is ready the operation status can be called. Select the operation
status from the Aggregate Manager v3 interface, in Aggregate Manager
APIs menu. Select the URN of the created sliver from the list of URNs
and the slice credential from step 2 in the credential list. Call the opera-
tion on the authority of C-Lab SFAWrap AM. The operation will return
a Geni Reply Value with updated information about the sliver, indicating
the allocation and operational status. If the geni operational status

field has the value geni ready, the sliver is ready for being used. This
information can be seen in the Geni Reply Value tab of the reply.

57

7. Obtain Login information of the sliver for SSH access. Last step
once the sliver is created and ready for usage is to access the sliver via SSH.
The login information of the sliver, which is basically its IP address, can be
seen in the Manifest RSpec of the Provision Geni Reply Value. Moreover,
the operation describe also return this information. Select the operation
describe from the Aggregate Manager v3 interface, in Aggregate Manager
APIs menu. Select the URN of the created sliver from the list of URNs
and the slice credential from step 2 in the credential list. Make sure that
the compressed option is unchecked (otherwise the RSpec in the reply will
be compressed). Call the operation on the authority of C-Lab SFAWrap
AM. The operation will return a Geni Reply Value with information about
the sliver, including a Manifest RSpec in which the Login information for
the sliver (its IPv6 address) is specified. This information can be seen in
the Geni Reply Value tab of the reply.

8. SSH access to the created sliver. If the tinc client is correctly config-
ured in your host as explained on previous sections, the IPv6 address of
the sliver can be used to access it via ssh. In the ssh command, specify
the private key corresponding to the public key that was uploaded to the
sliver in the provision operation, step 4.

58

References

[1] B. Braem, R. Baig Viñas, A. L. Kaplan, A. Neumann, I. Vilata i Balaguer,
B. Tatum, M. Matson, C. Blondia, C. Barz, H. Rogge, F. Freitag,
L. Navarro, J. Bonicioli, S. Papathanasiou, and P. Escrich, “A case for
research with and on community networks,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 3, p. 68, Jul. 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2500098.2500108

[2] “guifi.net.” [Online]. Available: http://guifi.net/

[3] “AWMN .” [Online]. Available: https://www.awmn.net/content.php

[4] “FunkFeuer.” [Online]. Available: http://www.funkfeuer.at/

[5] A. Neumann, I. Vilata, X. León, P. Escrich, L. Navarro, and E. López,
“Community-lab: Architecture of a community networking testbed for the
future internet,” in International Workshop on Community Networks and
Bottom-up-Broadband (CNBuB 2012), IEEE Press. IEEE Press, 10/2012
2012.

[6] M. Serrano, S. Van der Meer, V. Holum, J. Murphy, and J. Strassner,
“Federation, a matter of autonomic management in the future internet,”
in Network Operations and Management Symposium (NOMS), 2010 IEEE,
April 2010, pp. 845–849.

[7] J. Putman, Architecting with rm-odp. Prentice Hall Professional, 2001.

[8] M. Bearman and K. Raymond, “Federating Traders: An ODP
Adventure.” Open Distributed Processing, 1991. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.9116&rep=rep1&type=pdf

[9] J.-P. Deschrevel, “The ansa model for trading and federation,” Architecture
Report APM, vol. 1005, 1993.

[10] J. Famaey and F. De Turck, “Federated management of the future
internet: status and challenges,” International Journal of Network
Management, vol. 22, no. 6, pp. 508–528, 2012. [Online]. Available:
http://dx.doi.org/10.1002/nem.1813

[11] S. Wahle, B. Harjoc, K. Campowsky, T. Magedanz, and A. Gavras,
“Pan-European testbed and experimental facility federation – architecture
refinement and implementation,” International Journal of Communication
Networks and Distributed Systems, vol. 5, no. 1/2, p. 67, Jul. 2010.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1831352.1831356

