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Abstract—Ultra-wideband (UWB) multistatic radar can be used for
target detection and tracking in buildings and rooms. Target detection
and tracking relies on accurate knowledge of the bistatic delay. Noise,
measurement error, and the problem of dense, overlapping multipath
signals in the measured UWB channel impulse response (CIR) all
contribute to make bistatic delay estimation challenging. It is often
assumed that a calibration CIR, that is, a measurement from when no
person is present, is easily subtracted from a newly captured CIR. We
show this is often not the case. We propose modeling the difference
between a current set of CIRs and a set of calibration CIRs as a
hidden Markov model (HMM). Multiple experimental deployments are
performed to collect CIR data and test the performance of this model and
compare its performance to existing methods. Our experimental results
show an RMSE of 2.85 ns and 2.76 ns for our HMM-based approach,
compared to a thresholding method which, if the ideal threshold is
known a priori, achieves 3.28 ns and 4.58 ns. By using the Baum-Welch
algorithm, the HMM-based estimator is shown to be very robust to initial
parameter settings. Localization performance is also improved using the
HMM-based bistatic delay estimates.

Index Terms—Ultra-wideband, hidden Markov model, localization,
bistatic radar

1 INTRODUCTION

A useful application of ultra-wideband (UWB) impulse
radio is detection and tracking of people1 in buildings.
In particular, bistatic and multistatic radar systems are
used for this application [?]. This is done by capturing
the channel impulse response (CIR), h(t), between trans-
mitter/receiver pairs and detecting changes to the CIR.

This paper describes a contribution to bistatic delay (or
equivalently, bistatic range) estimation. A person induces
changes in the CIR starting at the bistatic delay, that is,
the earliest time delay at which changes occur in the CIR
due to the person being tracked. If the bistatic delay is
denoted τ∗, then the bistatic range is simply the distance
this multipath component has traveled, i.e., τ∗c where
c is the speed of light. If RF energy traveled from the
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1. In this paper, we use “people” or “person” to indicate the object
being tracked.

transmitter to the person and then to the receiver, with
no additional scattering, then the bistatic range defines
an ellipse on which the person is located. Thus bistatic
range estimation is a key primitive of UWB tracking
systems.

The primary contribution of this work is to develop a
method which considers the changes which occur in a
CIR at all time delays in order to estimate bistatic delay.
Current published research, as described in Section 1.1,
generally are first threshold-crossing methods, that is, they
estimate the bistatic delay as the first delay in which
a metric exceeds a threshold. As a result, they are (a)
sensitive to noise in the CIR prior to the true bistatic
delay, and (b) sensitive to the correct setting of the
threshold parameter.

Our proposed method uses a hidden Markov model
(HMM) to model the changes to the CIR as a function
of time delay. The Markov chain is a progression be-
tween two states: X = 0, meaning that a person in
the environment is not causing changes at the current
time delay, or X = 1, meaning that a person is causing
changes at the current time delay. The state of the
system is observable only indirectly via the CIR, because
of noise and the variability in the multipath channel.
The distribution of the observations is dependent on
the current state of the system, thus the system is a
HMM. Using the observations and the system model, the
forward-backward algorithm solves for the most likely
state at any given time. The bistatic delay estimate is the
time delay at which the system transitions from state 0
to state 1.

When solving for the bistatic delay, our proposed
method considers all of the available data and, as we
show, the error in bistatic delay estimation is reduced
compared to the best thresholding scheme. Further, us-
ing a Baum-Welch algorithm, we avoid the requirement
of knowing a priori the correct parameters.

1.1 Related Work

Generally, methods to estimate the bistatic delay or range
first perform “background subtraction”. This means that
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a prior measurement, or an average of many prior mea-
surements, of the CIR is subtracted from any current CIR
measurement. These prior measurements are presumed
to be made when the area is empty, i.e., with a static
background.

Some work in UWB-based impulse response radar
assumes that background subtraction is completely ef-
fective in removing the response due to the static envi-
ronment [?], [?], [?], [?]. Some work additionally assumes
that, after background subtraction, that each single mul-
tipath component caused by a person’s presence can
be distinguished perfectly from the impulses caused
by other people and the environment [?], [?]. In this
paper, we show that ranging can still be performed when
these assumptions are not true, as is often the case in a
cluttered multipath environment.

One way to estimate the bistatic delay is first to
perform “background subtraction”, and then to thresh-
old on the amplitude of the difference. Zetik et al. [?]
describe a thresholding method which uses a simple
formula for choosing an appropriate threshold value
for accurate range estimation after background subtrac-
tion has been performed. Each UWB module has one
transmitting and two receiving directional antennas, all
relatively close to one another. This makes each UWB
module approach a monostatic radar configuration. All
of the sensor nodes were pointed inward toward an
empty room using directional horn antennas for their ex-
periments. In contrast, our measurements are performed
in furnished office environments, and the additional
clutter can make background subtraction less effective.
The estimation methods described in [?] will be used in
this work for comparison.

