
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
7
2
8
4
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
8
.
4
.
2
0
2
4

Abstract—Predicting mobile users’ trajectories accurately is
essential for improving the performance of wireless networks and
autonomous systems. In this paper, we tackle the problem of tra-
jectory prediction in a multi-agent scenario where the social inter-
action among users is taken into consideration. We propose Intra-
Cluster Reinforced Social Transformer (INTRAFORCE), a novel
system to design and train Social-Transformer neural networks
that learn the spatio-temporal interactions among neighboring
mobile users and predict their joint future trajectories. Unlike
state-of-the-art social-aware trajectory predictors that either miss
the large-distance interactions or are computationally expensive
due to the pooling of all users’ interactions, INTRAFORCE clus-
ters users with similar trajectories and learns their interactions.
INTRAFORCE performs Neural Architecture Search to optimize
each transformer’s architecture to fit each cluster’s user mobility
features using Reinforcement Learning. Through experimental
validation, we show that INTRAFORCE outperforms several
state-of-the-art trajectory predictors on five widely used small-
scale pedestrian mobility datasets and one large-scale privacy-
oriented cellular mobility dataset by achieving lower prediction
error, training time, and computational complexity.

Keywords: Social-aware Trajectory Prediction, Transformers,
Reinforcement Learning, Neural Architecture Search, Clustering.

I. INTRODUCTION

Accurate user mobility prediction can improve Quality of
Service (QoS) of network applications through adaptive and
anticipatory network management, such as proactive caching,
resource allocation, service migration, and handover man-
agement [1]. On the other hand, trajectory prediction is of
great importance in urban safety, autonomous driving, and
robot-to-human interacting systems. In the real world, mobile
users such as pedestrians or vehicles can move along similar
paths during certain hours of the day, either coincidentally or
intentionally as a group trip. When users move in a crowded
public space, they normally follow common social rules such
as estimating other users’ mobility status (e.g., position and
speed) and respecting their space or avoiding to collide with
obstacles. This suggests that there is a strong mutual influence
among users’ mobility patterns and decisions.

Understanding social interactions and spatio-temporal de-
pendencies among neighboring mobile users’ paths can help
to better predict their complex motion behaviors. Recently,
deep learning models such as Recurrent Neural Networks
(RNNs), have proven to be successful to tackle the problem of
sequential-data prediction. RNN-based social models consists

of a group of recurrent networks merged in a shared so-
cial pool distributing information between neighbor trajectory
users [2], [3]. However, despite the advancements of RNNs,
they are criticized for their inability to capture long-term
dependencies and complex social interactions efficiently and
for their slow training time. To alleviate the aforementioned
limitations, attention-based neural networks, especially Trans-
formers (TF) [4], have shown great improvements over RNNs.
Regardless of the neural network type, existing social-aware
trajectory predictors still suffer from several shortcomings.
First, they either capture interactions within a fixed local area
around each agent, which results in missing larger distant
interactions, or they consider all agents of the scene, which
ends up in high computational costs. Second, they design the
neural network architecture following human-based heuristics,
which is a time-consuming and error-prone process. Third,
they apply the same neural architecture to every user data type
not guaranteeing the optimal prediction performance.

In this article, the research question we aim to solve is
the design and study of a system that automatically builds
a trajectory predictor, leveraging the mutual dependency of
inter-user mobility to reduce the model size without affecting
accuracy. We propose INTRAFORCE, a system to design
and train Social-Transformers to capture joint interactions and
reduce the required computation by measuring user trajectory
similarity and clustering users before feeding them to a social-
aware trajectory predictor. For each cluster, INTRAFORCE
employs a Reinforcement Learning (RL) agent aiming at
maximizing the performance of the multi-agent model based
on the mobility features of the cluster.

The rest of this paper is organized as follows. Sec-
tion II presents the related works. Section III de-
scribes INTRAFORCE operation. Section IV evaluates
INTRAFORCE performance. Finally, Section V concludes and
summarizes the contributions of this work.

