
 1

Abstract—The Smart Party is a ubiquitous computing

application based on the Panoply middleware. The Smart
Party allows attendees at a party to transparently participate in
the selection of music played at the party. The methods used to
select music, based on the preferences of the partygoers, has a
substantial impact on how satisfied these partygoers will be.
This paper examines different algorithms for selecting music in
a Smart Party, and discusses lessons from the research that are
applicable to other socially-based ubicomp applications.

Index Terms—ubiquitous computing, social computing, user
satisfaction.

I. INTRODUCTION
The Internet is revolutionizing the social interactions of its

users, and the emerging ubiquitous computing environment
is only a step behind. In the near future, ubiquitous
computing will offer new and enhanced ways for people to
meet, work together, and cooperate in a wide variety of
activities. Such ubicomp applications will succeed by offer
perceived value to their users, both by enabling new
activities and applications, but also through improving our
existing activities. For these latter applications, we must
find ways to quantify their benefits and evaluate various
techniques designed to increase application benefits.

Many social ubicomp applications are designed to help
people interact in groups. Some groups, such as a school
class or a club, are predefined, while others can be formed
opportunistically, such as users in an area of poor Internet
connectivity who pool their computing and data resources
for the common good. By using common characteristics and
goals to organize groups of users, ubicomp applications can
improve both the individual and overall user experience.

This paper examines one specific illustrative example of
using ubicomp technology to form users with common
interests into groups, resulting in an improved social
experience. The application is called the Smart Party [1].
The Smart Party application gathers musical preferences for
guests attending a party in a user’s house. Based on their
preferences and available media, it chooses a music play list,
adjusting to changing membership as guests come and go.
The preferences and the actual music media are gathered

Manuscript received June 30, 2008. This work was supported in part by

the U.S. National Science Foundation under Grant CNS 0427748.
Kevin Eustice, Jason Stoops, and Peter Reiher are with the Department

of Computer Science, UCLA, Los Angeles, CA 90095 USA (310-825-8332;
fax: 310-825-2273; e-mail: reiher@ cs.ucla.edu).

Amir Mohsen Jourabchi was also with UCLA. He is now with Parasoft
(e-mail: amirmohsenj@yahoo.com).

from the guests’ portable devices, giving a broader selection
of possible music to play than that belonging to the host.

The goal of the Smart Party application is to provide a
cooperative, satisfying musical experience at a party. By
varying the algorithm used to select which song to play in
which room, one varies both individuals’ average
satisfaction with the party and the distribution of fairness
among individuals. Similarly, examining different user
strategies for deciding whether to stay in a particular room or
move to another room can affect satisfaction and fairness. In
this paper, we examine the effects on satisfaction and fair
distribution of satisfaction among partygoers based on our
exploration of these alternatives in simulation.

The paper is organized as follows. Section 2 describes the
Smart Party application in more detail. Section 3 describes
our simulation approach. Section 4 presents simulation
results for various single room song selection algorithms.
Section 5 describes the effects of making multiple rooms
available to the guests of a Smart Party. Section 6 discusses
related work. Section 7 describes future directions and
discusses how we can generalize the results of these
experiments to more general ubicomp social applications.

II. THE SMART PARTY
The Smart Party was built using the Panoply ubiquitous

computing middleware that we have developed [2]. This
framework provides strong support for group formation and
cooperation in ubiquitous environments.

In the Smart Party, a group of people attend a gathering
hosted at someone’s home. Each person carries a small
mobile device that stores its owner’s music preferences and
song collection. The party environment consists of a series of
rooms, each equipped with speakers. The home is covered
by one or more wireless access points.

As each guest arrives, his mobile device securely and
automatically associates with the correct network to connect
it to the Smart Party infrastructure. As party attendees move
within the party environment, each room programs an audio
playlist based on the communal music preferences of the
current room occupants, and the content they have brought to
the party. Guests automatically and dynamically collaborate
with the host network, which manages their collective
preferences and steers the music choices. Decisions are
based on information already in the users’ devices, so no
user intervention or input is required. Figure 1 shows an
example of a fully formed and configured Smart Party.