Another way to estimate the delay is to perform a
cross correlation of the received signal with a known
target scattering profile and then to threshold the corre-
lation values. SangHyun Chang et al. approach detection
by modeling a human body’s scattering as a spectral
multipath model and cross correlating this model with
the received CIRs [?], [?]. Detection is then performed
using an adaptive threshold on the cross correlation. In
their work they used a UWB radio similar to those used
in this work but in a monostatic radar configuration.
The human body spectral multipath model was obtained
using empirically collected data from their UWB radio.
They collected data of a moving human subject in
an open field where there was little or no multipath
propagation to validate their detection method [?]. They
expanded the method to tracking a human target and
tested it using additional data collected from the UWB
radio [?]. The experimental data for tracking was also
collected in an open field. In contrast, we use measured
data from cluttered environments to show that our
method is robust to the indoor multipath channel.

Our work is not the first to propose using HMMs for
tracking, however, it is the first, to our knowledge, to
propose using a HMM for UWB impulse radar bistatic
delay estimation. Nijsure et al. used a HMM to model

movement in a UWB radar-based tracking system and
simulated its performance [?]. In their work, the states of
the model are non-overlapping geographic regions near
the radios rather than changes to the received signal.
The measurements in [?] are unambiguous power delay
profiles. In contrast, our HMM is used to estimate the
bistatic range, with only two states, whether or not the
CIR is impacted by a person at a given time delay or not.
Two-state HMMs have been used in other applications,
for example in detecting channel use in dynamic spec-
trum access [?]. The work in [?] simulated channel access
by primary users and the performance of detection by
secondary users, who would use the channel opportunis-
tically, using a HMM-based estimator to detect whether
a primary user is currently transmitting. Simulations
showed improved detection performance for the HMM-
based method compared to a threshold-based method.

1.2 Organization
This paper is organized as follows. Section 2 describes
the methods proposed in this work to estimate τ∗ using
hidden Markov models. Section 3 describes the data
collection campaigns carried out to test the proposed
methods empirically. Results for our proposed methods
as well as those from performing simple thresholding
and the thresholding method described in [?] are re-
ported in Section 4. Finally, conclusions are discussed
in Section 5.

2 METHODS

2.1 Measurements
Assume that an UWB transmitter sends pulse δ(t). Due
to multipath propagation, the received signal is de-
scribed by

h(t) =
∑
i

αiδ(t− τi), (1)

where αi and τi are the complex amplitude and time
delay of the ith path, respectively. The line of sight path
delay is τ0. The receiver radio approximately measures
the channel impulse response convolved with the pulse
shape. Fig. 1(a) is an example of how the transmitted
pulse may follow many different paths to arrive at the
receiver.

The number of multipath components seen by the
receiver depends on the environment around the radios.
When a person enters the environment, the person’s
body will cause a new multipath component at the
receiver as well as affect existing multipath components.
This is illustrated in Fig. 1(b). The delay associated with
this new multipath component is τ∗, which we refer to
as the bistatic delay. The person also affects many αi for
τi ≥ τ∗.

In bistatic or multistatic radar systems, the bistatic
delay, described by τ∗, is used to locate and track objects
near the radio transmitters and receivers. Assuming
component i is a single-bounce path (i.e., the path is



IEEE TRANSACTIONS ON MOBILE COMPUTING 3

(a) Static Environment (b) Person’s Effect

Fig. 1. When a person appears at x0 in the environment
between the transmitter at xt and receiver at xr, he
causes an additional path with path length ‖xt − x0‖ +
‖x0 − xr‖, and also affects multipath components with
longer path lengths.

affected by only one scatter as it travels from transmitter,
to the target, and then to the receiver), the scatter is
located on an ellipse with foci at the transmitter and
receiver locations. That is, the locations where the scatter
may be located are points S where the distances from S
to the transmitter and receiver, St and Sr, sum to:

St + Sr = c ∗ τi, (2)

where c is the speed of light.
This work seeks to accurately estimate the bistatic de-

lay τ∗, that of the path created by the person, particularly
in environments with “cluttered” impulse responses, i.e.,
those where individual multipath components arrive
closely in time and become difficult to separate from the
CIR. Estimation of τ∗ is a key primitive operation for
UWB impulse radar systems – estimates from multiple
transmitter and receiver pairs can be used to determine
possible scatter locations under a single-bounce assump-
tion, as we explore in Section 2.7.

As described in Section 1.1, background subtraction is
a standard method for removing the static background
CIR from a current CIR measurement. However, we
have found that background subtraction is not effective
in cluttered environments. An example is shown in
Figure 2, which shows a captured CIR subtracted from
a calibration CIR over about 20 ns of time, and the true
bistatic delay τ∗. Individual multipath components are
indistinguishable and the signal is very noisy. If back-
ground subtraction were effective, the amplitudes prior
to τ∗ would be significantly lower than the amplitudes
after τ∗, however, this is not the case. Better methods
than simple subtraction to quantify the changes in the
CIR are needed.

2.2 Quantification of Change
We describe in this section an alternative to background
subtraction. We introduce a divergence measure which
quantifies the change between the signal energy mea-
sured during the period when the environment is static
and the current period.

