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Abstract—In this paper, we first characterize the fine-grained
encounter pattern among mobile users found in a large-scale
Bluetooth trace collected by 123 participants at the University
of Illinois campus from March to August 2010. Our charac-
terization results show that the fine-grained encounter pattern
is regular and predictable. We then present 3R routing proto-
col, which leverages the regularity of fine-grained encounter
pattern among mobile nodes to maximize message delivery
probability while preserving message delivery deadline. We
evaluate and compare 3R with Prophet and Epidemic routing
protocols over the collected trace. Evaluation results show that
3R outperforms other alternatives considerably by improving
message delivery while reducing message overhead.

I. INTRODUCTION

It is well known that in reality people usually visit regular
places [1], [2], where people make regular social contacts
[3] for their daily activities. Exploiting the regularity of
contact pattern1 to expedite message forwarding in Delay
Tolerant Networks (DTN) has drawn significant attention
from research community [4], [5], [6], [7], [8], [9], [10].
However, existing DTN routing protocols so far have not
exploited the regularity of encounter pattern efficiently for
improving message forwarding.

The first class of DTN routing protocols was Epidemic
routing [11], [12], where the message was flooded to all
nodes in the network until the message was delivered at the
receiver. On one hand, Epidemic routing provided the nearly
optimal message delivery if one intermittently connected
path ever existed [6]. On the other hand, the regularity of
encounter pattern among mobile nodes in the network was
not exploited and thus Epidemic routing usually incurred
broadcast storms of messages.

The second class of DTN routing protocols focused on
mobile nodes whose movement schedules were fixed [4],
[5] to forward message. This approach was to assume the
non-randomness in the movement of nodes, and leveraged
the non-randomness to optimize the message routing. As a
result, this approach could only be applicable if nodes did
not change their movement schedules, which might not be
always true in many real world scenarios.

The third class of DTN routing protocols only ex-
ploited the coarse-grained encounter information of mobile
nodes such as Prophet[6], EBR[8], PASR[9], MEED[13],
FER[14], and MaxProp[15]. Particularly, these protocols

1In this paper, terms “contact” and “encounter” are used interchangeably.

compressed/summarized all encounter information between
a node pair into a coarse-grained piece of information
called encounter probability, and used it to route messages.
However, this summarized encounter probability represented
neither the trend nor the specific characteristics of encounter
pattern between a particular node pair. For example, two
node pairs had the same compressed encounter probability
but they might have different encounter patterns: one pair
might meet during weekdays while the other might meet
only at weekend. Therefore, using only the coarse-grained
encounter probability might result in inefficient message
forwarding.

The fourth class of DTN routing protocols leveraged
encounter information of people within one community to
route messages [16], [17], [18], [19], [20]. For these proto-
cols, a graph was used to represent a community in which
one vertex (or node) was one community member. The
edge between a node pair existed if the two corresponding
community members met at least once. The node degree
was used to select message forwarder, where the node
with a higher node degree was preferable. Essentially, node
degree was a coarse-grained encounter information, which
was similar to the compressed encounter probability. As a
result, this class of routing protocols had similar drawbacks
as those of the third class of DTN routing protocols above.

In summary, since previous DTN routing protocols used
only the coarse-grained encounter information, they may not
fully exploit encounter information for message forwarding.
In reality, the movement behavior of people, and hence
their encounter patterns, may differ between weekday and
weekend, or even among different time slots within the same
day. Thus, the coarse-grained encounter information may not
capture the regularity of encounter pattern among people.
So, knowledge of the fine-grained encounter information is
needed for an improved DTN routing solution.

In this paper, we first characterize the fine-grained en-
counter pattern found in our encounter trace collected by
123 participants in University of Illinois campus. Our char-
acterization results show that the fine-grained encounter
pattern is regular and predictable. Then, we present the
3R routing protocol2, which leverages the fine-grained en-
counter information among mobile nodes to improve mes-
sage delivery. Particularly, 3R divides encounter time into a

23R stands for fine-gRained encounteR-based Routing.



finer granularity of type of day and time slot. Then, 3R
estimates encounter probability with respect to this fine-
grained time division. Finally, the fine-grained encounter
probability is used in message forwarding. This paper has
following contributions:

1) We show that the fine-grained encounter pattern found
in our large-scale encounter trace is regular and pre-
dictable. To the best of our knowledge, we are the first
to characterize the regularity of fine-grained encounter
pattern from a real large-scale encounter trace.

2) We exploit the regularity of fine-grained encounter pat-
tern in the design of 3R routing protocol to maximize
message delivery probability and preserve message
delivery deadline.

