
978-1-4673-5828-6/13/$31.00 c�2013 IEEE

Discovering and Predicting User Routines by
Differential Analysis of Social Network Traces

Fabio Pianese⇤, Xueli An⇤, Fahim Kawsar⇤, Hiroki Ishizuka†
⇤ Enabling Computing Technologies Domain

Bell Labs, Alcatel-Lucent
Antwerp, Belgium

{fabio.pianese, xueli.an, fahim.kawsar}@alcatel-lucent.com
† University of Tokyo

isi@mcl.iis.u-tokyo.ac.jp

Abstract—The study of human activity patterns traditionally

relies on the continuous tracking of user location. We approach

the problem of activity pattern discovery from a new perspective

which is rapidly gaining attention. Instead of actively sampling

increasing volumes of sensor data, we explore the participatory

sensing potential of multiple mobile social networks, on which

users often disclose information about their location and the

venues they visit. In this paper, we present automated tech-

niques for filtering, aggregating, and processing combined social

networking traces with the goal of extracting descriptions of

regularly-occurring user activities, which we refer to as “user

routines”. We report our findings based on two localized data

sets about a single pool of users: the former contains public geo-

tagged Twitter messages, the latter Foursquare check-ins that

provide us with meaningful venue information about the locations

we observe. We analyze and combine the two datasets to highlight

their properties and show how the emergent features can enhance

our understanding of users’ daily schedule. Finally, we evaluate

and discuss the potential of routine descriptions for predicting

future user activity and location.

I. INTRODUCTION

The commercial availability of personal mobile devices ca-
pable of location sensing has stimulated research on techniques
to analyze, explain, and predict geographical mobility and
other aspects of user behavior. Current smartphones models are
all capable of continuously running data collection software
to aggregate a number of sensor readings. These devices
can thus provide a faithful record of a user’s mobility. By
collecting GPS coordinates, SSIDs of nearby WiFi access
points and their signal strength, GSM/UMTS cell ID strings,
Bluetooth proximity information, accelerometer readings, etc.
it is possible to piece together an increasingly detailed picture
of user habits, spatial trajectories, and mutual interactions.

A number of studies based on the continuous collection of
location data attempt to infer user activity from a combination
of temporal aspects (such as time of day or duration informa-
tion about a user’s presence in a certain location), frequency
and distribution of visits over time (such as whether they
happen on weekdays or weekends), and approximate matching
of location data with external sources of mapping information
[1]–[8]. Despite the good spatial accuracy that can be achieved
with location sensing techniques, the major issue with their
interpretation remains the lack of contextual and semantic

information to help reconstruct the purpose and significance
of a user being in a given location at a given time. User
intervention is often required to provide the context that cannot
be inferred from the location traces [9]. Another disadvantage
of continuous location tracking is cost: while it is possible to
sample sensor data at a high-frequency, the sustained activity
of sensing and processing hardware and regular transmission
of sensed data may result in both an unacceptable drain on
the device’s battery life and a waste of network resources.

Social networking mobile applications are increasingly
popular among users who voluntarily share many details
of their private life: blogging by publishing geo-tagged
Twitter1 messages, advertising their presence in a location
with Foursquare2, looking for nearby friends with Facebook
Places3, etc. These applications leverage the available sensing
hardware of the smartphones to provide context-aware services
and often include sensor data (mostly in the form of GPS co-
ordinates) alongside user-generated messages. Location data
are used by social networks to provide information such as the
names of friends in the vicinity, reviews about nearby venues,
or announcements about local happenings and public events.
Moreover, services such as Foursquare also advertise details
about the type and name of the venues a user attends, which is
an invaluable piece of information to understand the purpose
of a user’s presence in a particular location.

