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Abstract—An intelligent radar resource management is an
essential building block of any modern radar system. The
quality of service based resource allocation model (Q-RAM)
provides a framework for profound and quantifiable decision-
making but lacks a representation of inter-task dependencies
that can e.g. arise for tracking and synchronisation tasks. As
a consequence, synchronisation is usually performed in fixed
non-optimal patterns. We present an extension of Q-RAM which
enables the resource allocation to consider complex inter-task
dependencies and can produce adaptive and intelligent synchro-
nisation schemes. The provided experimental results demonstrate
a significant improvement over traditional strategies.

Index Terms—radar, resource management, cognitive radar,
synchronisation, quality of service

I. INTRODUCTION

Resource management (i.e. task prioritisation, resource al-
location and scheduling) is an important part of any modern
radar system, as these have to simultaneously perform poten-
tially conflicting functions, and even more so of any cognitive
setup. One important role of the resource management is to
select operational parameters from a multitude of possible task
configurations differing in resource requirements and resulting
utility with the goal to optimise the overall system perfor-
mance under resource constraints. A mathematical framework
describing this problem is known as Quality of service based
resource allocation model (Q-RAM) [1], [2].

Bi- or multi-static radar has grown in popularity because
of several reasons among which are the prevention of dead
times, a possibly covert operation of the receiver and a higher
resilience in a military context. In order for a multi-static radar
to function, the receivers need to know the location of the
transmitters and all sensors have to share a common time and
frequency standard. This is essential for accurate range and
velocity estimations. Hence, the sensitive local oscillators used
in the individual sensors need to be kept synchronised [3].
Clocks being out of sync lead to higher measurement errors
and thus to a degradation of the overall system performance.
These effects need to be taken into account by the resource
manager to guarantee an optimal resource allocation and de-
velop intelligent synchronisation schedules. This is particularly
true for modern and future multi-function systems, where
various functions are executed on the same aperture, i.e. the
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synchronisation process itself competes with other tasks for
shared resources. In many cases GNSS-based synchronisa-
tion is assumed with multi-static range measurements [4].
However, this leads to unwanted dependencies especially in
hostile environments and thus a separate independent GNSS-
free synchronisation method is preferable in some contexts.

The standard Q-RAM framework is not able to model
the effects of synchronisation appropriately and thus does
not allow for a sophisticated decision-making. We propose
a modification of the framework to make its use suitable
in multi-static systems that require dedicated synchronisation.
Furthermore, we provide experimental results that highlight a
significant improvement over traditional strategies.

It is worth noting that the presented algorithm is applicable
in settings other than radar synchronisation when regular
calibration is required to ensure quality levels of other tasks. In
particular, this is the case for IMU calibration or also channel
sensing in automotive setups.

The paper is organised as follows. The Q-RAM problem
and its classical solution are briefly discussed in Sections II
and III. Section IV introduces the proposed extended frame-
work and algorithm to enhance Q-RAM with synchronisation
capabilities. The experimental verification is presented in Sec-
tion V. This includes a detailed description of the simulation
environment with radar and target specifications as well as of
the assumed synchronisation and measurement characteristics.
Finally, the paper is concluded in Section VI.

II. THE Q-RAM PROBLEM

We will briefly introduce the Q-RAM problem in this
section. The goal of the resource allocation module in a multi-
function radar is to maximise the utility of a set of radar tasks
by selecting operational parameters (e.g. waveform, dwell
period or the choice of tracking filter) while adhering to certain
resource constraints (e.g. radar bandwidth, power) and taking
into account the environmental conditions, i.e. situational data.
A specific choice of operational parameters together with the
environmental conditions determine the (expected) quality of a
task, which is usually task-type related and allows for easier,
interpretable user control. Quality and situational data then
define the task utility. For {τ1, . . . , τn} a set of radar tasks,
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k types of resources with resource bounds R1, . . . , Rk and
environmental conditions e, the problem can be formulated as

max
φ=(φ1,...,φn)

u(φ, e) (1)

s.t. ∀j = 1, . . . , k

n∑
i=1

(
gi(φi)

)
j
≤ Rj , (2)

where φi is a configuration for task τi, u the system utility
and gi functions mapping task configurations to their resource
requirements (see [5] for a more detailed description).