We consider a discrete-sampled version of the signal
energy, rk, given by

rk =

∫ (k+1/2)T

(k−1/2)T
|h(t)|2dt, (3)
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Fig. 2. The difference between a calibration CIR and a
new CIR gives a noisy signal with multipath components
that are indistinguishable from one another. The red,
dashed line is the actual bistatic delay, i.e., τ∗.

where T is the sampling period. For example, in our
experimental work, we use T = 1ns. Essentially, rk is
the energy in multipath components contained within
a T -duration window near time delay kT . We call this
T duration window “range-bin k”. The vector r =
[r1, . . . , rn]

T is the sequence of rk samples. We choose to
estimate the energy in each range-bin rather than using
deconvolution to find the CIR. This is done to avoid
the problem of deconvolution generating multiple paths
when multipath experience frequency distortion [?].

In this work we use the Kullback-Leibler divergence
to quantify the change in the signal energy rk at each
time k. The Kullback-Leibler divergence is a measure of
how many additional bits would be required to encode
the samples of one distribution relative to another dis-
tribution. This is also known as relative entropy [?].

For continuous distributions the asymmetric KL diver-
gence is defined as

D(p(x)‖q(x)) =
∫
p(x) log

p(x)

q(x)
dx (4)

where p(x) and q(x) are the probability densities of rk for
the calibration measurements and for those under test,
respectively. The symmetric KL divergence is defined as
D(p(x)‖q(x)) +D(q(x)‖p(x)).

The observation signal, Ok, in this model represents
the difference between rk and rk of the empty room, that
is, the calibration samples. In this work, this difference
was calculated as the symmetric Kullback-Leibler (KL)
divergence.

For the observed signal, Ok, we use the symmetric KL
divergence assuming Gaussian distributions for rk. This
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measure is given in closed form by,

Ok =
1

2

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+
(µp − µq)2

(
σ2
p + σ2

q

)
σ2
pσ

2
q

)
− 1 (5)

where µp and σ2
p are the mean and variance of rk during

calibration, and µq and σ2
q are the mean and variance of

rk from the CIR measurements collected for testing. This
closed form solution for Ok is non-negative and the pdf
fO,i will allow us to estimate Xk by applying our hidden
Markov model.

The assumption that rk is Gaussian is important to
the closed form solution of Ok given in equation 5. To
show that rk follows a Gaussian distribution, each set of
10 samples of rk for the empty room was normalized to
have a mean of 0 and a variance of 1. These samples were
then aggregated for testing. With 10 sets of 90 samples
of rk for the six radio pairs gives 5400 samples. A
histogram of the normalized samples is given in Figure
3. Submitting these samples to a Kolmogorov-Smirnov
test fails to reject the null hypothesis that they come from
a standard normal distribution with p = 0.198.
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Fig. 3. Empty room samples normalized to have zero
mean a variance of 1 exhibit a Gaussian distribution.

An example of an observation vector O of KL diver-
gences is given in Figure 4. This particular example is
one where a first threshold-crossing method would be
unable to correctly estimate the true bistatic delay, k∗, of
15. This example shows how the assumption of easily
being able to discern the background signal from the
changes to the CIR can sometimes be wrong. In this
case, there is a very large divergence at a time when
the signals should have shown little or no difference.

Other distance measures or distributions could be
applied. However, the KL-divergence and Gaussian as-
sumption provide a standard approach for this proof-of-
concept study.
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Fig. 4. An example of an observation vector where no
threshold can find the true τ∗, which is 15 in this case.
The HMM correctly estimated τ∗ for this vector.

2.3 CIR Changes as a Hidden Markov Model
A hidden Markov model is a special case of a Markov
chain. The states of a HMM are not directly observable
but may be inferred. Other signals available for obser-
vation help determine the past and current states of the
system. Let πi be the probability of initially starting the
HMM in state i, Pij is the probability of transitioning
from state i to state j, and fO,i is the probability of
observing signal O given the HMM is in state i, that is,
f(O|Xk = i). A simple illustration of a hidden Markov
model is shown in Figure 5.

In the case when the observations are continuous, we
use the probability density function (pdf) conditioned
on the state, fO,i, for a continuous valued random
variable. This is the typical way to describe a HMM for
continuous-valued observations [?].

P01

P10

P00 P11

X =1kX =0k

f(O|X =0)
k

f(O|X =1)
k

Fig. 5. The change in CIR measurement we observe at
range-bin k,Ok, has a distribution dependent on the state,
Xk, of a hidden Markov chain.

By knowing fO,i, Pij , and πi, a best estimate of the
current state at each time, X̂k, can be calculated. This is
found by applying the forward-backward algorithm to
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the sequence of observation signals. When the estimated
states transition from X̂k = 0 to X̂k+1 = 1, this gives an
estimate for k∗ and indicates the presence of a person
due to the changes to the observation vector.