3) We evaluate and compare 3R with Epidemic [11]
and Prophet [6] routing protocols over the collected
encounter trace. Evaluation results show that 3R out-
performs other alternatives considerably.

This paper is organized as follows. We first characterize
the regularity of the fine-grained encounter pattern found
in real encounter trace in Section II. Then, we present the
3R protocol in Section III. In Section IV, we compare
the performance of 3R with Epidemic and Prophet routing
protocols. Finally, we conclude the paper in Section V.

II. CHARACTERIZING REGULARITY OF FINE-GRAINED
ENCOUNTER PATTERN IN REAL ENCOUNTER TRACE

A. Collection of Real Encounter Trace

Recently, we deployed a scanning system named UIM
(i.e., University of Illinois Movement) on Google Android
phones [21]. UIM has a Wifi scanner and a Bluetooth
scanner. The former periodically (i.e., every 30 minutes)
captures MAC addresses of Wifi access points, while the
latter periodically (i.e., every 60 seconds) captures MAC
addresses of Bluetooth-enabled devices in proximity of
experiment phones. Then, 123 experiment phones were
carried by 123 participants from March to August 2010 in
University of Illinois campus. Participants include faculties,
grads, undergrads, and staffs. In this paper, we use the terms
person and phone, Bluetooth and BT interchangeably. We
also focus only on the collected BT trace as shown in Table
I, in which each row is created by one BT scan, and has a
scan time η and a set Φ of scanned BT devices. Our collected
BT trace is a fine-grained encounter trace with respect to
time and location since: (1) each row is appended to the
trace every 60 seconds (e.g., one BT scan), and (2) the BT
transmission range of the phone is about 10 meters, thus if
the phone can scan a device, then the phone and the device
stay in the same geographical location. Since the BT trace
is in the format of a table, which is similar to a relation in
the Relational Algebra, we use Relational Algebra [22] to
manipulate the BT trace. Henceforth, we use the terms table
and relation, row and tuple interchangeably.

η Φ
03/08/10 09:20 n1, n3

03/08/10 09:21 n1, n3

03/08/10 09:22 n1

03/08/10 13:50 n4, n9

03/14/10 08:14 n1, n3, n8

Table I
BT TRACE Bp OF PHONE p

Formally, let Bp be the collected BT trace of the ex-
periment phone p. The relation Bp has multiple tuples:
Bp = {b1, b2, b3, .., bk, .., b|Bp|}. Each tuple bk ∈ Bp is in
the format of bk =< ηk,Φk >, where ηk is the scan time of
the BT scan and Φk is a set of BT MACs returned from that
scan. So, we have Φk = {n1, n2, ..., nj , ...}, in which nj is
the jth BT MAC scanned by the BT scanner of p during
the entire experiment period. Let ∆p be the set of all BT
MACs scanned by the BT scanner for the entire experiment
period. In Table I, ∆p = {n1, n3, n4, n8, n9}.

Definition of “fine-grained encounter”: Let enc(p, n, t)
be the predicate, which represents that two devices p and n
have a fine-grained encounter at time t (or the carriers of
the two devices have a social contact at time t). We define
enc(p, n, t) as follows:

1) For a phone p and a device n, enc(p, n, t) ⇔ (n ∈
Φi)

∧
(ηi = t)

∧
(bi =< ηi,Φi >)

∧
(bi ∈ Bp).

Intuitively, the phone p has one encounter with the
device n at time t if n belongs to a tuple in Bp, whose
scan time is t. In Table I, p and n1 have an encounter
at “03/08/10 09:20”.

2) For a phone p and two devices n1, n2,
enc(n1, n2, t) ⇔ enc(p, n1, t)

∧
enc(p, n2, t).

Intuitively, two devices n1 and n2 meet at time t, if
they both exist in one tuple of Bp, whose scan time
is t. In Table I, n4 and n9 meet at “03/08/10 13:50”.

Next, we characterize the fine-grained encounter pattern
found in our BT trace.

B. Classification of Fine-grained Encounter Pattern

We observe four different fine-grained encounter patterns
in the collected BT traces of 123 participants as shown in
Figures 1 and 2. In these figures, for a particular phone p, we
calculate the average number of unique BT MACs scanned
by p for each day of week.