III. THE CLASSICAL APPROACH

In this section we will briefly describe the approximative
solution strategy to the Q-RAM problem proposed in [1],
[2]. A notable alternative approach is given in [6]. First,
all possible task configurations are generated and evaluated
on a per task basis, i.e. their resulting utility and resource
requirement are computed. In case of multiple resources, a
scalar proxy, called compound resource, is used. Then a subset
of configurations with a high utility for various resource levels
is pre-selected and stored in a list ordered by increasing
compound resource requirement, which we will refer to as
job list. The job lists of all tasks are given to a global
optimiser, which iteratively allocates resources to the task
offering the best utility-to-resource-ratio provided sufficient
resources are available. If a task is selected and assigned
additional resources, we say that the task is upgraded. After
resource allocation, the selected jobs (i.e. tasks with a chosen
configuration) are scheduled by a scheduler.

IV. PROPOSED FRAMEWORK AND ALGORITHM

The classical Q-RAM scheme lacks the possibility to
model complex inter-task dependencies, i.e. the quality of a
task cannot depend on the expected quality of the chosen
configuration for another task in the same planning period.
However, these dependencies are present and important in
synchronisation and calibration scenarios. More concretely,
the synchronisation quality heavily influences the quality of
tracking tasks as it changes the measurement accuracy. Addi-
tionally, synchronisation tasks are often considered to not have
their own inherent utility but contribute to the system utility
by increasing the quality of other tasks. Clearly, there is an
easy way to nevertheless perform Q-RAM in these situations.

sync
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target

bi-static
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Fig. 1: The bistatic setup.

Namely, to fall back to a fixed synchronisation schedule and
thus to not optimise the synchronisation itself (cf. top row
of Figure 2). Not surprisingly, this cannot lead to optimal
resource allocations in general.

We present an extension of Q-RAM which enables the
resource manager to provide adaptive and intelligent synchro-
nisation schemes. To this end, consider a generic bistatic radar
system as depicted in Figure 1. The transmitter has to send
communication signals to the receiver on a regular basis to
establish a GNSS-free time synchronisation. This is time-
consuming and blocks the aperture for other tasks. Hence, it
should be performed only when necessary but often enough to
not degrade the quality of the other tasks. Assume that there
are multiple different synchronisation schemes s1, . . . , sn at
hand for a fixed planning period. Each of these possesses
a respective resource requirement r1, . . . , rn for synchroni-
sation. The aim is to pick the scheme with the highest overall
system utility. In the simplest form, this is the binary decision
of performing (s1) or not (s2) a synchronisation task in a
given planning period, in which case r2 = 0. For a given
si, we compute synchronisation quality and its impact on the
expected utility of the other tasks which allows for a non-trivial
redesign of the utility functions. Using these and reducing
the available resource budget by ri, the Q-RAM algorithm
to allocate resources can then be performed as usual. This is
done for all i and for a given planning period, the scheme
si with the highest overall system utility is picked. In the
next planning period, the process is repeated. This way a
dynamic synchronisation pattern is established, that adaptively
takes into account the presence and nature of other tasks to
be performed as well as the current environment. The process
for a binary choice is depicted in Figure 2.

?
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sync task
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Fig. 2: Regular vs. adaptive synchronisation scheme.

Note that since the Q-RAM optimisations corresponding
to the different synchronisation schemes are independent, the
proposed algorithm does not increase computation time when
executed in parallel.

V. EXPERIMENTAL VERIFICATION

We demonstrate the effectiveness of the proposed algorithm
via simulation in the following scenario. The radar system is
bi-static consisting of a transmitter and a receiver and requiring
active time synchronisation. An increasing number of targets
fly through its field of view over a period of 60 seconds.