Estimation of k∗, where k∗ = b τ∗T c, is equivalent
to estimating τ∗. Due to multipath scattering and the
person’s impact on those later-arriving signals, rk will
experience changes, or Xk = 1, for many k ≥ k∗. The
advantage of applying a HMM is that information over
all k is considered when solving for Xk rather than
considering values at each k independently of changes
at all other k.

A more thorough introduction to hidden Markov
models and the algorithms used to infer information
about them can be found in [?].

2.4 Continuous Observation Densities
The observations Ok are continuous valued and their
probability distribution is described by fO,i, the proba-
bility density function of Ok given Xk = i, i ∈ {0, 1}. The
HMM parameters fO,i, πi, and Pij are estimated using
the data D collected in one room and are used as initial
estimates of the HMM parameters when estimating k∗
for the other room.

The data sets Di, for each state i, are made using the
knowledge of k∗ by

D0 = {Ok|k < k∗} (6)

D1 = {Ok|k ≥ k∗} (7)

Dividing the observation signals in this way assumes
that there will only be one transition from state 0 to state
1 and no transitions back to state 0, that is P10 = 0 and
P11 = 1.

Under the assumption that Xk = 1 given k ≥ k∗,
one may also assume that P1,0 = 0 and P1,1 = 1, that
is, P (Ok|Xk = 1) remains constant as k increases. This
assumption may not be true – a person’s effect will
eventually diminish for large k. Also, a probability of 0
leaves little opportunity for change during optimization.
To improve the model, we allow a small probability of
returning from state 1 to state 0, i.e., set P10 = ε where
ε is a small value greater than 0.

In [?], no assumptions were made regarding the dis-
tribution the observations took on. The distribution was
estimated by performing an Expectation Maximization
algorithm to fit the data to a Gaussian mixture model.
This operation was computationally expensive but ef-
fective. In this work we utilize our observation that the
densities are similar to a log-normal distribution. Under
this assumption, well known maximum-likelihood esti-
mates are used for the distribution parameters. Figure
6 shows the empirical CDFs of the aggregate samples
before and after k∗ for one room. The natural log is
applied to Ok in these distributions. This log-normal
approximation reduces the computational load without
sacrificing solving accuracy.

Initial estimates for πi and Pij are given by [?, eq. (40a-
b)] using the training data.
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Fig. 6. Empirical CDFs of the log of Ok for one room.
Although these distributions are not precisely log-normal,
this assumption is reasonable for the solving methods.

2.5 HMM Solving
The HMM parameters are described by λ as

λ = [πi, Pij , fO,i] (8)

The data from one room is used as training data to
obtain an initial estimate of λ to begin solving for k∗
with the other room’s data, or that of the measurement
room. The following describes how k∗ is estimated for
the measurement room once λ is estimated from the
training data, as described previously.

Finding X̂k, the estimate of Xk, for the measurement
room is done by solving the forward-backward algo-
rithm. This algorithm finds the most likely state X at
each range-bin k [?].

X̂k = arg max
i

P (Xk = i|O, λ) (9)

The forward-backward algorithm is different than the
Viterbi algorithm, which finds the most likely state
sequence over all k. It may seem more appropriate to
use the Viterbi algorithm to estimate when the state
change occurs. The Viterbi algorithm, however, only
returns a state sequence. By using the forward-backward
algorithm, the additional uncertainty information of
P (Xk = i|O, λ) is available for each k when performing
localization. It should be noted that estimates for k∗ are
not constrained by the room boundaries or any prior
information about where the person might be located.

After estimates for Xk are obtained, the Baum-Welch
algorithm uses these estimates to update the set of HMM
parameters such that

P (O|i, λn+1) > P (O|i, λn) (10)

This is algorithm an iterative optimization on the space
of λ to maximize P (O|i, λn).
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The HMM parameters are updated over all sets of D
as described by Rabiner [?]. Also, fO,i is again found
by estimating the distribution as log-normal using Di.
However, Di is now found as

Di = {Ok|X̂k = i} (11)

The algorithm continues for a predetermined num-
ber of iterations or until P (O|λn) no longer increases
more than a given tolerance with each iteration, that is,
P (O|λn)− P (O|λn−1) < ε. The final estimate for k∗ is

k̂HMM
∗ = arg min

k
P (Xk = 1|O, λ) > 0.5 (12)

This finds a local maximum in the space of possible λ
but may not find the global maximum. The effectiveness
of this algorithm is dependent on the initial values of the
HMM parameters and the data itself. Other optimization
algorithms exist but were not explored in this research.

2.6 First Threshold Crossing
A standard method to determine the bistatic delay, k∗,
is simply to find the first time at which Ok is greater
than a threshold. We refer to this method as first threshold
crossing (FTC). Specifically the estimate of k∗ in first
threshold crossing is given by

k̂FTC∗ = arg min
k

Ok > γ (13)

where γ is a threshold. We show the performance of this
method in Figure 9 as a function of γ. To show how the
method would perform with training, we assume that γ
is set by using the γ that achieves the lowest room mean
squared error (RMSE) in one room, and test performance
with that γ in the other room.