Improving User Satisfaction in a Ubiquitous
Computing Application

Kevin Eustice, Amir Mohsen Jourabchi, Jason Stoops, and Peter Reiher, Member, IEEE

 2

Figure 1. A fully configured Smart Party

Each time a room needs to select a song to play, it consults
the mobile devices belonging to the users in that room.
Based on their musical preferences (which are derived from
information on their devices about which songs they listen to
frequently), the Smart Party gathers information about
candidate songs to play and uses some algorithm to choose a
song. The simplest algorithm is round robin, which allows
users in a room to take turns choosing a song. Each user gets
to hear the song he most wants to hear, but perhaps the
selections will not be pleasing to any of the other users,
which can result in poor overall satisfaction.

A more sophisticated algorithm is to have users nominate
songs, then vote on them proportionally to their liking of
each nominated song. As we will see in section IV, this
algorithm produces more satisfaction and greater fairness.
(An important point for this and other algorithms is that
measures are required to ensure that the same song is not
played over and over.) A further enhancement is to analyze
the preferences of users in the room and automatically form
them into groups that share musical tastes. The group
decides on the song its members would, collectively, like
best, and the group pools its votes for that song. Group
membership can change dynamically as partygoers come and
go. This improves satisfaction and fairness over simple
voting, as it tends to lead to popular compromises.

III. THE SMART PARTY SIMULATION
We have built a working prototype of the Smart Party in

our lab, but doing large scale testing on this prototype is
impractical. We have instead performed testing of song
selection algorithms in a simulation framework. This
simulation is specific for this purpose, so it does not replicate
all elements of the application or Panoply. For example, it
does not simulate the localization mechanisms used to
determine where users are, nor the protocols used to transfer
media data from a user device to the Smart Party’s speakers,
though these and all other elements of the Smart Party are
fully implemented in the real application. For more details
on the actual application, see [1].

The simulation uses real user preference data gathered
from LastFM, which is a web site that allows users to upload
their media preferences from a variety of sources. This web
site records which tracks the user has heard, and play counts
for these tracks. For each simulated Smart Party, a random

subset of users and media is selected. Many different random
selections are simulated. The basic simulation runs the
selection algorithm 30 times for each simulated party.
Assuming 4 minute songs, this would yield a two hour party.
For each selection, the simulation calculates the satisfaction
for each user. Simulations were run for many different sizes
of parties, from a small party of 4 users to a large party of
80. To minimize the random effects based on selecting some
particular set of users and songs, we performed multiple runs
with different sets of users and songs for each scenario
investigated. We here report median results from the several
runs of each scenario.

Song preference is measured on a scale of zero to five. The
satisfaction gained from a song with a k-rating is 2k (except
songs with a 0 rating, which yield a satisfaction of 0). To
determine a song’s rating from the LastFM data, songs were
separated into 5 buckets by play count. The distribution of
songs into buckets ended up following an exponential curve,
with the number of songs in the top bucket (the songs most
often played) being smallest, and the bottom two buckets
(songs that were played rarely) containing the majority of the
songs. If a song is not in a user’s profile, it is considered to
have a 0 rating, and no satisfaction is gained by hearing the
song at the party. In reality, a user is sometimes pleased by
a song he has never heard before, but we have no realistic
model of this effect, so we conservatively assume that
unrated songs will not be liked.

In the party simulation, overall satisfaction is the sum of
the satisfaction gained during the party by all users.

The fairness of the distribution of satisfaction is quantified
by calculating the Gini Coefficient [3]. The Gini Coefficient
is widely used as a measurement of the distribution of wealth
in a population. It is a ratio between 0 and 1. A Gini
Coefficient of 0 expresses perfectly equal distribution of
available wealth among a population; a value of 1 expresses
perfectly unequal distribution, where all wealth is held by
one member of a population and others have no wealth.