Figure 1(a) shows the first and the most common en-
counter pattern in our data set, where people have a con-
siderably higher number of encounters during the weekday
than the weekend. This pattern is common since in univer-
sity campus most professors and students have classes and
meetings where they meet other people during the weekday.
On the other hand, professors and students usually travel less
and thus they meet less number of people at the weekend.
Figure 1(b) shows the second encounter pattern, which is
totally opposite to the first pattern above. People who belong
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(a) Encounter number decreases at the weekend
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(b) Encounter number increases at the weekend

Figure 1. Encounter number changes significantly between weekday and weekend
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(a) Encounter number grows high in midweek
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(b) Encounter number stays in a small range

Figure 2. Encounter number grows high in midweek or stays in a small range

to this pattern have more social contacts at the weekend and
less during the weekday. We find that in our collected trace
of 123 participants, more than 95% of participants exhibit
the first and the second encounter patterns.

Figure 2(a) shows the third encounter pattern, where the
number of encounters stays high only in the midweek. This
pattern may belong to people who have a strictly working
schedule since they always have the busiest schedule in the
midweek. Figure 2(b) shows the last encounter pattern in
which the number of encounters stays in a relatively small
range for all days. People belong to this encounter pattern
meet a similar number of other people everyday, regardless
of weekday or weekend.

In conclusion, the characterization results show that the
encounter patterns of more than 95% participants depend
on type of day, where the number of encounters differs
significantly between weekday and weekend.

C. Regularity of Fine-grained Encounter Pattern

To characterize the regularity of fine-grained encounter
pattern for a particular participant, the participant must have
a long enough collected BT trace. Therefore, we select a
set of 50 phones from 123 experiment phones, in which
each selected phone collected from 20 to 50 days of BT
trace. Let di be the number of days the selected phone pi
collected BT trace and let Bpi be the collected BT trace, we

have: 1 ≤ i ≤ 50 and 20 ≤ di ≤ 50. Let ∆pi be the set of
all unique Bluetooth MACs scanned by the BT scanner of
pi for di days. The next step is to calculate the number of
regular fine-grained encounters found in Bpi . To this end,
we use the “time slot” and “support value” as follows.

First, we obtain the fine granularity of time by dividing
a day into time slots of size τ hours. For example, with
τ = 6(h), we have following time slots ([00:00:06:00),
[06:00:12:00), [12:00:18:00), [18:00:24:00)) for one day. For
a scanned BT MAC nj ∈ ∆pi , let dij be the number of
days pi and nj meet, in which the encounters happen at
the same time slot of these dij days. For example, pi and
nj may meet every weekday during the [8AM:10AM) time
slot. In our context, a fine-grained encounter between the
phone pi and a scanned Bluetooth MAC nj ∈ ∆pi is a
“regular fine-grained encounter” if dij ≥ di · ϵ, where
ϵ is the threshold or the support value. In other words, a
fine-grained encounter is a regular fine-grained encounter
if pi and nj meet at the same time slot for at least di · ϵ
days during the experiment period of di days. Next, we vary
the values of τ and ϵ to characterize the regular fine-grained
encounters found in the trace of 50 participants. Henceforth,
we use the terms “encounter” and “fine-grained encounter”
interchangeably.

In Figure 3(a), we fix τ = 6(h) and vary ϵ from 0.4 to
0.7. We find that when ϵ increases the number of participants



 0

 5

 10

 15

 20

 0  5  10  15  20  25

N
um

be
r 

of
 P

ar
tic

ip
an

ts

Number of Regular Contacts

support threshold=0.4, timeslot=6(h)
support threshold=0.5, timeslot=6(h)
support threshold=0.6, timeslot=6(h)
support threshold=0.7, timeslot=6(h)

(a) Threhold ϵ Sensitivity

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8  9

N
um

be
r 

of
 P

ar
tic

ip
an

ts

Number of Regular Contacts

support threshold=0.6, timeslot=2(h)
support threshold=0.6, timeslot=4(h)
support threshold=0.6, timeslot=6(h)
support threshold=0.6, timeslot=8(h)

(b) Time Slot τ Sensitivity

Figure 3. Regularity of the fine-grained encounter pattern

with a smaller number of regular encounters increases. This
result is intuitive since with a higher support value ϵ, an
encounter needs to happen at the same time slot more
frequently to be considered regular. For ϵ = 0.7, 20 (out
of 50) participants have no regular encounter. Notice that
ϵ = 0.7 is a very high support value as shown in the
following example. For a month (e.g., di = 30), we have
8 days of the weekend and 22 weekdays. With ϵ = 0.7,
an encounter at the weekdays is regular only if it happens
at the same time slot in 30 · 0.7 = 21(days). For ϵ = 0.5,
Figure 3(a) shows that 45 participants have at least 1 regular
encounters and only 5 participants have no regular encounter.