II. RELATED WORK

In recent years, data-driven social mobility predictors are
gaining popularity compared to the previously proposed
Social-force models, which use simple repulsive and attraction
forces [7]. The vast majority of modern human-trajectory
predictors are based on deep learning models, such as RNNs,
Long Short-Term Memorys (LSTMs), Convolutional Neural
Networks (CNNs), and attention-based neural networks, such

INTRAFORCE: Intra-Cluster Reinforced
Social Transformer for Trajectory Prediction

Negar Emami, Antonio Di Maio, Torsten Braun

Institute of Computer Science, University of Bern, Switzerland
Email: {negar.emami, antonio.dimaio, torsten.braun}@inf.unibe.ch



TABLE I
FEATURES OF SOCIAL-AWARE TRAJECTORY PREDICTORS

Trajectory Predictor Neural Network Social Module NAS

Alahi et al. [2] LSTM Social Pool -
Gupta et al. [3] LSTM-GAN Social Pool and

Pooling Vector
-

Sadeghian et al. [5] LSTM-GAN Attention -
Yu et al. [6] Transformer Graph Convolution -
INTRAFORCE Transformer Social Pool and

Clustering
RL

as Transformers, which require less computation and achieve
higher prediction accuracy compared to social-force models
due to their better modeling of sequential patterns [1], [8], [9].
Instead of modeling kinetic forces and energy potentials as in
social-force models, social-pooling [2], [3], attention [10], [5],
and graph [6], [11] mechanisms complement neural networks
to share information about neighboring user’s trajectories to
capture complex interactions in crowded environments.

Alahi et. al. [2] introduce the Social-LSTM, which relies
on a social pooling layer that connects multiple LSTMs to
model interaction among pedestrians. Social-LSTM considers
user interactions within a fixed-size local area, which reduces
the flexibility in considering the interaction among any two
users that might affect each other’s trajectory. To solve such
limitation, Social-GAN [3], a Generative Adversarial Network
(GAN)-based trajectory predictor, extracts social interactions
among all users in the system. Social-GAN stores the relative
positions between all users of the social pool in a pool vector,
in order to let each user make mobility decisions based on in-
formation of other users at the decoder side. However, Social-
GAN weights each user trajectory’s influence on the model
identically. Sophie [5] solves this limitation by proposing
another GAN-based social network that feeds all users of
the scene to a social attention component, which aggregates
various agents interactions and extracts users who have more
influence on each other from the surrounding neighbors. Even
though the social-pooling algorithms perform well in learning
and predicting social interactions, they are computationally
complex and resource-intensive because they feed trajectories
of all users within a scene to the social predictor’s encoders.
In contrast to these works, INTRAFORCE generates a set of
Social-Transformer trajectory predictors, each trained on the
data of a different group of users with similar mobility. For an
environment containing n mobile users, INTRAFORCE learns
the social interactions among the nk ≪ n users in each cluster
ck. In this way, the cluster’s social-transformer is trained over
nk datasets instead of n, saving the computational resources
needed for training over the n−nk datasets associated to users
whose mobility features are irrelevant for cluster ck.

Another shortcoming of the existing social trajectory pre-
dictors is that their neural architectures are designed by human
experts, which is a time-consuming and error-prone process,
and that the same neural network is applied to a wide range
of mobility datasets with no neural architecture adaption.
To mitigate such drawbacks, we propose to personalize the

neural architecture design given each group of neighbor users’
motion behaviors. In other fields than mobility prediction, var-
ious algorithms are proposed for Neural Architecture Search
(NAS) [12]. INTRAFORCE formulates the neural hyper-
parameter optimization as a RL problem. Most of the existing
RL-based NAS approaches are proposed for image classifi-
cation tasks, where it is simple to define appropriate search
spaces due to researchers’ prior knowledge and experience
in manually-designed models. Hence, the absence of RL
search mechanisms in less-explored fields is apparent [12].
RC-TL [8] suggests applying RL for individual trajectory
prediction, where users are left isolated. In this direction,
INTRAFORCE proposes and studies a RL-based NAS method
in the field of social trajectory prediction. Table I compares
the characteristics of our solution with those of existing state-
of-the-art social-aware trajectory predictors.

III. INTRAFORCE

We define a scenario in which n users move in an urban
environment that contains S base stations forming a cellular
radio access network to the Internet. Each mobile user is pro-
vided with a wireless device that connects to the base station
from which the strongest signal is received. When users move,
the power signal received from base stations can vary and,
thus, a handover procedure is performed to connect to a new
base station. The timestamps of connection and disconnection
to each base station are recorded. We assume that user u, at a
time tu ∈ R, is located at coordinates (xu, yu) ∈ R2 and may
be connected to a base station with ID bu ∈ N. We define the
vector pu = (tu, xu, yu, bu) ∈ R3×N as the user information
vector that summarizes one data point about the user status.
This generic formulation covers cases in which information
about base stations or exact users positions may not be known
to the system for privacy purposes. For user u, the system
has recorded a total of mu user information vectors. We now
define the trajectory Tu as a set of user information vectors
Tu = {pu(1), . . . , pu(mu)}, and Θ = {T1, . . . , Tn} as the
set of all user trajectories. The goal of INTRAFORCE, is to
predict the future trajectory for each user u, based on a user’s
past mobility data and other users’ mutual influences.

