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ABSTRACT
This article proposes a stochastic model to obtain the end-
to-end delay law between two nodes of a Delay Tolerant Net-
work (DTN). We focus on the commonly used Binary Spray
and Wait (BSW) routing protocol and propose a model that
can be applied to homogeneous or heterogeneous networks
(i.e. when the inter-contact law parameter takes one or sev-
eral values). To the best of our knowledge, this is the first
model allowing to estimate the delay distribution of Binary
Spray and Wait DTN protocol in heterogeneous networks.
We first detail the model and propose a set of simulations
to validate the theoretical results.
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1. INTRODUCTION
Delay Tolerant Networks (DTN) is a concept initially cre-
ated for interplanetary networks [6]. However, it also re-
ceives a great success for intermittently connected networks
and particularly for opportunistic networks [5]. In these
networks, a node can send data to another if both are in
the same transmission range. Due to the dynamic charac-
ter of these networks, there is no guarantee that a direct
connected path from a given source to a given destination
exists at any time. As a result, routing protocols using relay
nodes and replication such as MaxProp [3], Spray and Wait
[13], PRoPHET [12] and RAPID [2] have been proposed to
increase the message delivery ratio over such intermittently
connected networks.

The performance evaluation of relay protocols in terms of
message delivery ratio, end-to-end delivery delay or through-
put is a difficult task due to the complexity to drive mobile
network simulations. Several efforts have been done in order
to assess the performance of routing schemes with simula-
tions. Today, The ONE simulator became a referent tool in
this area [1]. Other approaches have proposed Markovian

and ordinary differential equations (ODEs) models to study
the performance of some basic routing protocols such as Epi-
demic, Epidemic limited, 2-hop routing and 2-hop limited
routing protocols [14], [7] while others focus on the ressource
constraints issues in these networks [15], [10]. However, all
these models do not consider both Binary Spray and Wait
(BSW) routing protocol and different inter-contact law pa-
rameters (called in this study heterogeneous case).

In this paper, we introduce a Markovian model to obtain
the end-to-end delivery delay law and the average delivery
ratio of an intermittently connected network. Compare to
previous existing works, we propose to fill a gap by introduc-
ing a model of the commonly-used Binary Spray and Wait
routing protocol in both homogeneous and heterogeneous
cases. Indeed, in most DTN routing studies, this protocol is
used as a reference for comparison purpose as BSW has been
proved to be optimal in a fully random network [13]. To the
best of our knowledge this is the first model proposed for
BSW performances. Section 2.1 presents and justifies the
assumptions chosen and sums up the notations used inside
this paper. In Section 3, we first propose a BSW model
for the homogeneous case. This model is then extended to
handle heterogeneous networks in Section 4. In each section
we provide examples to assess the consistency and efficiency
of the developed model and compare the results obtained
with The ONE simulator. Section 5 concludes this work
and details the future work.

2. ASSUMPTIONS AND NOTATIONS
Before presenting the assumptions used to build our model,
we first recall how the BSW routing protocol operates.

The source node of a message initially starts with a fixed
number of copies denoted L. This number is called the
replication factor. Then, the spray phase is directed by the
following rule: any node that has strictly more than one
message copy (source or relay) gives half of its copies to the
first node (without copies) encountered. When a node has
only one copy, it switches to the wait phase and give its copy
to and only to the destination.

2.1 Assumptions
Our model is based on two main assumptions:

1. the model does not consider buffer constraints (i.e.
losses resulting from congestion) and losses due to link
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failure. That means that we model a case where each
contact is long enough to send and/or receive all re-
quired messages. Note that the case of congestion is
discussed later in Section 5;

2. we consider all inter-contact laws as exponential. Fol-
lowing [9], the authors show that the time scale of in-
terest for opportunistic forwarding may be of the same
order as the characteristic time, and thus the exponen-
tial tail is important. As a result, the exponential dis-
tribution of inter-contact is meaningful and justifies a
Markovian model. In this paper, the authors also claim
that the choice of a power law (as proposed in [4]) in
these cases leads to pessimistic results. The use of ex-
ponential laws is clearly justified, however it would be
interesting to qualify and quantify the error done with
such an assumption in a case of network characterized
by different inter-contact laws. This problem will be
tackled in a future work.