In light of the mainstream adoption of context-aware mobile
applications, an alternative participatory approach to user
activity sensing has been gaining traction. Instead of actively
generating a continuous stream of sensor readings, it may be
more convenient to collect and process the trails of location
data that are produced as a side-effect of user activities, in an
opportunistic fashion. This emerging approach has a number
of benefits and limitations compared to the traditional forms
of active tracking, as a consequence of its reliance on some
form of user interaction with the monitored infrastructure. On
one hand, the data collection is non-intrusive and does not
require an always-on software running on the user device,

1http://twitter.com/
2http://foursquare.com/
3http://www.facebook.com/about/location



which extends battery life, yet it provides meaningful metadata
about the venues a user visits; on the other hand, the data
points generated could be few and far between, with negative
consequences on the accuracy of the tracking. On one hand,
users can be informed of the privacy implications of interacting
with the monitored infrastructure and can whithold sensitive
information by simply avoiding using the system where and
when confidentiality is important; on the other hand, important
aspects of a user’s daily life could remain totally invisible.

In this paper we investigate the following question: “To
what extent can location traces provided by users via nor-
mal interactions with social networking applications help
us understand and characterize their daily schedule?” In
Section II we present and analyze a data set of localized
Twitter messages and Foursquare check-ins, and discuss the
limitations of our participatory sensing approach based on
observed user behavior. We highlight the remarkable temporal,
spatial, and activity type features of the datasets, introducing
the concept of “user routines” as an approximation of the
recurrent patterns in space and time that emerge from the
data. Then, in Section III we present a method to extract
user routines by constructing event clusters. In Section IV we
further refine our understanding of user routines and derive
the likely meaning of their features based on Foursquare
venue information and other considerations. In Section V
we apply a straightforward prediction approach based on the
routine information and discuss the results. Finally, Section VI
presents the related work and Section VII concludes.

II. MINING LOCATION-AWARE SOCIAL NETWORKS

Social networks have a great potential as large-scale op-
portunistic sensing infrastructures. Their users provide data
on a voluntary basis through explicit interactions with social
networking software - a method which is non-intrusive and
privacy-aware. Privacy concerns are eased by the fact that
all data have been explicitly published, leaving users in full
control over their public image. Also, collecting location and
activity data from social networks does not require privileged
access to the user terminal, nor a dedicated and continuous
monitoring activity: it is an integral part of the normal in-
teraction between the user, the application, and the network
without additional overhead. Furthermore, a social network
can facilitate the matching between user-generated data and
high-quality semantic information, often revealing the meaning
and purpose of the presence of a user in a given location. It
is an interesting question whether the normal interaction with
social networks can become a suitable source of insights on
user behavior. In this section we explore the trade-offs between
accuracy, which is challenged because of the nature of user
interactions with social applications, and expressivity, which
is enhanced by the features of the social platforms and the
modes of interaction users have with them.

A. Collecting Traces: Methodology and Characteristics
We constructed our dataset by mining public user traces

generated by the Foursquare social network using a side-

channel approach to data collection. As a large number of
Foursquare users also publish their check-in information on the
Twitter micro-blogging service via geo-tagged tweet messages,
we crawl Twitter and collect the message history for users
who routinely publish their Foursquare data. The Foursquare
check-in tweets we collect contain a human-readable message,
the GPS co-ordinates of the current user location, and a
URL pointing to the relevant Foursquare information. We
then extract Foursquare metadata that identifies the location
of the check-in by accessing the URL, and finally retrieve the
information about the venue (including name and category of
the venue) from its Foursquare web page.

B. Foursquare Trace Extraction and Pre-processing
For this study, we monitored the geo-tagged tweets broad-

cast by 14,587 users in the Tokyo Metropolitan area, defined
as a circle with a 30 Km radius from the center of Tokyo, over
eleven months from end July 2010 to the beginning of July
2011. During this period, we collected a total of 179,372 geo-
tagged tweets from the observed users inside our region of
interest. Out of these tweets, a large amount (about 50%) had
embedded Foursquare check-in information. At preliminary
inspection, we observed a strong variability in user check-
in behavior: few users were very active, with occasional large
bursts of messages on a same day, while most users had a
negligible overall activity.