The work presented by Zetik et al. in [?] gives another
method for thresholding the received CIR to estimate τ∗.
This method is also used for comparison in Section 4.1.

2.7 Localization
Multiple range estimates allow localization to be per-
formed. In this section, we describe methods for merging
bistatic range estimates to obtain a position estimate.
Clearly, range estimates contain errors, and any location
estimator must deal with these noisy inputs.

One advantage of the HMM-based approach we pro-
pose in this paper is that it provides a ”soft” decision
on the bistatic range estimate. The forward-backward
algorithm quantifies the probability of each state i at
each time index k, P (Xk = i|O, λ). If the conditional
probability of state 1 increases from zero to one very
quickly at time k, the data is very clear that the delay
bin k is very likely to have been the bistatic delay. If
the conditional probability increases slowly from zero to
one over several delay bins, then the data is less clear.
Essentially, a quantification of the probability of each
delay bin k being the bistatic delay is given by the rate
at which the conditional probability changes.

The forward-backward algorithm finds the conditional
probability of being in a given state at time k. To simplify
notation going forward, we will let αk = P (Xk = 1|O, λ).
Since there are only two states, αk fully describes the
probability of being in a given state at time k. Also, let
(x)+ be defined by

(x)+ =

{
x if x ≥ 0

0 if x < 0
(14)

Assuming a single-bounce model, each time delay mea-
surement corresponds to a region on the plane given
an ellipsoid with the transmitting and receiving radios
at the foci. For a location estimate on a 2D plane, at
least three radio pairs must give range estimates for
the overlapping elliptical regions to produce a unique
solution, assuming noise-free range estimates. Due to the
cluttered environment, whose background UWB reflec-
tions are often much stronger than the ones caused by
a person, the range estimates cannot be assumed to be
noise-free. For this work, to mitigate the effect of having
range estimate inaccuracy, we obtained data from six
radio pairs.

Localization can be solved as an inverse problem, de-
scribed by Cheng Chang et al. as a semi-linear algorithm
(SLA) [?] which models the radio locations and range
estimates as a linear function g = Az [?, eq. (4)]. SLA
is solved using a linear least squares method. Where
range estimates alone are available, solving the problem
as an inverse problem makes the most sense since these
estimates will often not converge perfectly due to errors
and noise.

The output of the HMM, however, is more than a
simple range estimate. Additional information about the
probability of being in one of the two HMM states is
available. This additional uncertainty at each time k can
be used to improve localization accuracy.

In this work, localization is solved as a forward
problem as follows. We discretize space into P pixels
containing the area being monitored. We denote li to be
a quantification of the “presence” of a person in pixel i.
The image vector is then

L = [l1, . . . , lP ]
T , (15)

where pixel i is centered at coordinate zi = (xi, yi). A
person in pixel i would, assuming the single-bounce
model, be measured to be in range-bin kmi for transmit-
ter/receiver pair m, where m ∈ {1, . . . ,M},

kmi =

⌈
‖tm − zi‖+ ‖zi − rm‖ − ‖tm − rm‖

dk

⌉
(16)

where tm and rm are the transmitter and receiver coor-
dinates for link m and dk is the distance light travels
during one time bin. The value li is given by

li =

[
M∑
m=1

[Am]
p
i

] 1
p

(17)
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where A is the non-negative difference function of α at
kmi ,

[Am]i = (αkm
i
− αkm

i
−1)

+ (18)

with α0 = 0. Equation (17) is the p-norm of {Am} for all
radio pairs m = 1, . . . ,M at pixel i. A p-norm of 0, i.e.
p = 0, gives a count of non-zero values and a p-norm of 1
is a sum of the elements. In this work, p = 0.2 was found
to give the best performance and was the value used for
the results given in Section 4.2. This p-value weights the
elements of A such that, qualitatively, lower values are
weighted more and higher values are weighted less.

Rather than using αk, localization can also be done
using estimates k̂∗. This would change the way A is
calculated from what is given in Equation (18) to:

[Am]i =

{
1 if i = k̂∗

0 if otherwise
(19)

Results for both of these methods for solving localization
as a forward problem as well as solving using SLA are
given in Section 4.5.

To understand pixel value li more intuitively, we recall
that αkm

i
−αkm

i
−1 is a soft metric for the probability that

pixel i is at the same bistatic range as the person, as
indicated by the measurement on link m. Due to the p-
norm in (17), li is a type of average of these probabilities
over all links. This method is especially useful when the
measurements from a link are ambiguous, and thus αk
for that link doesn’t change from zero to one suddenly.
The uncertainty in {αk}k is reflected in the presence
image L.

For purposes of noise reduction, we apply a 2-D
Gaussian filter to image L. For experiments with one
person in the area, we take the coordinate of the pixel
with highest li (after the filtering) as the location of the
person.

3 EXPERIMENT

We conduct two types of experiments for evaluation
of our proposed algorithms. First, we conduct in-room
experiments where transmitters and receivers are in the
same room as the person being located. Second, we con-
duct an experiment in which the transmitter and receiver
are on the other side of an interior wall of the room in
which the person is located. In all experiments, we use
two P220 UWB impulse radios from Time Domain, Inc.,
to capture CIR measurements.