2.2 Notations
We consider a network with N nodes, noted ni, i ∈ {1, .., N}.
∀(i, j) ∈ {1, .., N} × {1, .., N}, i 6= j, the inter-contact law
between ni and nj is an exponential law of parameter λi,j =
λj,i. In our study, we also consider homogeneous networks
that means ∀(i, j) ∈ {1, .., N} × {1, .., N}, i 6= j, λi,j = λ.
Thus, there is only one parameter: λ. Previous notations
are summed up in Table 1.

Table 1: Notations used for homogeneous and het-
erogeneous models.

Notation Definition
N amount of nodes in the network
i index of nodes

ni ith node of the network

λi,j
parameter of the exponential inter-contact

law between nodes ni and nj

λ
for homogeneous networks all inter-contact

laws have the same parameter

L = 2k replication factor of BSW routing protocol

3. MODEL OF BINARY SPRAY AND WAIT
ROUTING PROTOCOL FOR HOMOGE-
NEOUS NETWORK

The model is done in two parts. First, we build a Markov
chain representing the dissemination of copies in the net-
work with an absorbing state corresponding to the deliv-
ery of the message. Then, we apply the first hitting time
theorem [11] between the initial state representing the cre-
ation of the message by the source and the absorbing state.
This theorem gives the distribution of time needed to reach
the absorbing state starting from the first state. In other
words, this corresponds to the end-to-end delay between a
given source and destination. The main issue is to create a
Markov chain that represents the BSW routing protocol.

In the following, we consider that each node can be in con-
tact with all other nodes with an identical inter-contact law
parameter. We qualify this network as homogeneous.

3.1 Markov Chain for homogeneous cases
We define a state of the Markov chain as a possible repar-
tition of messages in the network. For example, a possible
repartition for a replication factor of 8 can be: one node
with 4 copies, one node with 2 copies and two nodes with 1
copy. We consider that the number of replicates is a power
of two, 2k. However, the methodology described in the rest
of the paper is easily adaptable to any replication factor L.

Theorem 3.1 Number of states in the Markov Chain

In a N-node homogeneous DTN, using Binary Spray and
Wait routing protocol with a replication factor L = 2k, the
number of states is:

Nstates = β(k) + 1

with β(k) the number of partitions of 2k into powers of 2.

Proof. A state corresponds to a particular repartition
of copies into the network. A forwarding node, according
to BSW protocol, gives half of its copies until it finally gets
only one. Thus, each node can have a number of copy in
{1, 2, .., 2k}. Moreover, we do not need to discriminate the
nodes between them since we consider an homogeneous net-
work. Thus, the number of different possible repartition
is the number of partitions of 2k into powers of 2 denoted
β(k). As we focus on the delay of the first copy reaching the
destination, we add an absorbing state which represents the
final delivery of the copy of a message. Thus, the number of
states is β(k) + 1.

We provide in Table 2 the number of states for different
values of L. We remark that these results are true for L < N .

Table 2: Value of β sequence and corresponding
number of states as a function of L

L β(k) Nstates

2 2 3
4 4 5
8 10 11
16 36 37
32 202 203
64 1828 1829
128 27339 27339
256 692004 692005

3.1.1 Transition in the chain
We have computed the number of states in the Markov
chain. We now have to detail how to compute the transition
parameters.

Theorem 3.2 Minimum of n exponential laws
Let {Xi}i∈{1,..,n} be n random variables following exponen-
tial laws of respective parameter λXi

.
Let Z = Mini∈{1,..,n}Xi. Then, Z is a random variable
following an exponential law of parameter λZ =

∑n

i=1
λXi

.



There is two type of transitions:

• transition from one state to the absorbing state;

• transition from one state to another one.