We then singled out the users who published Twitter mes-
sages carrying a Foursquare check-in with an average of at
least one message per week during the entire observation
period. This corresponds in our case to an overall threshold
of 48 messages, which we consider a minimum condition for
users to be regularly accessing the Foursquare application. We
deliberately avoid introducing further limiting criteria, such
as conditions on the distribution over time of user-generated
events, in order to lend further credibility to our analysis. Users
who exceed the minimal level of activity, whether in a steady
pattern or in a few isolated bursts, are thus both included in
the resulting dataset. After this filtering process, we obtain a
set of 825 active users (5.66% of the initial amount of users).
Active users generated a total of 157,806 geo-tagged tweets
(87.98% of the observed total) out of which 79,341 turn out
to contain Foursquare check-ins. Overall, we noticed that on
most days, individual users either do not generate on average
any Foursquare events (82.5% of the days) or just produce a
singleton (12.0% of the days). Only in the remaining 5.5% of
the days users generate two or more check-ins.

After making sure that the coordinates from the GPS data in
the geo-tagged tweets agree with the corresponding Foursquare
location coordinates, we generate two separate traces: one with
the Foursquare check-in data (4SQ), one with the remaining
geo-tagged tweets (GTW). We further partition each of our
complete (ALL) datasets into a weekday (WD) and a weekend
and holiday (WE) trace. At the end of these pre-processing
steps, our 4SQ-WD dataset includes 55,473 check-ins, while
the 4SQ-WE contains 23,958. Our GTW-WD dataset contains
110,483 geo-tagged tweets, while the GTW-WE contains
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Figure 1. Cumulative Distribution of Total Observed Events per User

46,824 events. In Figure 1 we plot the empirical cumulative
distribution of the users by total number of messages generated
during the entire observed period.

We observe that the average daily generation rate of
Foursquare check-ins in WE traces is only slightly higher
compared to WD traces. While the average number of weekly
check-ins for 4SQ users is about 1.4 (WD) and 0.6 (WE),
the medians of the same datasets are about 0.9 and 0.4,
respectively. This further confirms that even among the active
users the event generation behavior is greatly variable, with a
few users producing most of the events: the top 10th percentile
of users have more than 2.2 and 1.0 average weekly check-ins
respectively. As we see in Figure 1, the Foursquare check-in
distribution is especially skewed, even in comparison to the
corresponding geotagged Twitter event distribution.

C. User Classification: Recurrent Feature Clusters

We now introduce a set of criteria to automatically clas-
sify the active users into categories based on the combined
presence of recurrent spatial (S), temporal (T), and venue (V)
features in their event traces. We start by folding the entire
observed period into a single-day window that contains all
the recorded events with their 24H timestamp, location, and
associated venue type information. We then attempt to con-
struct clusters of check-in points independently over the three
features: for this task we use the DBSCAN algorithm [10]
and empirically define clusters as sets of cardinality equal or
greater than k = 5 (for WD traces) or k = 3 (for WE traces,
to account for the lower number of total data points) using
three values of a distance (✏) parameter:

• For S-type clusters, we use ✏ = 20 meters
• For T-type clusters, we use ✏ = 10 minutes
• For V-type clusters, we use ✏ = 0

In Table I we display the results of the independent cluster-
ing operation: the left side of the table presents the breakdown
of categories where at least one feature is present; the right
side contains the user breakdown by combined features. We
can thus notice that clustering by venue is not a discriminating
factor for most users (99% in WD traces, 81% in WE traces).
Spatial and temporal clusters are more selective: in WD traces,
S and T clusters can both be formed for about 65% of users,
while in WE traces the rate of success is lower, only 22%

Figure 2. Number of GTW events associated to venues in the 4SQ trace for
a range of matching distance threshold values shown on the horizontal axis

and 14% respectively. Interestingly, some users with spatial
clusters do not present temporal clusters (about 12% on both
WD and WE traces), some users with temporal clusters do not
display spatial clusters (14% in WD, 5% in WE), and 19% of
users do not have any feature in their WE trace. We attribute
the remarkable fraction of users without features in the WE
traces both to a smaller overall amount of available data points
and to a less structured user behavior during the weekends,
when users are likely to be free from the regular structure of
work life [11]. Conversely, the STV category contains users
whose trace presents features in all three dimensions: they
amount to 52.5% of the total during workdays and to 9.6%
during weekends. In Section V we will focus again on this
user category to evaluate our ability to build expectations on
future user activity based on emerging feature combinations.

