
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Heterogeneous Community-based mobility model for human opportunistic network

Hu, Liang; Dittmann, Lars

Published in:
Proceedings of the 5th IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications

Link to article, DOI:
10.1109/WiMob.2009.85

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hu, L., & Dittmann, L. (2009). Heterogeneous Community-based mobility model for human opportunistic
network. In Proceedings of the 5th IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications IEEE. https://doi.org/10.1109/WiMob.2009.85

https://doi.org/10.1109/WiMob.2009.85
https://orbit.dtu.dk/en/publications/2819f841-a283-4410-a6dc-fb8cee5ebf72
https://doi.org/10.1109/WiMob.2009.85


Heterogeneous Community-based mobility model for 
human opportunistic network

 
Liang Hu 

Technical University of Denmark 
2800 LYNGBY, Denmark 

liang.hu@ieee.org

 

          

 
Lars Dittmann 

Technical University of Denmark 
2800 LYNGBY, Denmark 

ld@com.dtu.dk 

               

ABSTRACT                                           
Human opportunistic networks can facilitate wireless 
content dissemination while humans are on the move. In 
such a network, content is disseminated via nodes relaying 
and nodes mobility (human mobility). To develop and 
validate new protocols and services over opportunistic 
network, it is essential to use real human mobility in the 
simulation experiment. However, the real mobility traces 
are limited and their validities are difficult to generalize. 
We present Heterogeneous Community-based Random 
Way-Point (HC-RWP) mobility model that can generate 
synthetic traces that captures important properties of real 
human mobility: node heterogeneousness, space 
heterogeneousness, (short term) time heterogeneousness, 
(long term) time periodicity. These properties are based on 
intuitive observations of daily human mobility and 
confirmed by the analysis of real mobility traces. By 
discrete event simulation, we show HC-RWP captures not 
only the above observed properties, but also some essential 
statistic features of real human mobility traces reported in 
previous studies.  

Index Terms—human mobility modeling, Delay-tolerant 
Network, opportunistic networks, Inter-contact time 
 

1. INTRODUCTION 
In recent years, as the new evolution of mobile ad-hoc 

network, opportunistic network has become an attractive 
research area for networking small mobile devices carried 
by human being, vehicles and animals [1]. Opportunistic 
network is particular useful in challenged environments 
where the infrastructure network is hard to deploy due to 
the physical constraints and economic constraints, e.g. 
disaster-relief, wild-life monitoring and Internet provision 
for rural areas. As another type of scenario, we focus on 
wireless content distribution over opportunistic network 
consist of moving people in urban area. This type of 
opportunistic network is envision to supplement the 
traditional cellular networks in terms of extending cellular 
network coverage and increasing its network capacity, by 
exploiting node mobility [2]. Within this framework, 
recently dissemination based routing has attract significant 
attentions for providing seamless content distribution over 
opportunistic network such as [3][4]. However, previous 
studies assume commonly used mobility model such as  

 
Random Way-Point (RWP) in a restricted square. Those 
models are homogeneous mobility model in the sense that:  
all mobile nodes behave statistically identical to each other 
(node homogeneousness); each mobile node uniformly 
picks up a random trip over a given domain without 
preference (space homogeneousness); their stationary 
behaviors do not change over time (time homogeneousness). 
They do provide scenarios that mathematically traceable, 
yet they are not able to address the complexity of node 
mobility in real-life settings. In a realistic setting, we 
believe the mobility of nodes tends to be heterogeneous in 
the sense that: each node may have very different mobility 
pattern; In a short-term time scale, each node may visit a 
number of places very often within a given geographic area 
than other places outside this area; lastly, node’s repeat the 
same mobility pattern periodically over long term time 
scale. In this paper, the notation “node” and “human” are 
interchangeable.  

 In principle, real mobility traces could have been more 
useful in validating new protocols over opportunistic 
network. However there are several reasons that synthetic 
model is preferred. Firstly, public available mobility traces 
are limited and with very low time granularity. Secondly, 
each trace is specific to its own scenario and thus hard to 
generalize for all cases. Finally, in some cases, 
mathematical model of human mobility is needed to 
analytically study the new protocols and services over 
opportunistic networking. It also allow us to study the 
sensitivity of various design parameters.      