3.1 In-Room Experiments

We first conduct measurements in rooms 3325 and 1280
in the Merrill Engineering Building. Two rooms are mea-
sured so that one room can be used as a training room
while the other is used as an experiment room. Figures
7(a) and 7(b) describe the positions of the radios and
where the person stands in each room. Room 3325 con-
tains typical office furniture; desks, chairs, bookshelves,

and computers. Room 1280 is a classroom and all of the
desks and furnishings were removed from the room for
the experiment. Room 1280 is also larger than room 3325,
as shown in Figure 7.

(a) Room 3325

(b) Room 1280

Fig. 7. Circles are points where the person would stand
and squares are radio locations. Gray rectangles are
furniture. Neighboring points are spaced 90 cm apart.

We collect both empty-room (i.e., no person in the
room) calibration measurements and measurements
which represent all measurements possible in a four
UWB transceiver multistatic network when a person is
standing at any of the possible grid points in the two
rooms. Since we have only two UWB transceivers, we
conduct these measurements as follows.

The two radios are placed in any of the four locations
designated for the radios in the room. Ten calibration
measurements of rk are taken when the room is empty.
Then, at each of the designated points, a person stands
and remains as motionless as possible while ten more
measurements of rk are taken. After collecting measure-
ments at all points, the two radios are moved. This
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process is repeated for the M = 6 pair-wise radio
locations. Then, the full process is repeated in the second
room.

Experiment A uses the data collected in room 1208 as
the training room data and the data collected in room
3325 as the data for the experiment room. Experiment
B swaps the data used for the training and experiment
rooms and performs the estimation again.

3.2 Through Wall Experiment

In addition to ranging and localizing a person that is in
the same room as the radios, one data set is also collected
to test ranging through an interior wall. Two radios are
placed 1 m apart from one another and 18 cm from the
wall in room 3220 in the Merrill Engineering Building at
the University of Utah.

We also report the power loss due to wall penetration,
in order to characterize the experiment condition. To
estimate the penetration loss of the wall, the CIR is
measured with the radios 4.5 m apart with both radios
in room 3220. The transmitting radio is then placed on
the other side of the wall in room 3230 and the receiving
radio is also moved to maintain a 4.5 m separation. The
CIR is measured again and the line-of-sight component
of two measured CIRs are compared. The measured
power loss of the wall is approximately 5 dB over the
3-5 GHz band.

The measurements are made as follows. A person
stands at 30 different locations in the adjacent room 3230
while the CIR was captured 20 times per location. Fig-
ure 8 shows these two rooms with their corresponding
person and radio locations. Both before and after all of
these CIRs are sampled with a person present, the CIR
for the empty room is captured 100 times. UWB pulse
integration is also increased by a factor of 8 from what
was used in the other experiments. This increases the
SNR of each CIR at the cost of lowering the maximum
possible sampling rate.

This through wall experiment is performed for just one
radio pair, which is insufficient for localization. Instead,
the purpose of this through-wall experiment is to allow
us to quantify the performance of UWB impulse radio
bistatic delay estimation.

4 RESULTS

In this section, we apply the methods proposed in Sec-
tion 2 to the data collected as described in Section 3. We
measure the performance of our proposed HMM-based
bistatic delay estimator in three ways: (1) the RMSE of
the bistatic delay estimator, (2) the false negative and
false positive rates, and (3) the performance of local-
ization using our bistatic delay estimates. We compare
the results of our method of estimating bistatic delay to
simple thresholding as well as the thresholding method
given in [?].

Fig. 8. Squares represent radio locations in room 3220
and circles represent person locations in room 3230.
Person locations are spaced 60 and 120 cm apart.

The bistatic delay error is the difference between the
person’s actual bistatic delay and the estimated bistatic
delay,

ε = T
∣∣∣k̂∗ − k∗∣∣∣

We use root mean-squared error (RMSE) across all ex-
periments to quantify average performance.

We report false negative and false positive rates for
the methods studied. For bistatic delay estimation, a
false negative is when there was no person’s bistatic
delay detected when a person is actually present. For our
HMM-based method, this corresponds to the forward-
backward algorithm detecting no transition from state 0
to state 1 for the measured CIR. A false positive is when
there was a bistatic delay is estimated when no person
was present.

In all results, we chose a delay-bin duration T of 1 ns.
The choice of T is a trade-off between computational
requirements and quantization noise. We note that 1 ns
of time corresponds to about 30 cm of distance traveled
at the speed of light, approximately the width of an
adult human body. Further, our results show errors
significantly higher than 1 ns, and thus it has not been
necessary for us to reduce T further.