[12] T. Kurze, M. Klems, and D. Bermbach, “Cloud federa-
tion,” CLOUD COMPUTING . . . , 2011. [Online]. Available:
http://www.thinkmind.org/index.php?view=article&articleid=cloud computing 2011 2 20 20114

59

[13] W. Vandenberghe, “Architecture for the heterogeneous federation of future
internet experimentation facilities,” Future Network and . . . , 2013. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6633558

[14] “Community Lab.” [Online]. Available: http://www.community-lab.net/

[15] “CONFINE project.” [Online]. Available: http://confine-project.eu/

[16] “CONFINE Wiki. Architecture.” [Online]. Available: http://wiki.confine-
project.eu/arch:overall

[17] Upc, universitat politècnica de catalunya. [Online]. Available:
http://www.upc.edu

[18] Kth, royal institute of technology. [Online]. Available: http://www.kth.se

[19] University of rome tor vergata. [Online]. Available: http://web.uniroma2.it

[20] Pangea. [Online]. Available: http://www.pangea.org

[21] Sics, swedish institute of computer science. [Online]. Available:
http://www.sics.se

[22] iminds. [Online]. Available: http://www.iminds.be

[23] “CONFINE Wiki. Testbed Node Architecture.” [Online]. Available:
http://wiki.confine-project.eu/arch:node

[24] “CONFINE Wiki. REST-API.” [Online]. Available: http://wiki.confine-
project.eu/arch:rest-api

[25] “Confine-orm documentation.” [Online]. Available: http://confine-
orm.readthedocs.org/en/latest/

[26] “CONFINE Wiki. VCT.” [Online]. Available: http://wiki.confine-
project.eu/soft:node-system-bare-bones#vct

[27] “Confine community-lab testbed management.” [Online]. Available:
https://controller.community-lab.net

[28] “Sandbox testbed management.” [Online]. Available:
https://sandbox.confine-project.eu

[29] “Sandbox (software development) from wikipedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Sandbox (software development)

[30] “Fed4FIRE project.” [Online]. Available: http://www.fed4fire.eu/

[31] L. Peterson, S. Sevinc, J. Lepreau, R. Ricci, J. Wroclawski,
T. Faber, S. Schwab, and S. Baker, “Slice-Based Facility Ar-
chitecture,” PlanetLab, Tech. Rep., 2009. [Online]. Available:
https://github.com/planetlab/sfa/blob/master/docs/sfa.pdf

60

[32] “CONFINE Wiki. SFA.” [Online]. Available: http://wiki.confine-
project.eu/sfa:start

[33] “CRUD Operations, Wikipedia .” [Online]. Available:
http://en.wikipedia.org/wiki/Create, read, update and delete

[34] “SFA Wrap .” [Online]. Available: http://sfawrap.info/

[35] “Protogeni RSpec.” [Online]. Available:
http://www.protogeni.net/ProtoGeni/wiki/RSpec

[36] “GENI RSpec v2.” [Online]. Available:
http://www.protogeni.net/ProtoGeni/wiki/RSpecSchema2

[37] “GENI RSpec v3.” [Online]. Available:
http://www.geni.net/resources/rspec/3/

[38] “GENI SFA credential version 2.” [Online]. Available:
http://groups.geni.net/geni/wiki/GeniApiCredentials

[39] “GENI SFA credential version 3.” [Online]. Available:
http://groups.geni.net/geni/wiki/GeniApiCredentials

[40] “GENI SFA ABAC credential.” [Online]. Available:
http://groups.geni.net/geni/wiki/TIEDABACCredential

[41] “CorteXlab.” [Online]. Available: http://www.cortexlab.fr/

[42] “FEDERICA.” [Online]. Available: http://www.fp7-federica.eu/

[43] “IoTLab.” [Online]. Available: http://www.iotlab.eu/about.php

[44] “NITOS Wireless Testbed.” [Online]. Available:
http://nitlab.inf.uth.gr/NITlab/index.php/testbed

[45] “OpenStack.” [Online]. Available: https://www.openstack.org/

[46] “PlanetLab Project.” [Online]. Available: https://www.planet-lab.org/

[47] “Microkernel from Wikipedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Microkernel

[48] R. Bush and D. Meyer, “Rfc 3439: Some internet architectural guidelines
and philosophy,” 2003.