The goal of the system is to acquire and track these targets.
The positions of radar and targets are shown in Figure 3. For
validation, we compare our algorithm with Q-RAM for various
fixed synchronisation schedules as well as with a classical rule-
based scheme via a Monte Carlo simulation using Fraunhofer
FHR’s Cognitive Radar Simulator (CoRaSi).

A. Radar and target specifications

The active radar is assumed to be equipped with a fixed
AESA antenna reaching a maximum range of 350 km and
focuses its emitted energy into a search fence with an opening
angle of ±40° in azimuth and 5° in elevation. The targets
move with velocities of 800m s−1 to 1300m s−1 through the
search fence. The SNR for a target in the centre of the search
beam with an RCS of 1m2 at a range of 300 km is 10 dB.
Without any other load, the radar needs 10 s for a full update
of the search fence. The direct transmission line to the passive
system is attenuated (e.g. by terrain) with 120 dB such that a
long integration time is necessary to synchronise both systems.
The receiver uses DBF to be independent of the transmitter.

The following (bistatic) radar equation is used to calculate
the received signal-to-noise ratio

PtxIcGtxGrxσλ
2L

(4π)3R2
txR

2
rxkTBnf

(3)

where Ptx denotes the peak power, I the number of integrated
pulses, c the compression ratio, Gtx and Gtx are the gain values
on transmit and receive, respectively, σ is the radar cross-
section, λ the wavelength, nf the noise factor, L system losses
and kTB the thermal noise. The ranges Rtx and Rrx give the
distance from the target at position p ∈ R3 to the transmitter
and receiver, respectively. Note that the gains also depend at
least indirectly on the target position p via the array factor
and electronic beam steering. In case that the radar equation
is evaluated for the receiver, L integrates additional losses of
3 dB caused by the filter mismatch due to the communication
part of the radar waveform.

B. Synchronisation and measurement description

This section describes the measurement model of the active
and passive sensors and their synchronisation method. It is

Fig. 3: Scenario overview. Transmitter (grey), receiver (black)
and target trajectories (red) are shown.

assumed that the active radar is able to transmit and receive
its own waveform in a classical manner, but it emits a special
waveform containing the time stamp of the transmission. The
passive sensor is also able to receive this waveform and decode
it to be able to reconstruct the time stamp.

Both sensors possess their own clocks that can deviate but
for simplicity we define the transmitter’s clock to be perfect
and the error to only be on the receiver’s side (master-slave
system). The clock drift after N seconds is modelled as a
random walk:

∆T =

N∑
i=1

Zi, Zi ∼ U(−d, d), d > 0. (4)

This defines a discrete version of the drift which is interpolated
linearly to model the corresponding continuous extension.
Notice that the error ∆T is proportional to the error of the
distance measurement from transmitter to target and back to
the receiver ∆D and thus has a direct impact on the tracking
error. As common trackers expect the measurement to be
in spherical coordinates, we transform the original bistatic
measurement to a monostatic measurement. Therefore the
distance from the transmitter to the target and back to the
receiver D(p) is transformed to the range from the target to the
receiver R(p) using trigonometric relations. The corresponding
covariance transformation is calculated using the Monte Carlo
integration method since it was found out that the linear
first order approximation by the Jacobian Matrix leads to
instabilities in the Kalman-Filter. The angular measurement
standard deviation is modelled as

σx = 0.628 θx/(2
√

SNR), x ∈ {a, e}, (5)

where θ gives the 3 dB beamwidth in azimuth and elevation,
respectively. The range error standard deviation is assumed to
be known and fixed.