Instantaneous fairness is a measure of the equality of the
distribution of satisfaction gained by guests in a single
round. Overall fairness is a measure of the equality in
distribution of overall satisfaction among guests.

IV. SELECTING SONGS FOR A SINGLE ROOM
We examined several algorithms by which users in a

single room can participate in choosing what music to play.
In the Round Robin algorithm, each user in turn is allowed to
pick his favorite song. In the Non-cooperative Voting
algorithm, users nominate songs and vote for the various
songs nominated, based on relative personal preference. In
Sphere-based Voting, users with common musical tastes
form a Panoply group (called a sphere of influence) that
effectively allows them to pool their influence to get more
votes for something they will all like.

While Round Robin sounds reasonable, even a little
thought will reveal some potential problems. In essence,
Round Robin allows each partygoer to periodically choose
the song to be played, which presumably would be that
partygoer’s personal favorite. However, it might well be that
all the other partygoers do not care for that song at all. One

 3

user gets excellent satisfaction in each round, but the others
might not get any. Thinking aesthetically, the result might
well be a party in which the music played swings wildly
from one genre or artist to another completely different one.
An algorithm that seeks to balance the preferences of the
many will probably do better.

For the two voting algorithms described, however, it is
less clear which would make users happier. Is it better for
each user to propose a song, then have all users vote on
them? Or is it better for users with similar tastes propose
songs their group will like, and then vote?

First, we must describe these voting algorithms in a little
more detail. In the Non-cooperative Voting algorithm, each
guest suggests his or her favorite song. That song is added
to the list of the candidates that is submitted to all the guests
for voting. Guests vote for a song by consulting their
preference list. If that song or its artist exists in their
preference list, they submit their rating for that candidate as
their vote. Otherwise, their rating will be zero, which
translates to a vote of zero for that song. Once all the votes
are collected, the Smart Party sorts the candidates by their
scores, from highest to lowest. It drops the bottom half of the
list and re-submits the list of the candidates to the guests for
another round of voting. This procedure is repeated until one
song wins and is played.

In Sphere-based Voting, people with common interests
form groups and submit their votes through the group leader
called the “vote coordinator.” The vote coordinator is the
guest who has formed the group. Each vote coordinator
chooses a set of preferred artists, which are the “goals” for
that group. When a guest enters a room it looks for existing
vote coordinators and checks to see if it is attracted to any of
those groups by comparing the artists in his/her preference
list against those in the group’s goal set. If the attraction
value is higher than a certain threshold, that guest joins the
group. If not, the guest forms his own group, possibly
attracting other guests to join him. When a vote is called for,
group members can only suggest songs whose artists match
the group’s goals. Otherwise, the procedure is similar to
Non-cooperative Voting. The groups are not static. Guests
can leave their group and join others if the current set of
goals for another group better matches their own tastes.

Figure 2 shows the satisfaction results for the two voting
algorithms. Each bar shows the median of 150 different
simulations, and the error bars show the first and third
quartiles of the data.

For small Smart Parties of less than 8 users, round-robin
wins, as users are able to, in turn, select their favorite songs.
Because we use a 2k model for calculating satisfaction,
perfect satisfaction of one user (k=5), with no satisfaction for
other users, gives a total satisfaction of 32. For four users,
choosing a song that gives a 3 satisfaction for all of them
yields the same level of satisfaction. So unless all users at
the small party have some fairly strong tastes in common,
the satisfaction metric we use would tend to favor satisfying
someone perfectly, rather than a few users imperfectly.
Thus, as expected, both Non-cooperative Voting and Sphere-
based Voting perform worse than Round Robin.
Examination of some cases shows that both result in the
selection of lower-ranked songs shared in common. As more

users participate, Non-cooperative Voting and Sphere-based
Voting result in higher satisfaction because the presence of
an increasing number of ”popular” songs causes in an
upswing in satisfaction, and a larger number of somewhat
satisfied users ultimately overwhelms the benefit of a single
very satisfied user.