INTRAFORCE operates through three modules: the clus-
tering module, the social-transformer module, and the archi-
tecture search module, represented in Figure 1 and explained
hereafter. Algorithm 1 describes INTRAFORCE’s workflow,
which includes the operation of the clustering module (lines 1
to 4), the architecture search module (lines 5 to 25), and the
social-transformer module (lines 26 to 28).

The clustering module groups users with similar trajectories
by applying a clustering algorithm (e.g., Birch, DBSCAN,
K-Means, and Ward) considering the Longest Common Sub-
Sequence (LCSS) distance [13] between their trajectories. The
advantage of adopting LCSS is its ability to measure similarity
between trajectories with different number of data points pu.

The architecture search module uses ε-greedy Q-learning
RL algorithm to select an optimal Transformer architecture
for each cluster of users with similar trajectories. In RL, an



Algorithm 1: INTRAFORCE Workflow
Input: Set of trajectories Θ
Output: A Social-TF Fk for each cluster ck ∈ C

// Compute similarity matrix A = (aij) and set C of
clusters containing similar trajectories

1 foreach (Ti, Tj) ∈ Θ2 // Clustering Module

2 do
3 aij ← LCSS(Ti, Tj)

4 C ← Clustering(A) ;
// Build a social transformer Fk, ∀ck ∈ C

5 foreach ck ∈ C // Architecture Search Module

6 do
7 Elect the representative user rk for cluster ck;

// Initialize RL agent Ak to optimize the
Transformer architecture using data of user rk

8 Ak ← InitAgentRL(γ, α, ε, ε0)
// Initialize state-action table to zero for all

states and actions

9 ∀(s, a) ∈ S ×A : Q(s, a)← 0;
// Initialize exploration probability ε to maximum

and empty architecture state

10 ε← 1, s← ∅;
// Optimize TF architecture up to vmax episodes

11 foreach v ∈ {1, . . . , vmax} do
// Decrease exploration every vmaxε0 episodes

12 if v mod vmaxε0 = 0 then
13 ε← ε− ε0;

// ε-greedy strategy to select next TF
architecture modification

14 if RandomSample([0, 1]) ≤ ε then
15 av ← random action a ∈ A(s);

16 else
17 av ← argmaxa∈A(s) Q(s, a);

// Update state according to action av

18 s′ ← UpdateState(s, av);
// Train the transformer with data of the

representative user rk for a few epochs θs.
Compute model error w and reward ρv of
architecture modification (action a)

19 s′∗ ← Train(s′, rk, θs);
20 w ← ComputeModelError(s′∗, rk);
21 ρv ← 1/w;

// Update state-action table

22 Q (s, av)← (1− α)Q (s, av) +
α
(
ρv + γmaxa∈A(s′) Q (s′, a)

)
;

// Stop architecture search if model error w
(MSE for regression, Error Rate for
classification) is below threshold η

23 if w ≤ η then
24 exit loop;

25 s← s′;
// Selects the TF architecture fk with lowest

model error

26 fk ← argmaxs∈S Q(s, ·) // Social-TF Module

// Initialize the Social-TF architecture for
cluster ck, with nk Encoder Stacks connected to
nk Decoder Stacks through one social pool

27 Fk ← InitSocialTF(fk);
// Train the Social-TF Fk with data from all nk

users in ck for several epochs θl

28 F ∗
k ← Train(Fk, ck, θs);

Fig. 1. INTRAFORCE Architecture.