The expression of the transition parameter between one state
and the absorbing state depends on the number of nodes
that have a copy of the message. We denote this number:
np. Each of these np nodes can join the destination. The
destination is reached as soon as one of these np nodes is in
contact with it. Thus, the law of the transition is given by
the minimum of np exponential laws of parameter λ which
is npλ. We can differentiate two cases: either the source
can be in contact with the destination (WDC: with direct
contact) or can not (NDC: no direct contact). Nevertheless,
as the source always keeps at least one copy of the message,
the transition parameter can be written as follows:
npλ, WDC or (np − 1)λ, NDC.

To compute a normal transition, we first have to focus on
the partition. Indeed, copies repartition corresponds to:

L = 2k =
k

∑

j=0

aj2
j

where aj represents the number of nodes that have 2j copies
of the message. This partition can also be written as a
vector:

(aj)j∈{0,..,k}

We consider (aj)j∈{0,..,k} and (bj)j∈{0,..,k} two repartition of
copies, respectively of states A and B. We suppose that we
transit from A to B when a node with 2m copies is in contact
with a node with no copies. The relationship between A and
B can be written as follows:

bm = am − 1 and bm−1 = am + 2, m ∈ {1, .., n}

with m > 1 since a node with one copy can forward this
last remaining copy only to the destination (i.e. the corre-
sponding state is the absorbing state). Keeping the previous
notations, we can express np (the number of node that have
a copy of the message) as follows:

np =

k
∑

j=0

aj

The transition between states A and B is done because a
node with 2m copies gives to another node 2m−1 copies.
This node can give these copies to N − np − 1 different
nodes since we do not consider the destination (which is
a particular state in the chain). In practice, it gives these
copies to the first one met. Thus, the law of the transition
corresponds to the minimum ofN−np−1 exponential laws of
parameter λ. Moreover, to make the transition from A to B,
only one node among am nodes must give half of its copies.
Thus, the law of the transition corresponds to the minimum
of am(N − np − 1) exponential laws of parameter λ. As a
consequence the transition parameter is am(N − np − 1)λ.

All transitions parameters have to be positive. If L > N ,
some states are unreachable, become senseless and should
be removed.

The Markov chain is now built and complete since we have
the number of states in the chain and the literal expression
of all transitions. The second phase consists in applying
the first hitting time theorem [11] between the initial state
(where the source has all the message copies) and the ab-
sorbing state (corresponding to the delivery of the message)
in order to obtain the delay distribution law.

3.2 Practical examples and simulations
In this section, we give a representation of some Markov
chains. We present complete Markov chains for L = 4 (Fig-
ure 1(a)), L = 8 (Figure 1(b)) and L = 16 (Figure 2). These
three chains correspond to a NDC case. This means there
is no transition between the first state and the absorbing
state.

(a) BSW with L=4, homogeneous case

(b) BSW with L=8, homogeneous case

Figure 1: Example of Markov Chains for homoge-
neous network with L = 4 and L = 8 (the correspond-
ing repartition is indicated inside the states)

We use previous Markov chains definition to validate our
model for different values of L and N . Table 3 summarizes
the different cases evaluated and gives the main network
parameters.

Table 3: The different cases simulated and compared
to the analytical results obtained with the model.

Case L N λ

#1 4 6 50
#2 4 20 200
#3 8 20 200
#4 16 20 200

We use The ONE simulator [1] to perform our simulations.
To evaluate D, the random variable corresponding to the
end-to-end delay of messages, we first create a contact trace
file of several millions of seconds with correct parameters
of inter-contact laws. Using this file, the simulation con-
sists in the sending of Ne messages by the source. Once a



Figure 2: Example of Markov Chain for homogeneous network with L = 16 (the corresponding repartition is
indicated inside the states)

message is created, the diffusion process starts. The mes-
sages generation is sufficiently spaced to ensure that each
message transmitted from a source to a destination is an in-
dependent event. In practice, we choose the delay between
two messages sending greater than λ. Thus, we observe Ne

independent events of the random variable D. In all our
cases, this permits to accurately evaluate the distribution
of D. However, it is easy to increment the accuracy of this
evaluation by increasing the number of events observed. In
our experiments, Ne is ranging from 2000 to 10000.