In this paper, we propose a new synthetic mobility 
model that can well capture the characteristics of real 
human mobility: Heterogeneous Community-based 
Random-Way Point (HC-RWP). HC-RWP well captures 
heterogeneousness of real-life human mobility: node 
heterogeneousness, space heterogeneousness and (short 
term) time heterogeneousness, (long term) time periodicity.  
In HC-RWP, nodes tend to move and stay locally at set of 
frequent visited places for the most of the time while they 
occasionally roam to other places. Thus, node often meets 
other nodes that also move and stay within same set of 
frequently visited places while by chance meet nodes of 
other areas. We define, for one mobile node, the set of 
frequent visited places as “home location” and set of less 
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frequent visited places as “roam location”. Nodes of similar 
localized mobility patterns are defined as a community, i.e. 
nodes that have identical home location. Various 
communities have diverse home locations but may have the 
same roam location. Nodes of the same community often 
meet and stay together in their home location, while nodes 
of different communities less frequently meet in their roam 
location. Various communities can be, for instance, a group 
of people that work in the same company (say community 
A), students that study in the same school (say community 
B). Home location of A is school canteen, lecture hall, 
student dorm and sport center. Home location of B is 
Company restaurant, company building, and company sport 
centre. Community A and Community B can not meet 
frequently, as they have very different home location. 
However, they can meet at Shopping Mall and Train station 
both of which are common places of their roman locations. 
Finally, the home location of one node may change 
periodically over time, e.g.  In the evening, home location 
of A may become Student Dorm, Disco pub and Cinema. In 
fact, the member of community may also change 
periodically over time, but we left this for a future work.   

The paper is organized as follows: in section 2, we 
review the related work in real human mobility 
measurement and modelling. In section 3, we describe the 
general HC-RWP model and provide a simplified version 
and its implementation. In section 4, we provide extensive 
simulation results of HC-RWP model with two purposes: to 
demonstrate how it captures properties of real human 
mobility? What are statistic distributions of the contact time 
and inter-contact time compared with real mobility trace? 
Finally, we conclude the paper and present future work in 
section 5.  
 

2. RELATE WORK 
The initial inspiration of our work comes from the 

Restrict Random Way-Point model (R-RWP) presented in 
[7]. However, their model only captures certain space 
heterogeneousness, but not node heterogeneousness, (short 
term) time heterogeneousness, and (long term) time 
periodicity.  

Inter-contact time and contact time are typical 
performance metrics for characterizing nodes mobility in 
mobile opportunistic network. Inter-contact time is the time 
interval between successive contacts of a specific node pair. 
Contact time is the time interval that a specific two nodes 
stay connected before they move apart from the radio range. 
Inter-contact time corresponds to how often two nodes 
meet to send each other message, while contact time 
corresponds to how much data two specific nodes can 
exchange during each contact. In previous studies, Inter-
contact time and contact time distribution are employed to 
characterize the various real mobility traces or synthetic 
models.  

There are several different opinions on the distribution of 
inter-contact time and contact time of real mobility traces. 
An early study of real human mobility is presented in [9], 
where they observed the inter-contact time is well 
approximated by a power-law over the range [10 minutes, 
1day]. Their observation is confirmed using eight distinct 

experiment sets.  In [10], author presents that the inter-
contact time distribution of 90% contacts of mobile bus 
nodes approximately follows an exponential distribution.  
For a wide range of mobility trace, Karagiannis et al [8] 
show the inter-contact times are only power-law distributed 
up to 12 hours, and have an exponential cut-off after that. A 
possible course for this observation is the daily periodicity 
people have.   

Han Cai et al. [11] show that simple random mobility 
models on boundless area can produce a power-law 
distribution of inter-contact times. They also show the 
exponential cut-off effect is in many cases a side-effect of 
bounded area. We believe even if simple random mobility 
model on boundless areas can produce power-law, it does 
not necessary show the general properties of real human 
mobility, as the human mobility is in fact most likely within 
a bounded area.  The assumption of boundless area is not 
realistic.  