4.1 First Threshold Crossing
First, we test the performance of the FTC estimator as
described in Section 2.6. We find the threshold that is
optimal (for minimum RMSE) for the training room and
then use that threshold in the testing room. From this
method, a minimum RMSE of 5.25ns is achieved for
Experiment A and 5.20ns for Experiment B. Next, we
see what minimum could have been obtained for the
testing room even if the optimal threshold for that room
had been known. These absolute minimums achieved
are 3.28ns and 4.58ns, respectively. Figure 9 shows how
the RMSE varies as a function of the threshold. Clearly,
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the optimal threshold would not be known a priori for
each room. Figure 9 shows the sensitivity of the RMSE
to chosen threshold. For Experiment A there is a large
change in the estimates with a small change to γ. This
large change to the RMSE, occurring near γ values of 65
and 99, are due primarily to one set of CIRs for one point
and radio pair. Without knowledge of the true values
for k∗, one would still notice the large change to k̂∗ with
small changes to γ. The effect on RMSE due to this one
outlier is shown in Figure 10.

There were no false negatives for the range of γ tested
in Figure 9 for either experiment using the first threshold
crossing method.
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Fig. 9. Performance of first threshold crossing method
given by equation (13) as a function of threshold γ.
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Fig. 10. RMSE for Experiment A with and without the
outlier point.

The work done by Zetik et al. [?] gives a some-
what different method for thresholding the signals. The
background is continually updated for each UWB node,
which would correspond to a radio pair in our work, as:

bi = αbi−1 + (1− α)mi (20)

where b is the background estimate and m is the newly
measured CIR. The signal s then used for thresholding
is:

si = mi − bi (21)

This removes the static background signal from the time-
varying signal, which is what we wish to detect and
range.

The threshold is calculated as:

ti =

(
0.3 + 0.7

ni

||si||∞

) ∣∣∣∣si∣∣∣∣∞ , (22)

where ni is the peak noise level of mi.
Using the method of [?], described in Equations (21),

(20), and (22), and the data collected, we obtain an
RMSE of 6.5ns and 10.6ns for experiments A and B,
respectively.

When first threshold crossing is performed on the
through-wall experiment data, a plot of RMSE versus
threshold is obtained and shown in Figure 11. This is
comparable to those shown in Figure 9. Notice that the γ
that achieves the optimal estimation of k∗ is different for
each experiment and varies significantly. In other words,
the optimal γ cannot be determined from data measured
in a different location.
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Fig. 11. Performance of first threshold crossing method for
the through-wall experiment

4.2 HMM-based Method
The HMM and process described in Section 2.5 are
applied to the two in-room experimental data sets. The
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changes to RMSE for each iteration of the Baum-Welch
algorithm is shown in Figure 12. The RMSE achieved
after 15 iterations is 2.85ns and 2.76ns for Experiments
A and B, respectively. There were no false negatives. The
bias, E[k̂∗−k∗], was −0.3ns for Experiment A and 0.2ns
for Experiment B.
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Fig. 12. Performance of HMM-based estimator of k∗ as a
function of iteration count.

The marked improvement in RMSE from using a
HMM over energy detection also comes without fore-
knowledge of an ideal threshold value. Although an ini-
tial estimate for λ is required, the Baum-Welch algorithm
eliminates much of the error due to a poor estimate,
as will be shown with the through-wall results 4.3. The
HMM, unlike a simple threshold, takes into account the
data across all time values to estimate k∗.

The stopping condition used for the given results is to
continue the Baum-Welch algorithm until there is little
change to P (O|λ) from one iteration to the next. That
is P (O|λn) − P (O|λn−1) < ε. Experiment A converges,
using this metric, after 9 iterations and Experiment B
after 14 iterations.

4.3 Through-wall experiment
Our proposed HMM method is also applied to data cap-
tured through a wall dividing two rooms as described
in Section 3.2. Observation vectors are calculated using
all of the available empty room CIRs and CIRs with
a person present. With the observation vectors and an
initial estimate for the HMM parameters λ, estimates for
k∗ can be found.

Using the λ that is found to be optimum for any
one of the three environments as the initial λ for any
of the other environments results in the same solution
for λ from the Baum-Welch algorithm. This is illustrated
using the through wall data. For the through wall data,
there are three choices of λ, two obtained from the data

collected from the two in-room experiments described in
Section 3.1 and one from the data and known locations
of this through wall data. The λ obtained from the
through wall data could not be used in a production
system because it is derived using a knowledge of k∗.
If k∗ is known, there is no reason to use it to find λ to
then estimate k∗. It is used here solely for illustrative
purposes.

Figure 13 shows the bistatic delay RMSE at each itera-
tion of the Baum-Welch algorithm for the three different
choices for λ at the first iteration. The choice of λ greatly
influences the RMSE at first, but the effect of the choice
is ultimately negated by the Baum-Welch algorithm. The
final RMSE in all three cases is 1.33 ns.
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Fig. 13. The RMSE for the through-wall experiment
converges to 1.33 ns for each of the initial choices of λ
derived from the data for each of the three rooms.

This final error is better than the results obtained with
the subject in the same room as the radios. There are
several reasons for this.