Figure 2. Overall Smart Party satisfaction for various song selection
algorithms

Consider fairness for the same algorithms. Error!
Reference source not found. shows the median overall
fairness for the same parties as in Figure 2. Fairness here is
averaged over an entire party, with the median selected from
the 150 different parties tested for each size and algorithm.
Fairness, as discussed in Section III, is based on the Gini
coefficient, so lower numbers indicate greater fairness than
higher numbers. As with satisfaction, the error bars indicate
the first and third quartiles.

Figure 3. Median overall party fairness

Note that Round Robin is extremely fair for small parties,
on an overall party basis. In essence, each guest gets his
turn choosing a song, and thus has a fair share of the overall
selection of the music at the party. Since only 30 songs are
played at the party, when there are more than 30 guests,
some guests never get to choose a song, and, unless they
fortuitously like music chosen by others, they end up
receiving much less satisfaction than those who get to
choose a song. As a result, fairness for Round Robin
selection drops substantially as the parties get larger.
However, overall party fairness is no better for the other
algorithms, even at large parties. If one is perpetually in the
losing voting block, the party will not seem particularly fair.

 4

Fairness can be computed on a whole party basis, as in
Figure 3, or on a round-by-round basis. The latter is perhaps
more meaningful, since if many partygoers perceive a few
rounds of a party as being unfair to their interests, they might
well leave. Figure 4 shows median instantaneous (round-by-
round) fairness for the same parties as discussed above.

Figure 4. Instantaneous fairness

Round Robin’s turn-taking in 2 person parties tends to
cause one person to be happy and the other unhappy in each
round, resulting in a fairness of .5 for a typical round. As the
party gets bigger, one waits more rounds for one’s turn,
stewing in dissatisfaction all the while. This is reflected by
the round-based fairness getting worse and worse as party
size grows. While we see some of this effect for the voting
algorithms, for sphere-based voting, round-based fairness
more or less stabilizes at .5. Those in the winning voting
group are generally happy in each round, and those out of it
are generally unhappy. Of course, even within the winning
group, some members like the chosen song more than others,
so there is a further satisfaction skew that worsens the
fairness. Still, these round-based fairness results suggest that
a group-based voting scheme will be less likely to drive
away partygoers in the midst of a party.

V. CONSIDERING USER MOVEMENT
Another choice an unsatisfied user has at a Smart Party is

to move to another room where the music might be more to
his liking. To evaluate the effects that guest movement has
on the Smart Party experience, we investigated methods of
improving user satisfaction based on user mobility.

We developed several mobility models. These models are,
at their core, sets of rules that specify when and to which
room a guest should move. These rules only incorporate
information that the guest has available to them in the party;
they do not require any oracular orchestration or knowledge.

In all experiments, guests are initially distributed evenly
between available rooms. The actual Smart Party prototype
does not synchronize the playing of songs in different rooms,
so rooms may call for votes and play songs asynchronously,
and guests may move between rooms at any time. However,
there is no song length information associated with the
Last.FM data we use for our simulation, and the simulation
is simplified by treating all votes for a song round as
simultaneous and synchronous. As a result, all songs are
assumed to be the same length, and the party operates in

phases, with guests moving, voting and listening in lockstep.
The following mobility models were tested in the Smart

Party simulation framework:
• No movement – Guests never move for the duration of

the party.
• Random movement – Guests pick a room at random

after each song.
• Threshold-based random movement – Guests track

several previously heard songs, and if the average
satisfaction gained from these songs drops below
some threshold, the guest chooses a room at random.
Otherwise, the guest does not move.

• Threshold-based to room with highest satisfaction –
If unsatisfied with the current room, the guest looks
at the last several songs played in all rooms and
moves to the room with the highest average
satisfaction over this historical data.