Author [12] proposes a social network based mobility 
model. This model is based on the idea that node prefers to 
move to areas with higher social attractivity. The social 
attractivity is defined as the number of friends in a specific 
square. Friends can change periodically depends on the 
time of the day, for instance node meets colleagues as 
friends in the day and meet their family as friend instead in 
the evening.  The paper does not show the inter-contact 
time distribution behavior for more than roughly one third 
of a day. Also, the model does not capture the essential 
properties such as node and space heterogeneous.   

In [13], a community-based random walk model is 
presented. Community is defined as a set of frequent visited 
physical places.  In a concentration period, node visit home 
community more often than other places. In normal period, 
nodes pick up community uniformly with equal probability. 
In contrast, our work assumes node has a list of frequent 
visited places and a list of less frequent listed places. Then, 
we define community as node with similar mobility 
patterns which are determined by the set of most visited 
places. In other words, our community is node centric, 
rather than the physical place centric. Moreover, in [13] 
authors do not show the inter-contact time and contact-time 
distribution and their comparison to real mobility trace.  

 

3. Heterogeneous Community-based Random-
Way-Point Model 

     In this section, we firstly present several key properties 
of human mobility based on intuitive observations of real 
human mobility and analysis of real mobility traces. Then 
we describe the HC-RWP model in details and show how 
the model captures the properties of real human mobility.   

The intuition of real human mobility is that: node visits a 
few locations very frequently while only occasionally visit 
other locations. We refer this property as space 
heterogeneousness. Besides, different nodes may have very 
different mobility pattern i.e. nodes have different most 
frequently visited places. We refer this property as node 
heterogeneousness. The third property is that human 
mobility tends to show (short-term) time heterogeneousness. 
The set of frequently visited places could be different at 
different periods of the day. For example, in day time, 
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office lady more often stays at her office, while in the 
evening time she more often stays at home with her family. 
Lastly, human mobility pattern are repetitive every one or 
multiple days, e.g. with the high probability, she re-visits 
the same set of places regularly. This is also called (long-
term) time periodicity. Besides the intuitions of real human 
mobility, the real trace analysis [5] [6] indeed confirms the 
above mentioned properties. By studying the real user 
traces, they found that that node only visit few WLAN APs 
in campus areas. They also show nodes mobility while 
using the network is very low and one node only meets a 
small portion of all other nodes in the area. Finally, they 
also show the repetitive patterns of node movement with a 
period of one day and heterogeneity among nodes.   

In HC-RWP, to model the space heterogeneousness, for 
each node, we define the home location as a set of most 
visited places and roam location as a set of less visited 
places. For simplicity, we model home location and roam 
location of one node from set of discrete places into a 
continuous area which covers those places. Thus, home 
location of one node is an area that covers its most frequent 
visited places for given time interval [t1, t2]: 

),( 21 ttH i , for node i 

roaming location of one node is an area that covers its less 
frequent visited places at time interval [t1, t2]:  

),( 21 ttRi , for node i 

Different node i have its own home location and roam 
location which captures node heterogeneousness. Further 
more, the home location and roam location of one node are 
updated on different time interval [t1, t2], which captures 
(short-term) time heterogeneousness and. Finally, the 
updates of home location and roam location repeat 
periodically over a period T e.g. one or multiple days, 
which captures the (long term) time periodicity.  

To give a clear presentation, we present a simplified 
version of HC-RWP. We classify the set of nodes that have 
the same home location and roaming location (thus 
identical mobility pattern) as one community. Assume the 
number of node is N, the number of communities is X, and 
set of nodes of community i is iC , the following holds: 

NC
X

i
1

, where A  denotes the cardinality of finite 

set A. Node movement is modeled into two states: “home” 
state and “roam” state. In “home” state, nodes of 
community i move or stay within area home location. In 
“roam” state, nodes of community i move or stay within 
roam location. Nodes travel between “home” and 
“roaming” states which can be characterized by a two-state 
Markov Chain model showed in Markov transition diagram 
in figure 1 (a). The details of node movement are as follows.  

As shown in figure 1, we denote the i
k  as the 

probability that node is in a “home” state and i
r  as the 

probability that node is in a “roam” state. 

rp

rp1

hp

hp1

 
                                 Figure 1 (a): HC-RWP model  

From elementary Markov chain theory, for node in 
community i, we get the following:  

i
r

i
h

i
hi

k pp
p

 and i
h

i
r

i
ri

r pp
p

 

 We also defined two terms “home trip” and “roam trip”       
 Home trip is a random way-point movement towards a 

point in home location, i.e. either a random way-point 
movement within home location, or a random-way 
point movement from roaming location to home 
location. To be specific, node picks up a point 
uniformly sampled from home location area and 
moves towards it with a constant moving speed. Upon 
reaching it, pause for a constant duration.     