D. Features of the Geo-tagged Twitter Dataset (GTW)
As we did above for our Foursquare dataset, we also

determined the properties of the geo-tagged Twitter dataset.
In Table II we summarize the temporal and spatial features of
GTW traces (which do not contain venue type information). In
WD traces we observe spatial and temporal features in about
40% of the users, with both features appearing in 31% of the
total and no features in 52%. In WE traces, recurrent features
appear to be less common with only 35% of users showing
spatial features and 21% temporal features, 17% showing both,
and 61% showing none.

E. Augmented Foursquare+Twitter (AFT) Dataset
Finally, we attempt to augment the 4SQ dataset by rec-

ognizing events in the GTW dataset that take place in known
Foursquare venues. We conjecture that users might often forget
to perform check-ins in known venues, a behavior which
would affect our ability to reconstruct features from their
4SQ traces. To estimate the extent of this phenomenon, we
determine the existence of matches between tagged Foursquare
venues and events that appear in the GTW dataset. Our
approach is based on spatial inference: we associate tagged
check-ins found in our 4SQ dataset with GTW events that
were recorded in nearby GPS locations. We use a rather small
matching threshold, in order to account (among other factors)
for the possible inaccuracies of indoor GPS sensor readings,
and conjecture that GTW events happening at such a small



Table I
BREAKDOWN OF ACTIVE USERS IN THE FOURSQUARE CHECK-IN (4SQ) TRACES DISPLAYING FEATURE CLUSTERS

(S = SPATIAL FEATURES, T = TEMPORAL FEATURES, V = VENUE TYPE, * = WILDCARD)

# active users with feature clusters S* T* V* STV ST SV TV S T V no clusters
4SQ-WD 539 542 814 433 0 106 108 0 1 167 10
4SQ-WE 183 117 667 79 0 104 38 0 0 446 155
4SQ-ALL 626 664 824 541 0 85 122 0 1 76 0

Table II
BREAKDOWN OF ACTIVE USERS IN THE GEO-TAGGED TWITTER (GTW) TRACES DISPLAYING FEATURE CLUSTERS

(S = SPATIAL FEATURES, T = TEMPORAL FEATURES, * = WILDCARD)

# active users with feature clusters S* T* ST S T no clusters
GTW-WD 291 266 222 69 44 367
GTW-WE 218 129 105 113 24 385
GTW-ALL 319 302 252 67 50 360

distance were generated during a visit of the known Foursquare
location. Once a match between a GTW point and an existing
4SQ check-in is found, the GTW event is tagged with the
same venue type information as the matching check-in and
added into an Augmented Foursquare + Twitter (AFT) dataset,
together with all the Foursquare check-ins contained in the
4SQ dataset.

Figure 2 represents the amount of points that our approach
could match as a function of the threshold distance value, and
shows at the same time the variation in the spatial density of
the added points. Using a sensibly small 20 meter threshold
we manage to label with inferred semantic information about
14,000 additional data points from the GTW traces of 463
users. The matched events amount in size to more than 20%
of the original 4SQ dataset. The individual user with the largest
amount of matches gained 880 new events. However, the
median amount of matched events per user was 6, and only 170
users received more than 10 events each. We observe that the
addition of the matched GTW data leads to the emergence of
previously hidden spatial features only in about 5% (WD) and
3% (WE) of the 4SQ user population, with only a slight reduc-
tion in the number of the WE users without detected features
(-2% of the total users). We observe that trace augmentation
by distance-based venue inference is effective at increasing
the number of tagged data points, thus considerably improving
the sample size. However, we remark that this technique has
a minor role in discovering previously undetected features in
our data, and conclude that the occasional skipping of venue
check-ins by regular Foursquare users does not adversely
impact our ability to detect features in their traces.