C. FHR Cognitive Radar Simulator CoRaSi

Fraunhofer FHR’s Cognitive Radar Simulator (CoRaSi) is
a multi-purpose software simulator for phased array radars
with electronic beam steering written in Java, which was
developed as part of the basic funding by the German Ministry
of Defence. It enables real-time analyses of radar systems in
different frequency ranges, rotating or static, with arbitrary
antenna patterns and search strategies. The simulation includes
the most important functions such as search, tracking, target
classification, resource management and data fusion across
multiple sensors. CoRaSi was originally developed for ground-
based multifunction radars equipped with AESA antennas, but
is now also capable of simulating ship and air-based systems.
In case more than one sensor is simulated, different fusion
concepts (central, decentral, hybrid) are available to merge
information. Due to its variability CoRaSi is able to analyse
many phased array radars based on given parameters.

The simulation also enables the analysis of threat tra-
jectories. Detections are generated for every target taking
into account aspect angle-dependent radar cross-sections. This
includes also the generation of false alarms based on the sensor



Fig. 4: Graphical user interface of CoRaSi.

Fig. 5: Comparison of tracking performance for various syn-
chronisation schemes. The box plot shows the median (green).

parameters, which leads to a realistic simulation of target
detection. CoRaSi comes with an optional 3D-GUI allowing
for run-time adaptation and evaluation of key parameters
as well as an extensive logging scheme for further post-
simulation analysis (cf. Figure 4).

D. Experimental results

We compared the proposed algorithm (called caseDecision
in tables and figures) with regular Q-RAM for fixed synchro-
nisation patterns of 1 through 4 and 10 s (called regUpdate1
etc.) and a rule-based approach with time balanced scheduling
(cf. [7]) with a desired synchronisation period of 3 s (called
TBreg3) in the scenario described above. All Q-RAM based
methods make use of a planning interval of length 1 s. For
caseDecision, the synchronisation decision is binary. The al-
gorithm can decide whether to perform a synchronisation task
with a duration of 231ms in any given planning interval. Note
that as the system was unable to acquire and track all targets
using a fixed synchronisation interval of 1 s, regUpdate1 is not
further considered in the following.

Our algorithm performed best with a median track error of
6726.4m versus 6954.9m for the next best solution. The mean
error on the other hand is improved by 15% (8121.5m vs.
9520.8m), which is a significant improvement. Furthermore,
our algorithm showed the most consistent tracking perfor-
mance with the lowest standard deviation of the tracking error
by far. Also, the maximum track error was improved by 22%

TABLE I: Key data of tracking errors per allocation strategy.
Results are averaged over 5 simulation runs.

median min max mean std. dev.

caseDecision 6726.4 410.3 29711.9 8121.5 5758.2
regUpdate2 7526.0 440.6 43131.8 10185.8 8790.4
regUpdate3 6954.9 267.8 38133.3 9520.8 8089.9
regUpdate4 8452.8 367.7 44974.2 11362.2 9382.6
regUpdate10 9299.9 671.0 42533.1 11273.5 8036.7
TBreg3 9942.7 636.5 44276.6 12151.2 9149.9

Fig. 6: Synchronisation schedules in a single run of the
simulation: regular scheme (red) and adaptive scheme (blue).

on average as compared with the next best performance. Not
unexpectedly, the remaining Q-RAM based methods outper-
formed the rule-based approach TBreg3. The detailed results
are given in Table I and Figure 5.

The adaptive algorithm leads to flexible synchronisation
schedules with an improved load balancing and reduced track-
ing errors. One such resulting schedule is shown in Figure 6.

VI. CONCLUSION

An extension of a Q-RAM based radar resource manage-
ment architecture has been presented enabling radar systems
to cleverly schedule synchronisation tasks to ensure an optimal
overall system performance. Moreover, it has been indicated
that the proposed algorithm is applicable in settings other
than radar synchronisation. The provided experimental results
demonstrate the effectiveness of the adaptive synchronisation
scheme, which significantly outperforms more traditional syn-
chronisation concepts (with regular update rates) in simula-
tions. Future investigations concern the implementation for
sub nanosecond phase synchronisation in coherent distributed
MIMO networks. Overall, the presented approach is a valuable
step on the way to a truly cognitive radar system.
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