The mobility models are compared with populations of 18,
30, and 60 guests in 3, 5, and 10 rooms respectively. In each
scenario, there were thus an average of six guests per room,
and the party starts with exactly six guests in each room,
placed randomly. For all except the No-movement case, no
restrictions were subsequently placed on the number of
guests in a room. In all cases, songs were selected using the
Non-cooperative Voting algorithm.

 Figure 5 shows that offering music selections in multiple
rooms results in much more satisfying parties. The No-
movement case is roughly comparable to the satisfaction
seen in Figure 2 for the Non-cooperative Voting algorithm,
with slight differences because, effectively, the No-
movement case has several independent six-guest rooms,
while the Figure 2 results were plotted for 4 and 8 guests.

Figure 5. Median satisfaction for different movement algorithms

Once we allow even the most basic of movement
algorithms, satisfaction increases dramatically. In the
Random-movement case, each user randomly chooses a new
room to move to at the end of each song. There is no
attempt to choose a “good” room or move in concert with
other users sharing similar tastes. Yet even this non-
intelligent movement algorithm results in a 20% or better
improvement in satisfaction.

Why? Any guest movement “stirs up” the state of the
party, making previously unselectable songs more likely to
be chosen. For example, consider three users in three
different rooms who have the same favorite song, but no

 5

other users have heard of this song. These users may not be
able to get the song played in their separate rooms. However,
when users can move between rooms, perhaps at some point
these three users find themselves in the same room.
Suddenly, these three guests now have enough votes to get
the song played, thus increasing their overall satisfaction.

The Threshold-based Random and pure Random
movement algorithms produce nearly identical results. One
might have expected that having satisfied users stay where
they are and only unsatisfied users switching to a new room
would be much better. However, the “stirring up” effect is
more valuable. One characteristic of the Smart Party is that
it is biased against replaying songs during a single party,
which means that there is a decreasing chance that a user
who is satisfied in one location will remain equally satisfied
there as time goes by. The songs he likes that he can get
played in that room, with the cooperation of others in the
room, are gradually exhausted. He is eventually more likely
to find opportunities to play the songs he likes in a randomly
chosen room than he is in the room he currently occupies.

 The best algorithm is to move to a room that has been
playing the music you like best, when you are not satisfied
with the music you are currently hearing. This algorithm can
provide up to 41% improvement in median satisfaction over
the No-movement case.

This result is not surprising. That other room contains
guests who probably share your musical tastes, and, since the
guests there who are winning the elections are likely happy
with the chosen music, they will stay there. (The use of a
threshold to prevent movement when the differences are only
trivial amplifies this effect.) Therefore, you are likely to
hear music in the future similar to the music you have heard
in the past. Without actually forming groups, this algorithm
achieves a similar effect to that shown in Figure 1 without
ever trying to identify genres or groups of users with similar
preferences. Just as in that figure, the party moves to a state
where one room plays R&B, another plays hip-hop, a third
plays oldies, and so on. As Figure 5 also shows, this effect
improves as you have more rooms available, since now there
is an opportunity for more specialized groups to form based
on tastes that are narrow, but perhaps deeply felt.

This model performs best with a shorter history length
(two songs). This is because the amount of movement
occurring in the party causes the history data to become stale
quickly. Since roughly four in ten guests change rooms every
round under the satisfaction-based model, a song that played
in a room five rounds ago is likely a very poor indicator of
what song will be played next in that room.