 Roaming trip is a random way-point movement 
towards a point in roam location, i.e. a random way-
point movement inside the roaming location or from 
home location to roaming location. To be specific, 
node picks up a point uniformly sampled from roam 
location area and moves towards it with a constant 
moving speed. Upon reaching it, pause for a constant 
duration.  

We assume the period T is one day (excluding the sleep 
time in the night) which is divided into two periods: day 
time period 1T , evening time period 2T . In principle, it can 
be divided into more than two time intervals. We assume 
the global area M is a large square consist of K small 
squares (grids) jm , j=0, 1, 2…K, the following holds:  

KmmmmM ...321 , 

For the period 1T , nodes of community i is pre-assigned one 
grid out of K grids as the home location, e.g. drawn from a 
probability distribution function. Nodes of community i is 
also pre-assigned one grid as roam location, e.g. drawn 
from another probability distribution function. For the 
period 2T , we follow the same instruction as in 1T .   

Without loss of generality, we describe an algorithm 
that implements Waypoints Selection function of HC-RWP 
for community i.  All other communities follow the same 
instructions. The algorithm is shown in fig1 (b).  
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Figure 1 (b): Algorithm for Waypoints Selection of HC-RWP for community i 

 

4. SIMULATION AND VALIDATION  
In this section, by discrete event simulation, we firstly 

show HC-RWP model well captures the observed 
properties of real human mobility. Then we validate the 
statistic features of HC-RWP model by comparing the 
collected real mobility trace.  

We implement HC-RWP in our own simulator in C 
language [4]. The simulator is based on a simple 
communication model: two nodes can communicate with a 
nominal bit-rate if their geometric distance is smaller than a 
threshold value. This geometric distance is set 40 meters 
(the radio range of 802.11b). We consider a simple case of 
HC-RWP model. We assume 100 mobile nodes are equally 
grouped into four communities 4321 ,,, cccc .We assume 
the global area M is a large square with diameter [1500 m,  
1500 m] consist of four small squares (grids), m1, m2, m3 

and m4 and five intermediary areas, as shown in figure 2. 
Each of the grids is [500 m, 500 m] size. These four grids 
are physically separated by intermediary areas, but nodes 
can pass by those areas to reach any grids. For the 
preliminary study, the simulated time is set to 16 hours 
which corresponds to one day time and one evening period 
( 1T + 2T )=(8 hours+8 hours). During both 1T  and 2T , the 
home location and roam location of community i are pre-
determined before simulation and summarized in the table 1:  

TABLE 1: DEFINITON OF COMMUNITITIES 
 

Community 

Home location  

)( 1TH i  )( 2TH i
 

Roam  location 

)( 1TRi  )( 2TRi
 

 1c  m1                m2  m2             m1 

2c  m2                m3 m3             m2  

3c  m3                m4 m4             m3 

4c  m4                m4 m4             m4  

As in the table, for simplicity, we assume the home location 
of 2T  is pre-assigned with roam location of 1T , while roam 

location of 2T is assigned with home location of 1T .  

 
 Figure 2: HC-RWP model with four grids and four communities 

Furthermore, we assume the transition probability between 
“home” and “roam” states in fig 1 are the same for all 
communities and are defined specifically in various 
scenarios. The first step is to validate the observed 
properties of real human mobility: node heterogeneousness, 
space heterogeneousness, (short term) time 
heterogeneousness. We divide the whole simulation areas 
into 36 equal size grids. Each grid is covered by one of the 
36 virtual Access Point (AP). Each AP keeps track of the 
time duration that nodes stay within its coverage area 
(aggregate over all nodes). In other words, we keep records 
of aggregate fraction of time over all nodes that stay within 
the each of 36 sub-areas of the whole square. The mapping 
between sub-squares and AP index is presented in table 2:  