Next, we fix ϵ = 0.6 and vary τ from 2(h) to 8(h). In
Figure 3(b), we find that when τ increases, the number of
participants with more regular encounters increases. This is
because with a larger time slot, the definition of regular
encounter becomes relaxed. For example, with τ = 2(h),
two people must meet during this 2 hour time slot to be
considered regular encounter. However, with τ = 8(h),
the encounter may happen anytime during 8 hours, which
occurs with a higher probability in reality. Figure 3(b) also
shows that when τ varies from 2(h) to 8(h), from 33 to 38
participants have at least 1 regular encounter.

In conclusion, for different values of τ and ϵ, the encoun-
ters found in the trace of 50 participants are regular.

D. Discussion

Our studies in Section II-B and Section II-C show that
the fine-grained encounter pattern can be characterized from
the fine-grained encounter trace. More importantly, we find
that the fine-grained encounter pattern: (1) depends on the
type of day, particularly encounter pattern of more than
95% participants differs significantly between weekday and
weekend, and (2) is regular and predictable.

Although it is believed that people exhibit regular move-
ment patterns for their daily activities [1], [2] and their en-
counter patterns are regular [3], to the best of our knowledge
we are the first to characterize the regularity of fine-grained
encounter pattern from a large-scale real encounter trace.

Next, we exploit the regularity of fine-grained encounter
pattern in the design of the 3R routing protocol.

III. 3R: FINE-GRAINED ENCOUNTER-BASED ROUTING

In this section, we first present the overview of 3R.
Second, we present how 3R bootstraps and maintains the
set of encounters. Third, we present how to estimate en-
counter probability from the past encounter trace and how
to construct the routing table. Finally, we present how 3R
uses routing table to route the message.

Name Description
m Message transmitted in network
s Sender of m
r Receiver of m
n A mobile node
Dm Delivery deadline of message m
Tm Time at which n delivers m to r
Pn

t Probability that n delivers m to r during [t,Dm]
Rn Routing table of node n
νi Type of day, ν1 = weekend, ν2 = weekday

τj Time slot jth in one day
mν Type of day of m when m is routed from s to r
ρ Time duration (e.g., ρ = [08 : 00, 10 : 00])
∆n Set of mobile nodes n has met so far

Table II
NOTATIONS USED FOR THE DESIGN OF 3R

A. Protocol Overview

1) Scenario: In this paper, we focus on the scenario
where the mobile user carries his mobile phone during his
daily activities. The phone runs the BT scanner that captures
the BT MAC addresses of Bluetooth-enabled devices in the
proximity of the phone and stores the collected BT MAC
addresses in the memory of the phone. In other words, the
phone captures the social encounters between this mobile
user and other people he meets. Since a typical person
has regular movement pattern and meets regular set of
people for his daily activities, his mobile phone captures
the regular encounters between him and others. 3R uses the



past encounter trace to predict future encounter, and thus
can find the best message forwarder to transmit the message
from the sender to the receiver.

2) System Model: We consider a network formed by the
peer-to-peer (P2P) connectivity among mobile devices when
they meet. Since the direct path between the sender and
the receiver may not exist instantly, our network is a Delay
Tolerant Network. Each node has a mandatory P2P interface
such as Wifi, Bluetooth, etc. In our network, the encounter
pattern among nodes is regular. Data messages forwarded
among mobile nodes are text messages or short video clips.

3) Protocol Overview: Table II shows notations used in
following sections. For a message m, when m is sent out
by the sender s, s sets the message delivery deadline Dm.
Objective of 3R is to route m from s to the receiver r
by delivery deadline Dm. We formulate 3R protocol as
an optimization problem, which maximizes the delivery
probability of m to r and meets the delivery deadline Dm:

max Pn
t

s.t. Tm ≤ Dm (1)

3R obtains the objective function for the constraint of
Equation 1 as follows. Let |∆n| be the number of unique
mobile nodes the node n has met so far. At the time t in the
routing process, assuming that m is carried by a mobile n1

and n1 meets n2, if Pn2
t > Pn1

t, then n1 transmits m to
n2, which will carry and forward m towards r. Node n2 will
then find a node with a better delivery probability to transmit
m towards r. If Pn2

t = Pn1
t, then the node with the greater

value of |∆n| will be chosen as the next message forwarder
since it has a higher probability to directly reach the receiver
r or to meet nodes with higher delivery probability. By doing
this, 3R maximizes the delivery probability of m by the
delivery deadline Dm.

Each node n has a routing table Rn, which is derived
based on the regularity of past encounter pattern between n
and nodes n has met so far. Rn is constructed in a totally
distributed manner and only depends on the local encounter
trace of n. Then, Rn is used to find the better message
forwarder in the routing process. Finally, 3R keeps only a
single copy of the message m in the network during the
routing process to reduce message overhead.