Theoretical results have been obtained using Matlab. Figure
3, presents both simulation and theoretical results for the
four cases described in Table 3. This figure gives the results
for a 20-node network with a replication factor ranging from
4 to 16. We observe that the results obtained by our model
correctly fits the corresponding simulation.
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Figure 3: Comparison of the results obtained by
simulation and our model in different cases for ho-
mogeneous network.

Following these results, we now propose to extend this model
to the heterogeneous case.

4. EXTENSION OF BSW MODEL TO HET-
EROGENEOUS NETWORKS

As explained in Section 3, in a homogeneous network, there
is no discrimination between nodes with a given number of
copies. Indeed, if two nodes have 4 copies of a message, it
does not matter to distinguish them as this is not taken into
account for the computation of the transition in the Markov
chain. On the contrary, in a heterogeneous network, we
need to distinguish these nodes to compute the transitions
and the partitions of the network. A partition where two
nodes have 4 copies of a message is not the same as each
node can have different inter-contact law with all the other
nodes. The problem is now to build a Markov chain that
takes into account this new state. Obviously, the number of
states in the chain is going to increase and depends on N .
However, this model allows to assess the delay distribution
of BSW routing protocol in any intermittently connected
networks where nodes have contacts only with a subset of
other nodes.

4.1 Markov Chain for heterogeneous cases
This new Markov chain can be seen as a generalization of
the previous one proposed for homogeneous case. Instead
of a vector used to represent the copies repartition, we now
use a matrix. Basically, each line of this matrix represents a
node of the network and each column represents a number
of copies in the same way as the vector in the previous part.
We denote R = (ri,j)16i6N−1;16j6k+1 the copies repartition.
R has only N−1 lines as the destination is not considered in
the repartition. If we consider a vector V defined as follows:
V = (vi)16i6k+1 with vi = ΣN−1

m=1rm,i, this vector can be
seen as a repartition of copies in a homogeneous network.
As a result, the heterogeneous Markov chain corresponds
to an extension of the homogeneous one which consists in
splitting homogeneous states in several part to allow nodes



discrimination. Transitions from one given state to the ab-
sorbing state are computed in the same way as in the homo-
geneous case while no computation is needed for the other
transitions.

The number of links denoted nl, that starts from a given
state in the heterogeneous case is equal to:

k
∑

j=1

(N − 1− np)nr(j)

with np the number of relays that have a copy and nr(j)
the number of relays that have 2j copies. The exact number
of states, which is not trivial to obtain, is computed with
Matlab. To illustrate how the problem is finally solved, we
give an example of the Markov chain obtained for the case
N = 5 and L = 22 in Figure 4 with direct contact. As a
potential application example of the previous formula, we

consider the second state of the chain:









0 1 0

0 1 0

0 0 0

0 0 0









. There is

only one kind of transition which is a transition from a node
with two copies (nr(2) = 0). Here, np = 2, nr(1) = 2 so
nl = 4. This means that this particular state generates four
different other states (as shown in Figure 4).

In the case of L = 4, we can give a literal expression of
the number of states in the chain based on Figure 4. Each
level in the chain corresponds to the number of nodes that
have a message. A state of the second level is a state where
the source has two copies and one node among the N − 2
remaining nodes. There is

(

N−2

1

)

different possible states. A
state of the third level is a state where a node has two copies
and two nodes have one copy. Thus, there is (N − 1).

(

N−2

2

)

different possible states. A state of the last level is a state
where four nodes have one copy, but in all states the source
will have one copy. There is

(

N−2

3

)

different states for this
last level. Finally, for L = 4, the number of states is given
by:

2 +
N − 2

6
(6 + (N − 3)(4N − 7)) (1)

Note that if some nodes are never in contact, some transi-
tions are not possible and some states are unreachable.