We also tested two models where movement was based on
the number of guests in a room, on the theory that moving to
a lightly populated room would give a user a higher chance
of having his preferred songs selected. These models did not
perform even as well as random movement, though they
were still significantly better than not moving at all. By
examining the movements that would occur in a threshold-
based model that moved to the least crowded room every
time, we see why this type of selection creates a problem. At

the beginning of the party, all guests are evenly distributed
between rooms. Therefore, when a guest’s satisfaction drops
below the threshold, the guest leaves the room, choosing a
room at random since there is a tie between all rooms in the
party for the least-populated room. The next guest to have
their satisfaction drop below the threshold and desire a room
change is then forced into the room that the first guest just
left, since it is now the least crowded room. Therefore, only
half of the guests moving in the party get a room choice, and
the other half are forced into the room just abandoned.

Fairness is significantly improved by user mobility, as one
might guess. Users who are perpetually unhappy when
forced to stay in one room can, instead, go somewhere else.
Figure 6 plots the median overall party fairness values for the
18 guest, three room case only, since the other cases
produced similar results. All movement algorithms produce
much better fairness than no movement, with the algorithm
calling for users to move to the most congenial room doing
best. . This is likely to mirror real human behavior. If one
hates the music one is hearing in one room, and one knows
different music is playing in another room, what could be
more natural than trying that other room?

Figure 6. Median overall fairness for movement algorithms

VI. RELATED WORK
Other projects have investigated issues of fairness and

user satisfaction for group-based music experiences. The
most related work is MusicFX [4] and FlyTrap [6], which
both explore adaptive social music experiences situated in
physical environments. Both projects focus on equitable
music selection within a shared environment. MusicFX and
FlyTrap both use RFID-based detection of user badges to
determine user presence, and then activate user agents on a
centralized server that represent the users and vote on their
behalf for tracks (FlyTrap) or music channels (MusicFX).
Follow-on work to MusicFX [7] investigates the use of an
economics-based model to improve the fairness of overall
channel selection. Extra vote weight is given to individuals
who are forced to listen to non-preferred music. The use of
the Gini coefficient by Prasad and McCarthy [7] directly
inspired our use of the same technique. The economic
scheme proposed by [7] could be adapted to our Smart Party
to improve overall fairness.

Our Smart Party differs in several ways from these other
projects. We support a Smart Party consisting of multiple

 6

environments with dynamic membership. Members may
bring in new music via their mobile devices, and members
coordinate their voting based on dynamically-built
preference groups.

Another related project is Poolcasting, [8], a web-based
social radio system. In Poolcasting, users attach to the
system, share music, and create radio channels. The
Poolcasting system schedules music for the channels using a
metric that incorporates satisfaction, fairness, and variety
measures to select the next song for each channel. To ensure
musical continuity, Poolcasting leverages a large pool of
user-generated playlists to identify related songs. This is an
interesting feature and one that we are considering
incorporating in the future.

Additionally, a group at the International School of New
Media at the University of Lübeck in Germany has
developed what they refer to as “Campus Party,” or the
“Smart Party” [9]. The Campus Party also uses RFID-based
user detection, as well as a centralized database of user
preferences and static music repository. The Campus Party
uses a simple preference evaluation heuristic to select the
current “best” song based on current occupancy of a room.
The details of their selection algorithm are not described in
their paper. Again, we differ from this work in terms of our
support for multiple connected environments, coordinated
voting within preference groups, dynamic membership, etc.

VII. FUTURE WORK AND CONCLUSIONS
The Smart Party is one example of using ubiquitous

computing techniques to augment a social experience. Many
more such applications will be developed. The lessons we
can learn about general techniques to improve how these
applications do their jobs are more important than the
particular improvements seen in the Smart Party itself, as are
lessons related to the limitations of the technology.

This investigation into improving user satisfaction and
fairness in the Smart Party offers several general lessons.
First, using ubiquitous technology to help people cooperate is
a good idea. Song selection mechanisms that either explicitly
or implicitly led to groupings of users with shared tastes not
only improved overall satisfaction, but also fairness. Since
ubicomp technology can augment existing human capabilities
to find congenial companions, by proper leveraging of this
technology we can help people join in groups that they might
not otherwise realize are possible or worthwhile.