B. Bootstrapping 3R

Node n has a BT scanner that captures the encounters
between n and other nodes. After several weeks since n
starts capturing encounters, n has collected enough data
to infer the regular encounter pattern. Then, n uses this
collected encounter trace to construct the first routing table
Rn. Notice that after the first routing table is constructed,
the BT scanner continues to collect more encounters, which
is used to update Rn periodically later. The routing table
can be updated periodically (e.g., weekly).

C. Updating ∆n

Node n keeps a set of encounters ∆n that includes all
nodes n has met so far. Anytime n meets a new node n1, n
adds n1 to ∆n. The size of the set ∆n is |∆n|, which is the
number of unique nodes n has met so far. |∆n| is similar
to the node degree in the social graph used in the previous
works to select the next message forwarder [16], [17], [23].
In the following sections, we present how 3R uses |∆n| in
the message forwarding process.

D. Estimating Encounter Probability

As presented in Section II-B and Section II-C, the regular-
ity of encounter pattern depends on type of day (in a week)
and time slot (in a day). To capture these characteristics,
we classify the scan time in BT trace into type of day and
time slot. The intuition of this time classification is that
people usually follow their daily scheduled routines and thus
a person may meet different sets of people in different days
(weekday vs. weekend) and at different time slots in the
same day. To this end, we convert the collected BT trace
Bn of n in Table I into the converted trace B′

n as shown in
Table III. Particularly, we add two columns: type of day ν
and time slot τ for each row in Table I. We have two types
of day: weekend and weekday. The number of time slots in
a day depends on the size of the time slot τ . For example, if
τ = 1(h), we have 24 time slots for a day. In the converted
format, B′

n =< b1, b2, .., bk, .., b|B′
n| >, with 1 ≤ k ≤ |B′

n|.

ν τ η Φ
weekday [09:10] 03/08/10 09:20 n1, n3

weekday [09:10] 03/08/10 09:21 n1, n3

weekday [09:10] 03/08/10 09:22 n1

weekday [13:14] 03/08/10 13:50 n4, n9

weekday [08:09] 03/14/10 08:14 n1, n3, n8

Table III
CONVERTED BT TRACE B′

n FOR TIME SLOT SIZE OF 1 HOUR

Let pn
′

ij be the encounter probability between node n
and node n′ ∈ ∆n for the type of day νi and the time slot
τj . pn

′

ij is calculated as follows:

pn
′

ij =
|σφ={νk=νi,τk=τj ,n′∈Φk}B

′
n|

|σφ={νk=νi,τk=τj}B
′
n|

(2)

In Equation 2, the selection operation σ is performed
over all tuples bk =< νk, τk, ηk,Φk >∈ B′

n. Particularly,
|σφ={νk=νi,τk=τj ,n′∈Φk}B

′
n| is the number of tuples bk,

which belongs to the type of day νi and time slot τj and
n′ ∈ Φk. Similarly, |σφ={νk=νi,τk=τj}B

′
n| is the number of

tuples bk, which belongs to the type of day νi and time slot
τj . The next step is using the estimated encounter probability
to construct the routing table Rn.



ν τ n1 n2 n3 n4

weekday (08:00,09:00] 0.4 0.2 0.1 0
weekday (09:00,10:00] 0.1 0 0.6 0
weekday (10:00,11:00] 0 0 0.5 0.6
weekday (12:00,13:00] 0 0 0.8 0

... ... ... ... ... ...
weekend (08:00,09:00] 0 0.8 0 0
weekend (09:00,10:00] 0 0 0.2 0.7

... ... ... ... ... ...
Table IV

EXAMPLE OF Rn FOR TIME SLOT SIZE OF 1 HOUR

E. Constructing Routing Table Rn

Table IV shows an example of a routing table Rn. Rn

is a relation of |∆n| + 2 attributes. The first two attributes
are the type of day ν and time slot τ , and the next |∆n|
attributes are nodes n has met so far. Each tuple is one
routing entry, whose first two values are type of day ν and
time slot τ . The last |∆n| values of a tuple are the encounter
probabilities between n and the corresponding mobile node
for the type of day and time slot. The column corresponds
to the node n′ in Rn essentially represents all encounter
probabilities between n and n′ for all types of day and time
slots. In Table IV, for the type of day “weekday” and the
time slot (08 : 00, 09 : 00] the nodes n and n1 meet with
the probability of 0.4. The first tuple in this relation is <
weekday, (08 : 00, 09 : 00], 0.4, 0.2, 0.1, 0 >. The column
of n2 in Table IV includes encounter probabilities between
n and n2 for all types of day and time slots. We will present
how to construct the routing table Rn in the next step.