agent takes an action that has an impact on an environment,
then observes the environment’s state, and finally receives
a reward from the environment. INTRAFORCE uses RL to
select the optimal transformer architecture from a finite and
fixed space of admissible architectures (the state space). The
state space is a subset of all the possible combinations of
the values of the transformer’s hyperparameters, namely the
number, characteristics, and sequence of multi-head attention
layers, normalization layers, feed forward layers, and dropout
layers in the model. Each multi-head attention layer can
have different numbers of heads h and dimension of key.
Feed-forward layers can have different numbers of neurons.
Normalization layers can have different epsilon values for the
encoder. Dropout layers can have different dropout ratios. The
state space can become considerably large depending on the
range of admissible values for the hyperparameters (e.g., see
the RL action part of Table II), so INTRAFORCE uses RL
to search for the optimal architecture without performing an
exhaustive grid search. After the agent has taken an action (i.e.,
selecting a candidate model architecture), the reward associ-
ated to the selected architecture is unknown, and therefore,
must be measured by training the transformer generated by
the RL agent with the cluster’s representative users’ data for a
few epochs (exploration phase). At the end of the RL process,
INTRAFORCE selects the transformer architecture with the
highest accuracy among all those explored and completes its
training until convergence (exploitation phase), over a larger
number of epochs compared to the exploration epochs.

The social-transformer module spawns a neural network to
predict the trajectory of each user within a specific cluster
by tuning an Encoder Stack per cluster user, pooling cluster
users’ mutual information in a Social Pool, and predicting one
trajectory per cluster user using a Decoder Stack. The Encoder
Stack consists of a positional encoding layer and several en-
coder layers, in charge of converting a trajectory to an abstract
representation, followed by the Decoder Stack to output a



Fig. 2. Structure of a Transformer for the i-th user. The architecture contains
an Encoder Stack Ei made of ξ Encoder Layers and a Decoder Stack Di

made of ξ Decoder Layers.

predicted trajectory from the learned abstract representations
of the user mobility. The Decoder Stack consists of several
decoding layers, dense layers, dropout layers, and an output
layer (linear for regression and softmax for classification
problems). Figure 2 represents the general structure of a Trans-
former highlighting its tuneable hyperparameters. Encoder and
decoder layers consist of multi-head modules, normalization
layers, feed forward layers, dropout layers, and two residual
connections. The multi-head attention module contains a self-
attention mechanism that accesses previous segments of input
data and can differently weight the importance of each segment
based on segments’ pairwise similarities. The self-attention
feature enables parallel training for Transformers, which con-
siderably reduces training time compared to RNNs.

IV. EVALUATION

A. Experimental Setup

We evaluate INTRAFORCE’s performance on a small-scale
and a large-scale mobility scenario, against a set of state-
of-the-art mobility predictors. The two scenarios are named
based on the size of the users’ moving area. In the small-scale
scenario, we assume that users move within an area that spans
a few tens of meters. Therefore, the information about the base
station to which users are connected does not characterize
inter-user mobility interaction, nor contribute to improving
the mobility prediction task. For this reason, we disregard
any information about base stations and only consider small-
scale user position coordinates in their trajectories. For the
small-scale scenario, we use the information contained in the
ETH [14] and UCY [15] public datasets containing video
streams of real-world, small-scale pedestrian mobility in urban
scenarios captured from bird-eye-view cameras, where users
interact with each other and influence respective movements
according to real social interactions at a microscopic scale.
From both video datasets we extract the trajectories of 1536
pedestrians from five different urban scenarios with sampling
rate of 0.4 s following the method proposed at [9]. The ETH
dataset contains two urban scenarios named ETH and Hotel
whereas, the UCY dataset contains three scenarios named
Univ, Zara1, and Zara2. As a result, each trajectory Tu in the
small-scale scenario will contain a sequence of up to 100 user

information vectors pu = (tu, xu, yu), where the timestamp
granularity of any two consecutive vectors is 0.4 s. We assume
that the prediction models deployed in the small-scale scenario
observe each user’s trajectory for the past Tobs = 8 timestamps
(3.2 s) and predicts the trajectory for the future Tpred = 12
frames timestamps (4.8 s). We compare INTRAFORCE perfor-
mance with those of popular social trajectory-predicion mod-
els, namely: Social-LSTM [2], Social-GAN [3], Sophie [5],
Social-BiGAT [16], Social-Ways [10], Social-STGCNN [11],
PECNet [17], and STAR [6]. To measure the model perfor-
mance for the regression task of predicting future location
coordinates for each user, we use the Average Displacement
Error (ADE), which is the average squared Euclidean distance
between all predicted points of a user trajectory and true
locations. In this scenario we perform one experiment in
which we run the whole INTRAFORCE system, including user
clustering, RL search for Transformer architecture, and the
social-transformer trajectory prediction with social pooling,
and then collect the ADE measurements.