Second, choices are good. Algorithms that do not include
some capability for human choice to operate tend not to
perform as well. This is most obvious in the room movement
algorithms, where a postulated human choice to move to
another room greatly improves satisfaction and fairness. As
mentioned earlier, the key point is giving users different
options, in our case rooms that play different kinds of music.
The group algorithms also point in this direction. While the
current algorithms are based purely on computer-available
information, algorithms that incorporate human input in
group formation are likely to do even better.

Third, even fairly simple algorithms can offer substantial
benefit. Random movement works quite well in a multiroom
case, and the only slightly more complex algorithm based on

observing recent song selections is even better. While the
more complex group formation algorithm is better than
simple voting, even a basic voting algorithm does well for the
Smart Party. Other ubiquitous computing social applications
are likely to see similar effects, suggesting that it is always a
good idea to investigate the simple ways to improve the
application’s performance before worrying about complex
algorithms.

But this work does have its limits, as well. Our
measurements of satisfaction and fairness are all simulated,
based on past human behavior. People are, however, much
more complicated than that, and we would thus expect real
Smart Parties to display much different human behavior than
we see in our simulations. Tastes vary based on
circumstances, and there are other reasons to stay in or leave
a room than whether you like the music. Methods of more
accurately judging how well human users are served by their
ubicomp applications are clearly necessary. More generally,
it is vital to remember that the Smart Party application is a
servant to a real human party, not its master. Ubicomp
applications should be designed to serve people, not to force
them to behave as the application designers envisioned.

The Smart Party could be enhanced in many ways. As
one obvious example, unsatisfied users have at least two
options to increase satisfaction, based on these results: join a
group to increase your voting power, or move to another
room where things might be better. Which should users do,
or, as suggested above, which are users actually likely to do
in a real party? To what extent should the application expect
to get more explicit feedback and guidance from its users,
and how can such input be easily gathered and effectively
used? Is a party whose music is jointly selected by its
attendees actually a better experience for humans than a party
where a host or a DJ selects all the music for them? These
questions, too, can be generalized to apply to a broad range
of social-based ubiquitous computing applications.

REFERENCES
[1] K. Eustice, V. Ramakrishna, N. Nguyen, and P. Reiher, “The Smart

Party: A Personalized Location-aware Multimedia Experience,” in
Proc. Consumer Communications and Networking Conference
(CCNC),Las Vegas, 2008.

[2] K. Eustice, “Panoply: Active Middleware for Managing Ubiquitous
Computing Interactions,” Ph.D. dissertation, Dept. Comp. Sci.,
UCLA, Los Angeles, CA, 2008.

[3] C. Gini, "Variabilitá e mutabilita" 1912 reprinted in Memorie di
metodologica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria
Eredi Virgilio Veschi 1955.

[4] J. McCarthy and T. Anagost, “MusicFX: An Arbiter of Group
Preferences for Computer Supported Collaborative Workouts,” in
Proc. of the ACM 1998 Conference on Computer Supported
Cooperative Work, 1998.

[5] A. Crossen, J. Budzik, and K. Hammond, “Flytrap: Intelligent Group
[6] Music Recommendation,” in Proc. of the 7th Intl. Conf. on Intelligent

user interfaces., San Francisco, 2002.
[7] M. Prasad and J. McCarthy, ”A Multi-Agent System for Meting Out

Influence in an Intelligent Environment,” in Proc. of the 11th
Innovative Applications of Artificial Intelligence Conf., 1999.

[8] C. Baccigalup and E. Plaza, “Poolcasting: A Social Web Radio
Architecture for Group Customization.” in Proc. of 3rd Intl. Conf. on
Automated Production of Cross Media Content for Multi-channel
Distribution, 2007.

[9] E. Nikolova, H. Tamari, A. Saha, and A. Schrader, ”Pervasive
Campus: Smart Party,” in Proc. of the 2nd Intl. Conf. of Digital Live
Art, 2007.