III. ON USER ROUTINES

Data obtained from participatory sensing sources can be
problematic to work with. For instance, the Foursquare trace
we presented in the previous Section is remarkable for the
scarcity of data points and for their irregular distribution over
time and across users. The dearth of subsequent check-ins
during a same day rules out the use of probabilistic models
to capture the transitions between subsequent locations, an
approach to mobility detection which has been attempted

with some success on datasets of much larger entity without
constraints of geographic scope [11]. Furthermore, we lack
explicit information on the dwelling time of a user in each
location, a fundamental aspect of time series analysis [8].
These limitations encourage us to adopt a different approach
that focuses on recurrent patterns of events with common
characteristics, rather than attempting to reconstruct a likely
sequence of daily transitions between events. The dataset
features we used in our initial analysis isolate groups of user-
generated events that have common aspects and that repeat
in multiple occasions. However, features must be present over
multiple days in order to be qualified as important in the daily
schedule of a user.

We now introduce user routines as a model for regu-
lar user activities. A user routine can be defined as the
repeated occurrence of similar features that happen at the
same approximate time of day on a number of days. Ideally,
user routines capture purposeful repeated visits to important
locations, lifestyle habits, and regular behaviors that occur
often enough to represent a relevant part of a user’s daily life.
Collected information about events over time also allows us
to estimate users’ typical dwelling time in a given situation.
In this section, we present an automated method of routine
discovery based on combined clustering steps and empirically
evaluate its sensitivity to parametric choices using our datasets.

A. Multi-Feature Clusters for Routine Detection
To characterize salient aspects of user routines, we will

consider the distribution over time of user reported events
in conjunction with some of the event properties. Intuitively,
a visit to a bar in the morning (to get breakfast or to buy
a snack) is substantially different from a visit to the same
bar at night time (to have dinner or to drink with friends);
therefore, the event needs to be classified differently in the
user’s routine, regardless of the fact that both events unfold at
the same location. By the same principle, a user who likes to
try a different restaurant every night for dinner will perform
the same activity at the same time, although the events will
be recorded in a multitude of different venues.

1) Temporal Partitions: Individual user activity appears to
be unevenly distributed across the day, with characteristic



bursts of events that reflect the user’s lifestyle. Based on
these features, we consider the temporal dimension as the
primary aspect that defines routines. We accordingly introduce
a first partitioning of the events on the time domain before
further classifying the points based on their features. Temporal
partitions are identified using the DBSCAN algorithm [10]
with parameters k = 5 and ✏ = 10 minutes; the centroids of
each cluster are calculated by averaging the time coordinates
of the events contained; the boundaries of the clusters are
subsequently derived by bisecting the interval between each
pair of centroids.

2) Spatial-temporal Clusters: For spatial clustering, we
utilize again the DBSCAN algorithm over each time interval
with parameters k (variable, as we will discuss later in this
Section) and ✏ = 20 m. Clusters are further filtered using a
significance criterion which only validates those clusters that
contain points generated over a total timespan of at least k days
as relevant to the user’s routine. The result is a set of clusters
for each time partition that are characterized by the repeated
appearance of events in nearby locations over different days.

3) Activity-temporal Clusters: For activity clustering, we
consider the occurrence of tagged check-in events over each
time partition: clusters are present if at least k events of the
same type are available that are generated over a total timespan
of at least k days. The result is a set of clusters for each time
partition that are characterized by the repeated appearance of
venues of a same Foursquare venue type.

B. Sensitivity Analysis and Discussion
Multi-feature cluster generation is sensitive to the choice

of parameters provided to the DBSCAN algorithm. While the
value of the distance ✏ can be based on empirical consid-
erations such as what constitutes close events in the spatial
or time domain, the choice of the minimum cluster size k
will yield results that depend on less intuitive features of
input data that are unique to each user’s event trace. To
evaluate the consequences of the value of the k parameter
on the results, Figure 3 presents a scatterplot of the relation
between the number of check-in events and number of spatial-
temporal and activity-temporal clusters for 4SQ-WD and 4SQ-
WE traces. We expect routines of users with a large amount of
check-ins to reflect quite well the actual number of important
features of their daily activity, which we also assume to
be reasonably small, e.g., not larger than 15 for the most
prolific users. Conversely, we expect users with few check-
ins to display at least a few clusters. Figure 3 shows that
larger values of k enhance the linear dependency between
the number of clusters and check-ins, although they reduce
the overall observed range of variation. Based on the above
considerations, we empirically choose a set of parameters that
provide consistent results across most user traces with STV
features. In the following, the minimum multi-feature cluster
size will be set to k = 5 for WD and k = 3 for WE traces.