1) Number of samples: Many more samples of the
empty room were collected and used in deter-
mining the KL-divergences in the through-wall
experiment (200) compared to the in-room experi-
ments (10). These additional samples help to reduce
the noise in the observation vectors. The effect of
choosing different empty room samples is explored
further below.

2) Additional integration: Additional signal integration
was done in sampling to reduce noise in the CIRs
because of the additional path loss in the through-
wall experiment.

To show the effect of the number of empty room sam-
ples on the performance of the ranging estimation (item
1 above), we run an experiment in which we reduce the
number of empty-room samples used in the through-
wall experiment. Here, we calculate observation vectors
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of KL-divergences using sets of 20 sequential empty
room samples. From the two sets of 100 empty room
samples, this leads to 162 sets of sequential samples. The
initial choice of λ was the same used in Experiment A.
The overall RMSE was calculated for each of these sets
of empty room samples. Two of the 30 person locations
had a wide variation in their range estimate depending
on which set of empty room samples was chosen. Figure
14 shows the empirical CDF of the final RMSE obtained
using each of these sets of empty room samples both
with and without these two person locations.

For the trials using all person locations, 12.3% of
the trials resulted in an RMSE better than the 1.33 ns
achieved using all of the empty room samples together.
The overall RMSE for all of the trials using 20 empty
room samples is 4.19 ns. This illustrates that, on average,
using a fewer number of empty room samples degrades
performance.
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Fig. 14. Variance of the estimator based on which set of
empty room samples is used.

4.4 False Positives

Testing for false positives, or non-zero estimates of k∗ in
empty room samples, was also performed. The Baum-
Welch algorithm was not performed on these samples,
that is, no updating of the HMM parameters was done
for re-estimation of k∗.

False positives were tested by randomly dividing the
set of empty-room samples into the known empty-room
and possible point sample sets. Due to the limited
sample sizes for empty-room samples, this random set
division allows us to simulate how false positive tests
might perform using different sample sets that aren’t
available. For each radio pair, the available samples
were divided evenly between the known empty-room
sample set and the possible point sample set. These two

sets were used to find the observation vector of KL
divergences, which the HMM uses to estimate k∗.

For each of the six transmitter/receiver pairs for each
of the two rooms, 1000 trials were performed using the
random subset division described for a total of 12,000
trials. Of these a total of 50 trials resulted in false
positives, that is, a 4.2×10−3 false positive rate. We note
that over half of the false positives come from a single
transmitter/receiver pair in one of the rooms. Notably,
this pair had just 10 empty-room samples available
for testing. This is the fewest number of empty-room
samples for any transmitter receiver pair.

4.5 Localization
Results for localization are given for both the forward
method described in Section 2.7 and the SLA described
described by Cheng Chang et al. [?]. The forward solving
method is done in two ways, first using αk where
αk = P (Xk = 1|O, λ) and second using only the range
estimates, k̂∗, without the additional information of the
probability of being in a given state.

The SLA described by Cheng Chang et al. only uses
range estimates for localization. A summary of the
results of each localization method with its available
information is given in Tables 1 and 2. All values are
given in cm.

TABLE 1
RMS Localization Error (cm)

Forward SLA

All Info Range Only Range Only
Rm 3325 36 155 165
Rm 1208 24 75 194

TABLE 2
Median Localization Error (cm)

Forward SLA

All Info Range Only Range Only
Rm 3325 16 67 159
Rm 1208 16 29 172

The forward solving method described here gives
location estimates that are significantly better than those
from the SLA described by Cheng Chang et al. Taking
into account αk rather than using k̂∗ alone also improves
the location estimates for the forward solving method.

Figures 15 and 16 describe the true person locations,
as shown previously in Figure 7, and the estimates for
those locations using the forward solving method with
all available information.

5 CONCLUSIONS

In this paper, we introduce and experimentally-verify
a hidden Markov model-based algorithm for estimating
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Fig. 15. MEB 3325 actual person positions (O) and local-
ization estimates (X) using the forward solving method.
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Fig. 16. MEB 3325 actual person positions (O) and local-
ization estimates (X) using the forward solving method..

the bistatic delay in an UWB impulse radar system. We
show the proposed algorithm achieves a lower RMSE
than first threshold crossing methods for highly cluttered
multipath environments. Applying the Baum-Welch al-
gorithm allows the proposed estimator to adapt its pa-
rameters to be best for the particular environment. We

show the algorithm is robust to initialization parameters
derived from a different environment.

Compared to using the first threshold crossing esti-
mate of τ∗, our method reduces error by almost half.
Since these estimates of the person’s bistatic delay are
used directly in tracking algorithms, we expect to simi-
larly improve UWB-based localization performance.

The forward solving method described here for lo-
calization using the probabilities αk was very effective,
achieving a median error of 18 cm.

One primary limitation of the algorithm as proposed
is that it assumes only one person is causing changes to
the CIR. To account for more people, future work must
expand the HMM-based estimator to estimate a bistatic
delay for each person in the environment. Research
must determine what methods to use in the multiple
person case, for example, if more states are needed in
the Markov model, or if joint estimation the number of
people and their bistatic delays improves performance.
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