In the large-scale scenario, we assume that users can move
within an area that spans several kilometers. In this case,
the information about the microscopic user mobility (small-
scale coordinates) over a short time-interval is not relevant
to characterize mutual interactions between users. Hence, we
consider only the information about which base station the user
is connected to. For the large-scale scenario, we use a private
cellular network management dataset provided by Orange
telecommunication S.A., France [1]. This dataset contains the
timestamps and the connected base station IDs for each of the
1.3 million users that move near a district of Paris between July
and September 2019. For privacy reasons, the exact location
coordinates of the subset of 131 identified base stations are
inaccessible, and the user identities are anonymized. Trajec-
tories in the large-scale scenario will contain sequences of a
few thousands of information vectors pu = (tu, bu), where the
timestamps of any two consecutive vectors are separated by a
few minutes from each other. We assume that the prediction
models deployed in the large-scale scenario observe each
user’s trajectory for the past Tobs = 16 timestamps and predicts
the trajectory for the future Tpred = 1 timestamp. To measure
the model performance for the classification task of predicting
future base station IDs for each user, we define accuracy as the
ratio between correctly predicted next locations and the total
number of predictions made by the model. Formulating the
large-scale scenario through classification instead of regression
(predicting the next ID and not the exact location coordinates)
is due to the unavailability of the base stations’ coordinates.
To measure the computational performance we measure the
build time and the model size of the compared approaches,
defined as the time to build and train the model and the
number of its training parameters, respectively. We compare
the performance of Reinforced Transformer (RL-TF) with
those of other state-of-the-art trajectory predictors, namely RL-
CNN, RL-LSTM, HO-LSTM, GS-LSTM, RF, and J48. The
first four baselines are neural-network-based predictors, while
the last two, Random Forest (RF) and J48 Decision Tree, are



TABLE II
EXPERIMENTAL PARAMETERS FOR SMALL-SCALE AND LARGE-SCALE

SCENARIOS

Transformer Parameters

Batch size (small-scale, large-scale) 10, 200
Learning rate decay 0.002
Social Transformer training epochs θl 200
Early stopping patience (in epochs) 10
Early stopping improvement delta threshold
(small-scale, large-scale)

0.05, 0.1

Dense layers’ activation func. (hidden, output) ReLU, SoftMax

Reinforcement Learning Parameters

Maximum RL training episodes vmax 500
Training epochs per episode θs 20
Discount factor γ, learning rate α 1, 0.01
Exploration rate decay ε0 0.1
Training target per episode (small-scale) η 0.05
Training target per episode (large-scale) η 0.1
Exploration training validation (small-scale) 4 sets train, 1 set test
Exploration training validation (large-scale) 10-fold x-validation,

70% train, 30% test

RL Agent Actions: Transformer Hyperparameters Space

Number of hidden layers 10, 11, . . . , 50
Number ξ of encoder and decoder layers 1, 2, 3, 4, 5
Number of heads h in a multi-head attention
layer

2, 4, 6, 8

Dimension of the key for a self-attention layer 64, 128, 265
Normalization layer parameter 10−2, 10−3, 10−6

Number of perceptrons in dense layer 20, 50, 80, 100, 150
Dropout ratio in dropout layer 0.15, 0.25, 0.5, 0.75

non-neural predictors, which means that they do not require
architecture search. RL-LSTM uses Reinforcement Learning
to search for an optimal LSTM architecture, while HO-LSTM
and GS-LSTM use Hyperopt (HO), an AutoML hyperparam-
eter optimizer, and Grid Search (GS) for the same purpose.
In the large-scale scenario, we perform two experiments.
The first experiment compares the performance of a RL-TF
with the aforementioned predictors in terms of prediction
accuracy and build time for the individual user trajectory
prediction, disregarding users’ social interaction. The goal is to
demonstrate the outperformance of Transformers concerning
other machine learning predictors, and the outperformance of
RL regarding other hyperparameter optimization models. The
second experiment quantifies the impact of user clustering,
cluster size, and the social-transformer model on accuracy,
build time, and model size.

Table II shows the parameters for the Transformer and RL
agent training. The RL Agent Actions section of Table II
shows the features of the search space for the hyperparameters
that defines the Transformer’s architecture, where each row
corresponds to one of the RL potential actions. We used Keras
and TensorFlow to implement the transformer model, the RL
agent used through INTRAFORCE, and the other evaluated
trajectory prediction methods.