For each node n1 ∈ ∆n, we create the set of queries
χn1 = {X1, X2, ..., Xk, ..., X|χn1 |} in which Xk = {νk, τk}
where νk ∈ Υ = {weekday, weekend}, and τk ∈ Σ. The
set Σ is constructed based on the size of time slot τ . For
example, if τ = 1(h), then a day has 24 slots and Σ = {(00 :
00, 01 : 00], (01 : 00, 02 : 00], ..., (23 : 00, 24 : 00]}. Next,
we apply Equation 2 for each query Xk ∈ χn1 to calculate
the encounter probabilities between n and nodes n1. After
having the encounter probabilities for all queries in χn1 , we
update the columns of n1 in Rn with the new encounter
probabilities. Notice that the same sets of Υ and Σ are used
for all nodes in ∆n when we construct Rn.

The relation Rn is in the format of Rn =
{e1, e2, ..., e|Rn|} with |Υ| · |Σ| tuples. Particularly, |Υ| = 2
and |Σ| depends on τ . For example, with τ = 1(h), |Σ| = 24
and Rn has 48 tuples. Each tuple ek ∈ Rn is in the
format of ek =< νi, τj , p

n1
ij , p

n2
ij , .., p

nu
ij , ..., p

n|∆n|
ij >,

where pnu
ij is the encounter probability between n and nu

for the type of day νi and during the time slot τj . Here,
1 ≤ u ≤ |∆n| and 0 ≤ pnu

ij ≤ 1. Notice that Rn is
constructed locally by node n and Rn only depends on the
BT trace collected by n.

1) Extensible Routing Table: Over time, node n may
meet new nodes. Therefore, Rn is an extensible routing table

that grows when new nodes are added into the set ∆n.
2) Finer Grain Routing Table: Classifying time into type

of day and time slot does capture the regularity of people
movement. However, there are cases where a finer grain
routing table becomes preferable. For example, a student
may always attend a class from 10AM to 11AM every
Tuesday, a professor may always give a lecture from 3PM to
4PM every Friday. For these cases, we can classify time into
a finer granularity, for example time can be classified into
day of week such as Monday, Tuesday, etc. (rather than type
of day {weekday, weekend}), and time slot of size τ . For
the finer time classification, we have a finer grain routing
table with more routing entries. For example, for τ = 1(h),
we have 7 · 24 = 168 routing entries. However, there are
two important tradeoffs. First, the finer classification requires
more data to be collected (or a longer training time) for more
accurate encounter probabilities in the construction of Rn.
Second, the finer classification works better only for people
whose encounter patterns are strictly repeated; as a result,
for people with a more relaxed encounter patterns, a finer
classification may result in inefficient message forwarding.

F. Forwarding Message

Given the routing table Rn, node n uses Rn to transmit
the message m from the sender to the receiver.

In the routing process, node n is preferable as the next
message forwarder if n provides m a higher delivery prob-
ability to the receiver r by the message delivery deadline
Dm. Therefore, at time t when node n1 (assuming that
n1 is carrying message m) meets node n2, n1 calculates
its delivery probability Pn1

t, which is the probability n1

delivers m to r during the time period [t,Dm]. Similarly,
n2 calculates its delivery probability Pn2

t. If Pn1
t < Pn2

t,
m is transmitted from n1 to n2 and then n2 becomes the
next forwarder of m. If Pn1

t = Pn2
t, |∆n1 | and |∆n2 | are

compared and the node with a greater size of ∆n will be
the next forwarder. The intuition is as follows: the node that
has met more nodes in the past will likely meet more nodes
in the future, and thus that node can deliver m to r with a
higher probability. The next step is to use Rn to calculate
Pn

t.
When m is sent at the sender s, s obtains the type of

day mν ∈ {weekday, weekend} and appends mν to m. At
time t, mν is retrieved by n and n creates a relation E by
performing a selection operation over Rn as follows:

E = σφ={ν=mν ,τ∈Σ′}Rn (3)

In Equation 3, φ is the condition of the selection operation
over Rn, which basically filters out irrelevant tuples. In
particular, relation E consists of only the tuples of Rn that
have the type of day mν and the time slot in the set Σ′,
which is created as follows. For a time slot τk, let τsk be
the starting time of τk and τek be the ending time of τk.
For example, if τk = (08 : 00, 10 : 00], then we have



τsk = 08 : 00 and τek = 10 : 00. For the duration
[t,Dm], we have Σ′ = {τk : τ sk ≥ t, τ ek ≤ Dm}. For
example, in Table IV, if mν = weekday, t = 08 : 00, and
Dm = 11 : 00, then the relation E consists of the first three
tuples as shown in Table V.