 TABLE 2: ACCESS POINT INDEIX 
Square AP  Index 

m1 1,  2, 7, 8 
m2 25, 26, 31, 32 
m3 29, 30, 35, 36 
m4 5, 6, 11, 23 

In figure 3(a) (b), we show HC-RWP can capture several 
properties of real human mobility: space 
heterogeneousness, node heterogeneousness, time 
heterogeneousness. In fig 3(a), y-axis shows the aggregate 

            m4

m1 m2
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INITIALIZATION: 

 Assignment of home and roam location for community i:  

)( 1TH i
, )( 1TRi

, )( 2TH i
, )( 2TRi

 

 Locate initialized positions of nodes of community i such 
that node position distribution corresponds to the time-
stationary distribution of HC-RWP model, employing 
sampling algorithm of Perfect Simulation [7].     

ALGORITHM:  

Waypoints_Selection (simulation_time, node of community i ):  

 If ((simulation_time mod T) < 1T ) { 

For each node of community i, select next movement:  
If node is in “home” state, the next movement is a home trip 

with probability i
rp1 , or is a roaming trip with 

probability i
rp .  

If node is in “roam” state, the next movement is a roaming trip 

with probability i
hp1 , or a home trip with probability i

hp . }

 If ((simulation_time mod T) = 1T ) { 

           For each node of community i:   

           Re-set the home location to )( 2TH i ; 

           Re-set the roam location to )( 2TRi ;} 

If ( 1T =< (simulation_time mod T) < 21( TT ) { 

For each node of community i, select next movement:   
If node i is in “home” state, the next trip is a home trip with 

probability i
rp1 , or is a roaming trip with probability i

rp .  

If node i is in “roam” state, the next trip is a roaming one with 

probability i
hp1 , or a home one with probability i

hp . } 

 If ((simulation_time mod T) = 21( TT ) { 

For each node of community i:  

      Re-set the home location to )( 1TH i ; 

      Re-Set the roam location to )( 1TRi ;   
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time duration that nodes stay within the coverage area of 
each AP at period T1, while the x-axis shows the AP index. 
It is clear from fig 3(a) that, for all the four communities, 
nodes visit some AP coverage areas of home location much 
more often than other AP coverage areas, which captures 
space heterogeneousness. Also, nodes of different 
community have different set of frequent visit areas or 
home location, e.g. nodes of 1c  mostly visit AP1, 2, 7, 8, 

while nodes of 2c  mostly visit AP 29,30,35,36, which 
captures node heterogeneousness. Finally, fig 3(b) shows 
the aggregate time duration that nodes stay within the 
coverage area of each AP at period T2. We observe that 
each of the community exchange its home location and 
roam location, compare to the case of period T1. For 
instance, nodes of C1 mostly visit AP 25,26,31,32, while 
they only occasionally visit AP1, 2, 7, 8, which is the 
opposite case of period T1. In this way, the HC-RWP 
captures time heterogeneousness of real human mobility, i.e. 
nodes have time-variant home location and roam location. 
Of course, dividing one day into two periods T1 and T2 is a 
low granularity approximation of time-variant real mobility 
pattern. A more accurate model could be developed by 
dividing one day into multiple periods which is larger than 
two.   
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Figure 3 (a):  Time duration that each community stay  

within the coverage area of each AP at period T1 
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Figure 3 (b): Time duration that each community stay within the coverage 

area of each AP at period T2. 

In fig 3 (c), we show HC-RWP captures the time 
periodicity of real human mobility pattern. Here, we 
assume the simulation time is 32 hours and the period T is 8 
hours consist of T1=4 hours and T2=4 hours. According to 
the algorithm in fig 1(b) and table 1, each community 
update their home location and roam location every 4 hours, 
while the transition probability does not change. The y-axis 
is the aggregate time duration over all nodes (per hour) that 
stay within the coverage area of AP index 1 during the 
simulation time 32 hours. The unit is of y-axis is second. It 

is obvious that aggregate time duration (per hour) that 
nodes stay within coverage area of AP index 1 is periodical 
with peak value roughly every four hours. The same 
observations remain if the set of T, T1and T2 are chosen 
other values.      
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Figure 3 (c) 

To validate HC-RWP model generates synthetic traces 
statistically similar to real mobility trace, we analyzed two 
metrics: the Inter-contact time, defined as the time interval 
between two consecutive contacts between any two nodes; 
the contact time, defined as the time interval in which any 
two devices are in radio range. We compare the inter-
contact time and contact time with real traces.  