For N = 5 or N = 10 the chain has respectively 18 or
318 states. We observe that this number fastly increases
as a function of N . This trend will be even more signifi-
cant when L also increases. However, in a heterogeneous
case which fairly represent a real case, many transitions will
be null since some nodes will never meet some other ones.
As a result, the matrix that represents the Markov chain
has a large dimension but remains very sparse and can be
computed. We have developed an algorithm to compute the
states and the transitions between them.

4.2 Practical example of heterogeneous cases
In this section, we present three experiments with heteroge-
neous networks.

4.2.1 Case #1
In this first example, we take a simple network composed
by five nodes with L = 4. We also set λ1,2 = λ1, λ1,3 =
λ2, λ1,4 = λ3. All other parameters are equal to λ and

we suppose there is no direct contact. The Markov chain
is the same that the one presented in Figure 4 with these
corresponding values of λi,j

We compare both simulation and theoretical results obtained
with this model. For the experiment, we choose λ1 = 100,
λ2 = 200, = λ3 = 500 and λ = 200. Simulation are driven
as explained in Section 3.2 except that we choose a delay be-
tween two messages at least as long as the largest parameter
of the inter-contact laws. Results are presented in Figure 5.
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Figure 5: Results obtained with case #1.

4.2.2 Case #2
In this second heterogeneous case, we approach a more re-
alistic scenario. Indeed, we choose a set of 12 nodes. Each
node has an immediate number of neighbours (called diver-
sity in the following) ranging from 2 to 8. The parameter of
each inter-contact law is randomly set between 200 and 1200
seconds. The chosen network is the sub-network made of the
12 first nodes of the 20-node network presented in Figure 6.
We compare the theoretical and simulated end-to-end delay
distributions for L = 4 and L = 8. Results are presented in
Figure 7.

Figure 6: 20-node network representation.

4.2.3 Case #3
This last heterogeneous case consider the whole 20-node net-
work presented in Figure 6. Each node still has a diversity
ranging from 2 to 8 and inter-contact law parameter is also
represented in Figure 6. We compare theoretical and simu-



Figure 4: A practical example of chain building in heterogeneous case.

lation results of end-to-end delay distribution for L = 4 and
L = 8 in this case.

Figure 7 presents the results for both cases (i.e. cases #2
and #3). Solid lines correspond to simulation results while
dotted lines to the theoretical ones. We observe that the
results obtained by our model fairly fit those obtained by
simulation. Moreover, the third case illustrates that the
model also captures the fact that the delivery ratio does not
always reach 100%. Indeed, the average delivery ratio in
the third case is 18% for L = 4 and 57% for L = 8 which is
accurately captured by the model.
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Figure 7: Results obtained for cases #2 and #3.

5. CONCLUSION
In this article, we propose a model to assess the end-to-end
delay in an intermittently connected network using Binary
Spray and Wait routing protocol. Under the assumption

of an exponential inter-contact time distribution, we give a
Markov chain that represents the diffusion of message copies
in the network. This representation allows to obtain the end-
to-end delay D, as the solution function to the first hitting
time theorem. The extended version of this model allows to
deal with the case of heterogeneous networks. As explained
in Section 4, we give the rules to build a Markov chain using
a contact matrix of the network. The end-to-end delay D

remains the solution of the first hitting time theorem. We
drive a set of simulations that confirm the accuracy of the
model. We also verified the accuracy of our model on more
realistic cases, both a 12-node and 20-node heterogeneous
networks.

We do not present estimation in terms of computational ef-
ficiency of the model. However, the first implementation
realised in this paper (available on the author’s webpage)
demonstrates a faster resolution twice or three times faster
than the corresponding simulation with The One for simu-
lation involving 20 nodes in the heterogeneous cases. In a
future work, we expect to drive sereval experiments to assess
the exact cost in terms of computation. We currently inves-
tigate the integration of VACCINE [8] inside the model in
order to determine an average amount of buffer occupancy
and an achievable throughput.
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