IV. TAGGING ACTIVITIES IN USER ROUTINES

Previous studies have found that behavior patterns of social
network users are heavily dependent on application features

Table III
DIFFERENTIAL CLUSTER ANALYSIS: 4SQ AND GTW DATASETS

4SQ + GTW Week Days (172 users) Week Ends (47 users)
Users with: One More One More

Foursquare Clusters 73 99 34 13
Matching Clusters 20 19 3 3
Invisible Clusters 73 84 32 11

Matching + Invisible 39 6
GTW events covered 16093 2008

and on perceived privacy implications [12]. In this section, we
present a method that relies on these differences to better un-
derstand routine features detected by multi-feature clustering.
We first introduce the concept of Differential Cluster Analysis,
a generic technique to combine information from multiple data
sources, and then describe heuristics to attribute meaningful
labels to clusters in user routines.

A. Differential Cluster Analysis

We consider an individual user’s spatial-temporal clusters
from the 4SQ and GTW datasets and calculate the intersection
of the two sets. We assume a match exists across sets if the
spatial coordinates of a pair of cluster centroids are close
and if their temporal support overlaps by more than half
the duration of the shortest cluster of the pair. A spatial
tolerance of 50 m is used to account for both lower indoor
GPS accuracy and the fact that we are now dealing with
clusters, not individual data points. Based on the results of
this process, we enumerate three clusters types: Foursquare,
Matching, and Invisible. Foursquare clusters are found in the
4SQ dataset only, and the events they contain are usually
tagged with categories that help us attribute to them an activity
meaning. Matching clusters are those that exist in both 4SQ
and GTW sets; a match across datasets confirms the relevance
of a spatial-temporal feature in the daily life of a user and
can improve the temporal coverage thanks to the additional
data points. The meaning of matching clusters can as well be
identified thanks to the tagged events they contain. Finally,
invisible clusters are those that appear in the GTW dataset
but do not match any of the clusters in 4SQ. The presence
of invisible clusters provides insights about locations and
activities that, although relevant in the user routine, do not
show up in a social check-in application trace.

Table III reports the results of the differential clustering
technique applied to users of both Foursquare and Geo-tagged
Twitter applications who present clusters in both datasets. We
can observe that a relatively small number of users (39 WD, 6
WE) have matching clusters between the two datasets: except
in the few cases where all GTW clusters match 4SQ clusters
(15 users in WD, 4 in WE), users of both applications show
two disjoint sets of foursquare and invisible clusters.

Our observations confirm that Foursquare users appear to
withhold check-ins when visiting certain locations in which
they spend a substantial amount of their time. Recent studies
suggest that, among the possible reasons, these venues might
be seen as sensitive (home, work) or otherwise not interesting



Figure 3. Sensitivity analysis: multi-feature clustering results for k = 1, 3, 5 in the 4SQ-WD and 4SQ-WE datasets

to their friends and fellow users [12]. However, it frequently
happens that those users disclose their location in messages
sent to micro-blogging platforms such as Twitter. Our hypoth-
esis is that users may have a different perception of privacy
threats across different social applications or might even be
unaware of the inclusion of geo-tagging information in the
less social and personal context of a microblogging platform.

Invisible clusters allow us to improve our understanding
of user routines. As a qualitative example, in Figure 4 we
represent the routine we extracted for a representative user
from our dataset. The subject presents several Foursquare
clusters, two matching clusters (one in the morning, one in
the afternoon), and three invisible clusters. The Foursquare
clusters have been identified as Food (breakfast and lunch)
and Professional (working at office). Clusters labeled 1 to 4
in the picture are all located in a 500m radius and revolve
around the user’s work location; clusters 5 to 7 appear in the
early morning and are also close together, which suggests they
pertain to the neighborhood where the user lives.