Despite there have already been some analysis of real 
human mobility traces, the distribution of inter-contact and 
contact time of real human mobility is still not clear, 
because of the limited available real traces, e.g. low data 
granularity, small number of experiment participants. In [9], 
authors claimed CCDF (complementary cumulative 
distribution function) of inter-contact time follows power-
law, while authors in [8] claim it follows power-law with 
exponential cut-off. In [10] authors show the CCDF of 
inter-contact time of real bus mobility traces follows the 
power-law with exponential decay.  

Under HC-RWP model, we investigate CCDF of inter-
contact time between mobile nodes under the impact of 
various transition probabilities i

hp and i
rp defined in 

section 3.  In figs 4(a)(b) , we show that CCDF of the inter-
contact time on log-log and line-log scales. The simulation 
time is 32 hours and the period T is 8 hours consist of T1=4 
hours and T2=4 hours. The simulation parameters are as 
follows in the table 3:  

TABLE 3: SIMULATION PARAMETERS 

Moving Speed Pause time ( i
hp , i

rp )  

1 m/s  100, 600 
1200  second 

(0.9,0.1)   (0.6,0.4) 

Firstly, fig 4(a) (b) show the CCDF of inter-contact time 
(under all parameters) approximately follows exponential 
distribution, which is in line with the analysis of real 
mobility traces presented in [10] and [8]. Secondly, we 
observe that, for given P(r) = 0.1, P (h) = 0.9, the pause 
time does impact the inter-contact time distribution. In 
particular, larger pause time (e.g. 1200s) incurs larger inter-
contact time on average than small pause time (e.g. 100 s 
and 600 s). This trend is nature, as pausing nodes produce 
longer contact durations but less frequent associations. 
Secondly, for a given pause time 600 second, fig 3 (a) (b) 
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show transition probability (P(r) = 0.4, P (h) = 0.6) on 
average gives larger inter-contact time than (P(r) = 0.1, P (h) 
= 0.9). This is because node tends to move around a larger 
area with transition probability (P(r) = 0.4, P (h) = 0.6), 
while node moves more locally with transition probability 
(P(r) = 0.4, P (h) = 0.6). Nodes that move around a larger 
area tend to less frequently meet each other, compared to 
the case of moving within a smaller area.   
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Figure 4 (a): Inter-contact time in log-log scale 
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Figure 4 (b): Inter-contact time in line-log scale 
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Figure 4 (c): contact time distribution in line-log scale 

In fig 4(c), we show the CCDF of contact time in line-log 
scale. For most nodes contacts, the CCDF of contact time 
approximately follows exponential distribution under all 
parameters.  
    According to the above analysis, we claim that HC-RWP 
does capture statistic features of some real mobility traces 
[8][10] in terms of inter-contact time distribution. It is an 
open question and future work on tuning HC-RWP model 
to statistic features capture all the real mobility trace such 
as [9]. On the other hand, more useful and thoroughly 
validation and tuning of HC-RWP can only be done upon 
the availability and analysis of large-scale and high time 
granularity real mobility traces which are rarely available 
today.      

5. CONCLUSION AND FUTURE WORK 
We present a new synthetic mobility model HC-RWP 

for mobile opportunistic networking research. By discrete 
event simulation, we show it captures four properties of 
real human mobility: node heterogeneousness, space 
heterogeneousness and (short term) time 
heterogeneousness, (long term) time periodicity. Those four 
properties are observed according to daily intuitions of real 
human movement and confirmed by the measurements of   
real traces. Besides, in terms of inter-contact time and 
contact time distribution, we show HC-RWP do provide 
synthetic traces that have the same statistic features as real 
mobility traces.  
       As the future work, we intend to extend our model to 
capture higher granularity time-variant node mobility, e.g. 
divided one day into more than two time periods, each of 
which have different mobility pattern. Also, we plan to tune 
system parameters of HC-RWP such that it can well match 
statistic features of all real mobility trace. Finally, as the 
current real mobility trace is rather limited, the full 
validation and tuning of our model is possible upon the 
availability of large-scale, high time granularity real 
mobility traces.      
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