B. Results

Table III shows the results of the small-scale experiment
(ETH+UCY datasets), in which INTRAFORCE achieves the

TABLE III
ADE [M] OF DIFFERENT SOCIAL TRAJECTORY PREDICTORS FOR THE

SMALL-SCALE SCENARIO (ETH+UCY DATASETS)

Work ETH Hotel Univ Zara1 Zara2 Mean

Social-LSTM [2] 1.09 0.79 0.67 0.47 0.56 0.72
Social-GAN [3] 0.81 0.72 0.60 0.34 0.42 0.58
SoPhie [5] 0.70 0.76 0.54 0.30 0.38 0.54
Social-BiGAT [16] 0.69 0.49 0.55 0.30 0.36 0.48
Social-Ways [10] 0.39 0.39 0.55 0.44 0.51 0.46
Social-STGCNN [11] 0.64 0.49 0.44 0.34 0.30 0.44
PECNet [17] 0.54 0.18 0.35 0.22 0.17 0.29
STAR [6] 0.36 0.17 0.31 0.26 0.22 0.26
INTRAFORCE 0.31 0.24 0.22 0.14 0.23 0.22

RL-TF RL-CNN RL-LSTM HO-LSTM GS-LSTM RF J48
Trajectory Predictor

0.0

0.3

0.6

0.9

Ac
cu

ra
cy

(a)

RL-TF RL-CNN RL-LSTM HO-LSTM GS-LSTM RF J48
Trajectory Predictor

0

300

600

Av
g.

 B
ui

ld
 M

od
el

 T
im

e 
(m

in
)

62.77 56.04

177.02

322.69

631.89

52.41
0.08

(b)

0 20 40 60 80 100
Episode

0.3

0.6

0.9

Ac
cu

ra
cy

RL-TF
RL-CNN
RL-LSTM

(c)

Fig. 3. Accuracy (a) and build time (b) of different trajectory predictors
(three neural predictors whose architectures are optimized by different NAS
mechanisms and two none-neural predictors) trained on an individual user’s
data for the large-scale scenario (Orange dataset). The evaluations are per-
formed over 100 random users’ data. Accuracy convergence (c) of the RL-
designed predictors during the model building (neural architecture exploration
and exploitation) phase.

2 5 10
Cluster Size

0

15

30

45

60

Tr
an

in
g 

Ti
m

e 
(m

in
) INTRAFORCE

RL-TF

(a) Average training time

2 5 10
Cluster Size

0

2

4

6

8

M
od

el
 S

ize

1e4
INTRAFORCE
RL-TF

(b) Number of training parameters

Fig. 4. Average build time and model size of individual (RL-TF) and social
(INTRAFORCE) trajectory prediction models, evaluated for different cluster
sizes in the large-scale scenario (Orange dataset). The user clustering process
within the social INTRAFORCE model is performed over the same set of
100 random users used in the individual RL-TF model.



lowest ADE (0.22) compared to several state-of-the-art social
trajectory predictors.

The results of the large-scale experiment (Orange dataset)
show that using RL to search the Transformer’s neural ar-
chitecture leads to a higher prediction accuracy and a faster
build model time compared to other trajectory prediction ap-
proaches. Furthermore, training one single social-transformer
with a cluster’s users data reduces the average training time
and model size compared to training one separate model for
each individual user.

Figure 3a shows that RL-TF achieves the highest mean
accuracy (77%), which is 10% higher than the other reinforced
models (RL-LSTM and RL-CNN) and almost 20% higher
than non-neural models (RF and J48). We note that achieving
higher prediction accuracy over the Orange dataset is limited
by the restricted dataset size (63 days) and the huge diversity
in users’ data sample distributions. The accomplished accuracy
of 77% is the average accuracy over 100 random users with
acutely variable data quality and periodicity. Figure 3b shows
that RL-TF requires slightly above one hour of build time,
which is similar to RL-CNN and RF. Although Transformers
have larger architectures than CNNs and LSTMs, the Trans-
formers’ attention mechanism considerably reduces the build
time. The RL-TF build time is similar to that of RF, which
does not require architecture search but only training. RL-
LSTM and HO-LSTM require long build times due to the
sequential nature of LSTMs, and the extensive training of HO
exploration. Figure 3c shows that the RL agent converges to a
higher prediction accuracy in a shorter time with Transformer
neural network, compared to LSTM and CNN.