ν τ n1 n2 n3 n4

weekday (08:00-09:00] 0.4 0.2 0.1 0
weekday (09:00-10:00] 0.1 0 0.6 0
weekday (10:00-11:00] 0 0 0.5 0.6

Table V
RELATION E WITH mν = weekday, t = 08 : 00, AND

Dm = 11 : 00

Given the relation E obtained by applying the Equation
3 for the type of day mν and time slots during the period
[t,Dm], we then create a relation S by performing a projec-
tion operation over E as follows:

S = πnu=r(E) (4)

In Equation 4, we obtain the relation S by extracting the
attribute nu = r from the relation E. In other words, the
table S has only one column, which consists of the encounter
probabilities between node n and the receiver r obtained by
projecting the column of r in relation E. For example, in
Table IV, if mν = weekday, t = 08 : 00, Dm = 11 : 00,
and r = n3, then S = {0.1, 0.6, 0.5} as shown in Table
VI. Since S has only one column, we use the term “set
S”, “relation S”, and “table S” interchangeably in following
sections. Formally, we have S = {p1, p2, p3, ..., p|S|}, where
0 ≤ pj ≤ 1, 1 ≤ j ≤ |S|. pj represents the encounter
probability between n and r during the time slot jth and
pj = 0 means n and r have no encounter during the jth

time slot in the past.

n3 = r
0.1
0.6
0.5

Table VI
RELATION S WITH mν = weekday, t = 08 : 00, Dm = 11 : 00,

AND r = n3

Notice that the order of elements in S corresponds to the
order of time slots in relation E. That is, p1 is the encounter
probability between n and r during the first time slot after
time t, and p|S| is the encounter probability between n and
r during the last time slot before Dm. The set S is then
used to calculate Pn

t, the probability that n delivers m at
r during the period [t,Dm], as follows:

Pn
t =

|S|∑
j=1

pdj (5)

In Equation 5, pdj is the delivery probability that n
successfully delivers m to r at time slot jth. pdj is calculated
based on encounter probability in set S as follows. We
observe that node n only delivers m to r at time slot jth if
n fails to deliver m to r in the first (j− 1) time slots and n
meets r at time slot jth. This happens only if n and r have
no encounters during the first (j − 1) time slots and n and
r encounter during the jth time slot. So, we have:

pdj = {
k−1∏
k=1

(1− pk)} · pk (6)

The Equation 6 is used to calculate pdj for each time slot j
where pk is taken from the set S. Then, Pn

t is calculated
accordingly by using the Equation 5. Notice that Pn

t = 0
if n has not met r so far.

1) Overnight Message: These are two cases we need to
consider. For the first case, m is routed overnight from the
weekday to the weekend and via versa. In this case, during
the routing process, n updates mν with the current type of
day. For the second case, m is routed overnight from one day
to the next day. In this case, the selection operation over Rn

in Equation 3 needs to be changed so that the set Σ′ includes
all necessary time slots of these two days. Moreover, the
time slots in set E needs to be re-ordered so that time slots
of the next day should be after the ones of the day before.
Then, Equation 4 remains unchanged.

2) Distributed Routing Solution: Objective function of
the Equation 1 is obtained in the routing process since the
calculation of Pn

t takes Dm into account. Notice that the
routing decision is made in a totally distributed manner since
Pn

t is calculated by using only the local routing table Rn

and does not rely on other nodes in the network. Moreover,
only one copy of the message m is kept among mobile nodes
in the network during the routing process.

IV. EVALUATION

A. Setting

We select a set Ω of 9 BT traces collected by phones
carried by 9 grads from the same research group in the
department of Computer Science, University of Illinois from
March 1, 2010 to March 20, 2010. From Ω, we have a set
D of 100 unique BT MACs, including these 9 experiment
phones.

We then use D to evaluate and compare the performance
of 3R with Epidemic[11] and Prophet[6] routing protocols.
Epidemic routing is basically a flooding-based scheme which
floods the message from the current forwarder to any new
encountered nodes, which have not carried the message. This
protocol provides a high delivery probability; however, it
incurs a high message overhead. Meanwhile, Prophet uses
the compressed encounter probability between pairs of nodes
to select the next message forwarder rather than classifying
time into type of day and time slot like what 3R does. For a
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Figure 4. Comparison of Average Successful Delivery Ratio

fair comparison, Prophet only uses one copy of the message
in the forwarding process. Since the calculated probability is
not for type of day and time slot, Prophet does not capture
the detailed regularity of encounter pattern.