[49] P. Escrich and R. Baig, “Wibed, a platform for commodity wire-
less testbeds,” Wireless Days (WD), . . . , 2013. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6686492

[50] “CONFINE Wiki. Wibed.” [Online]. Available: https://wiki.confine-
project.eu/wibed:start, urldate = 10/05/14

61

[51] L. Navarro, A. Kaplan, J. Bonicioli, E. López, and I. Vilata, “Deliverable
D2.6. Federation mechanisms for community networks,” 2013. [Online].
Available: http://confine-project.eu/files/2013/09/D2.6.pdf

[52] “PlanetLab from Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/PlanetLab

[53] “PlanetLab Central.” [Online]. Available: https://www.planet-lab.org/

[54] “PlanetLab Europe.” [Online]. Available: http://www.planet-lab.eu/

[55] “OneLab Project.” [Online]. Available: http://www.onelab.eu/

[56] L. Peterson, S. Sevinc, S. Baker, T. Mack, R. Moran, and
F. Ahmed, “PlanetLab Implementation of the Slice-Based Facility
Architecture,” PlanetLab, Tech. Rep., 2009. [Online]. Available:
https://github.com/planetlab/sfa/blob/master/docs/sfa-impl.pdf

[57] “CONFINE Wiki. Federation.” [Online]. Available: http://wiki.confine-
project.eu/federation:start

[58] “GENI Aggregate Manager API Version 3.” [Online]. Available:
http://groups.geni.net/geni/wiki/GAPI AM API V3

[59] “GENI Aggregate Manager API Version 1.” [Online]. Available:
http://groups.geni.net/geni/wiki/GAPI AM API V1

[60] “GENI Aggregate Manager API Version 2.” [Online]. Available:
http://groups.geni.net/geni/wiki/GAPI AM API V2

[61] “GENI AM API v3 Sliver Allocation States.” [Online]. Available:
http://groups.geni.net/geni/wiki/GAPI AM API V3/CommonConcepts#SliverAllocationStates

[62] “GENI AM API v3 Sliver Operational States.” [Online]. Available:
http://groups.geni.net/geni/wiki/GAPI AM API V3/CommonConcepts#SliverOperationalStates

[63] “GENI AM API v3 Sliver Operational Actions.” [Online]. Available:
http://groups.geni.net/geni/wiki/GAPI AM API V3/CommonConcepts#SliverOperationalActions

[64] “Confine wiki. slice and sliver states.” [Online]. Available:
http://wiki.confine-project.eu/arch:slice-sliver-states

[65] “CONFINE Wiki. Addressing.” [Online]. Available: http://wiki.confine-
project.eu/arch:addressing

[66] “SFATutorial: Installation process.” [Online]. Available: http://svn.planet-
lab.org/wiki/SFATutorialInstall

[67] “jFed iMinds.” [Online]. Available: http://jfed.iminds.be/

[68] “CONFINE-ORM Installation.” [Online]. Available: http://confine-
orm.readthedocs.org/en/latest/#installation

62

[69] “The management network, Confine wiki.” [Online]. Available:
http://wiki.confine-project.eu/arch:management-network

[70] “tinc wiki.” [Online]. Available: http://www.tinc-vpn.org/

[71] “IPv6 everywhere with tinc — Ivan. Loves. Gazpacho.” [Online]. Available:
https://elvil.net/drupal/en/post/ipv6-everywhere-with-tinc

[72] “CONFINE Wiki. Tinc Management Network overlay.” [Online]. Available:
http://wiki.confine-project.eu/soft:tinc, urldate = 26/04/14

[73] “Fed4FIRE. Get An Account and Certificate.” [Online]. Available:
http://doc.fed4fire.eu/getanaccount.html

63