Figure 4 shows the build time and the total model size
needed by one social model for a cluster of users is lower than
training an independent model for each user. As the number
of users in a cluster increases, the difference in terms of build
time and model size between training a separate model for
each individual user (RL-TF) and training a single social-
model per cluster of users (INTRAFORCE) dramatically in-
creases. Moreover, we note that as the number of users in
a cluster increases, social predictors achieve up to 5% higher
accuracy, from 0.73 to 0.78, compared to individual predictors.

V. CONCLUSIONS

We presented INTRAFORCE, a system to build a tra-
jectory predictor that learns the social interaction within
clusters of similar mobile users. INTRAFORCE uses Rein-
forcement Learning to build a Social-Transformer architecture
based on the intra-cluster user mobility features. We evaluate
INTRAFORCE on small and large scale scenarios, based
on the ETH+UCY and the Orange datasets, respectively. In
the small-scale scenario, INTRAFORCE achieves an ADE of
0.22, which corresponds to a lower positioning error compared
to several state-of-the-art models. In the large-scale scenario,
we show that Reinforced Transformers outperform LSTM- and
CNN-based predictors by achieving up to +10% accuracy
and up to −70% training time, and outperforms non-neural
models based on RF and J48 of up to +20% accuracy. Our

experiments show that increasing the number of users in a
cluster leads to slightly higher accuracy, while considerably
decreasing the time needed to build and train the trajectory
predictors, as well as the number of training parameters.

ACKNOWLEDGMENTS

This work was funded by the SNF Intelligent Mobility
Services project (No. 184690). We thank Orange S.A., France,
for providing the dataset used for the experiments.

REFERENCES

[1] Z. Zhao, N. Emami, H. Santos, L. Pacheco, M. Karimzadeh, T. Braun,
A. Braud, B. Radier, and P. Tamagnan, “Reinforced-lstm trajectory
prediction-driven dynamic service migration: A case study,” IEEE Trans-
actions on Network Science and Engineering, 2022.

[2] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[3] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan:
Socially acceptable trajectories with generative adversarial networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2255–2264, 2018.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[5] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and
S. Savarese, “Sophie: An attentive gan for predicting paths compliant
to social and physical constraints,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1349–
1358, 2019.

[6] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph
transformer networks for pedestrian trajectory prediction,” in European
Conference on Computer Vision, pp. 507–523, Springer, 2020.

[7] D. Helbing, L. Buzna, A. Johansson, and T. Werner, “Self-organized
pedestrian crowd dynamics: Experiments, simulations, and design solu-
tions,” Transportation science, vol. 39, no. 1, pp. 1–24, 2005.

[8] N. Emami, L. Pacheco, A. Di Maio, and T. Braun, “Rc-tl: Reinforcement
convolutional transfer learning for large-scale trajectory prediction,” in
NOMS 2022-2022 IEEE/IFIP Network Operations and Management
Symposium, pp. 1–9, IEEE, 2022.

[9] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks
for trajectory forecasting,” in 2020 25th International Conference on
Pattern Recognition (ICPR), pp. 10335–10342, IEEE, 2021.

[10] J. Amirian, J.-B. Hayet, and J. Pettré, “Social ways: Learning multi-
modal distributions of pedestrian trajectories with gans,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops, pp. 0–0, 2019.

[11] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn:
A social spatio-temporal graph convolutional neural network for human
trajectory prediction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14424–14432, 2020.

[12] T. Elsken, J. H. Metzen, F. Hutter, et al., “Neural architecture search:
A survey.,” J. Mach. Learn. Res., vol. 20, no. 55, pp. 1–21, 2019.

[13] D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” Journal of the ACM (JACM), vol. 24, no. 4, pp. 664–675,
1977.

[14] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE
12th international conference on computer vision, pp. 261–268, IEEE,
2009.

[15] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
Computer Graphics Forum, vol. 26, no. 3, pp. 655–664, 2007.

[16] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks,” Advances in Neural Infor-
mation Processing Systems, vol. 32, 2019.

[17] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik,
and A. Gaidon, “It is not the journey but the destination: Endpoint
conditioned trajectory prediction,” in European Conference on Computer
Vision, pp. 759–776, Springer, 2020.


	1