To compare the performance of 3R with Epidemic
and Prophet routing protocols, we create a set of 100
(sender,receiver) pairs Γ = {(si, ri) : 1 ≤ i ≤ 100}, in
which si is the sender, ri is the receiver, and |Γ| = 100.
For a pair of (si, ri), we first select si ∈ Ω at random
(notice that we have |Ω| = 9). Then, we select a random
day d ∈ [03/01, 03/19] during the experiment period, let
Dd

si be the set of BT records collected by si during the
day d. Notice that records of Dd

si are sorted increasingly
according to the scan time (Dd

si is in the format of the
Table I). Let R be the set BT MACs extracted from the last
30 records in Dd

si . Formally, R = {ni : ni ∈ Φj , bj =<
ηj ,Φj >∈ Dd

si , |Dd
si | − 30 ≤ j ≤ |Dd

si |}. Finally, the
receiver ri is selected at random from the set R.

There are two reasons to select the sender si and the
receiver ri as above. First, as presented in a survey of 300
faculties and students[24], the delay that people can tolerate
is at most 10 hours, depending on the DTN networking
applications[24]. We also observe that since the set D
consists of BT MACs collected by participants in the same
research group, nodes in D usually meet during the working
period from 8AM to 6PM. So, by selecting ri from the
last 30 records of Dd

si , we basically set the deadline for
the message transmission at the end of the office hour
(i.e., around 6PM) and thus the delivery deadline is in the
range of 8 to 10 hours. We believe this delivery deadline
is realistic. Second, since ri is selected based on the set
Dd

si , si always can deliver the message m to ri if the
Epidemic routing protocol is used. In other words, we expect
that Epidemic routing will have 100% delivery ratio and the
shortest message delivery time since it floods the message m
to all possible nodes in the network. So, Epidemic routing
is used as the base line in the comparison. 3R learns the
regularity of encounter patterns (e.g., construct the routing
table) for all 100 nodes by using the collected traces from
03/01/2010 to 03/19/2010. Then, 3R uses the constructed
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routing tables to forward messages.
Our comparison focuses on metrics Average Successful

Delivery Ratio, Average Delivery Time, and Average Mes-
sage Overhead. For each metric, we perform the routing for
all 100 (sender,receiver) pairs and plot the average.

B. Evaluation Result

Figure 4 shows that Epidemic outperforms 3R and Prophet
in terms of Average Message Delivery Ratio due to its
flooding-based nature. Since the receiver is chosen in the
same day of the sender, Epidemic routing can always deliver
the message to the receiver. Meanwhile, 3R obtains 89% of
successful delivery since it exploits the regularity of people
movement to forward the message, which is not exploited
by Prophet. This figure also shows that Prophet only obtains
78% successful delivery.

Figure 5 shows that Epidemic routing obtains the shortest
delivery time of 2.3 hours. Correspondingly, 3R obtains 2.43
hours and Prophet obtains 2.75 hours. Notice that this figure
is only for delivered messages. In other words, 89% of
messages delivered by 3R and 78% of messages delivered
Prophet are taken into calculation for this plot.

Figure 6 shows that while 3R needs 2.2 messages, Prophet
needs 2.75 messages and Epidemic needs 22 messages to
send one message m successfully. So, Epidemic incurs 10
times of message overhead in comparison to 3R.

C. Discussion

Evaluation results show that Epidemic routing is slightly
better than 3R for message delivery ratio and message deliv-
ery time. However, 3R significantly outperforms Epidemic
for message overhead.

Evaluation results also show that 3R slightly outperforms
Prophet. This is because the trace used for the comparison
was collected by 9 grads, who: (1) were in the same research
group and met each other almost everyday, since grads
usually came to their labs even at the weekend, and (2)
usually only visit a limited number of places (e.g., home
and lab) and make a small number of social contacts in
their daily activities. Therefore, the encounter patterns of
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these grads may not be significantly different for different
types of day and different time slots in the same day. In other
words, the average encounter probability may be acceptable
to represent the encounter patterns of these grads. As a
result, the performance of Prophet becomes comparable to
that of 3R since Prophet exploits the average encounter
probability in forwarding message. We believe that if the
trace is collected by people whose encounter patterns and
micro-mobility show regularity on a finer grainularity (e.g.,
hourly basis, daily basis), then Prophet would perform much
worse but 3R would do much better.

V. CONCLUSION

Characterization study from the real collected BT trace
shows that the fine-grained encounter pattern of people is
regular. 3R exploits the regularity of fine-grained encounter
pattern and provides a totally distributed routing solution to
expedite message routing in Delay Tolerant Networks. We
evaluate and compare 3R with Epidemic and Prophet routing
protocols over the real fine-grained encounter trace and eval-
uation results show that 3R outperforms other alternatives.
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