Unless the points in an invisible cluster can be individually
matched to tagged Foursquare check-ins, the underlying venue
of an invisible cluster is not apparent from the raw data. We
attempt to automatically attach a label to invisible clusters
by applying a simple time-of-day-based heuristic, similar to
the one suggested in [2], in order to identify clusters that
appear in places such as “home” or “work”. To do so, we first
aggregate the coverage of all clusters that insist on the same
location. Our rationale is that aggregates of invisible clusters
with significant coverage might represent important locations
where users don’t usually perform check-ins. We define simple
rules that classify invisible clusters into four groups:

• Long (aggregate duration > 3h) daytime (7AM-6PM):
WORK group

• Long (aggr. duration > 3h) nighttime, or longer than 10
hours: HOME group

• Short (aggr. duration < 3h) daytime (7AM-6PM): other
daytime feature

• Short (aggr. duration < 3h) nighttime: other nighttime
feature

Figure 5 presents a breakdown of the features detected
among all the users with clusters in their GTW traces. We
observe that 80% of the users in the WD and 90% in the
WE dataset show at least one home cluster (only 11 of the
155 WD users have more than one). Work clusters by the
above definition appear in about 8% of the users in the WD
dataset and just for one user in the WE dataset. Shorter

Figure 5. Invisible clusters: results of work-home heuristic on GTW dataset

daytime features that do not get classified as work are present
in respectively 16% and 9% of the users while nighttime
features appear in 15% and 5%. As we lack a ground truth for
validating the outcomes of the heuristic, we argue nonetheless
that results about home clusters are plausible given the amount
of events per user that are collected in our GTW traces.

B. Tagging Foursquare Clusters with Activities
To present the observed user activities from the routines of

our 825 users, we plot the their breakdown over the course
of a day (Figure 6). In absolute terms, we observe that the
maximum amount of routine clusters is observed in the early
morning, with 229 unique users showing at least one activity
cluster between 6AM and 8AM and 200 between 8AM and
10AM. A second peak, much smaller, can be seen in the
early afternoon. The number of observed clusters drops sharply
during the evening, hits a minimum between midnight and
2AM, and picks up only before dawn (4AM to 6AM). We
remark that the types of activities we detect mostly cover the
daytime and primarily capture salient features of working life,
such as traveling to work in the morning, breakfast, lunch, and
traveling back in the evening. Our results are consistent with
the known Foursquare check-in trends, and confirm the dearth
of home and work check-ins. Comparing against published
results about observed Foursquare check-in venue types during
the day [11] we notice that popular but less regular activities,
such as dining out and nightlife, are indeed less represented
in the global routine breakdown, as one might expect.

V. PREDICTING USER BEHAVIOR

In the previous sections, we described a method to extract
clusters of events that capture some salient features of social



Figure 4. Example of user routine extracted by differential cluster analysis of 4SQ and GTW traces. Clusters from the 4SQ dataset are identified by the
associated activity, as shown in the legend. Non-matched darker clusters are “invisible” in the Foursquare check-in trace and emerge from the GTW dataset

Figure 6. Breakdown of global daily routine features in the 4SQ-ALL trace

networking traces, characterizing the temporal incidence of
routine activities in the users’ daily lives. We now evaluate
the suitability of routines for predicting future user behavior.

A. Predicting User Behavior from Routines
Routines identify steady features of a user’s daily life. Pre-

dictions can thus be obtained in our model simply by extending
the descriptive value of the clusters that have been observed on
a set of training data to be prescriptive about user activity in
an independent corpus of testing data. We define a prediction
as an outstanding expectation about a certain feature of user
behavior. As any feature cluster CX(tstart, tend) exists in
the time domain, a prediction based on the cluster associates
the expected value of the property X of an event to the
contiguous range of time values, between tstart and tend,
that are covered by the cluster. A predicted outcome is then
considered successful if, at the time tp when a given event is
observed in the testing data, the value of the event property
X matches the value of CX for at least one of the clusters
that are active at tp.

Our reliance on discrete clusters as the basis of predictions
means that there will be time values for which there is no

expectation. The main limitation of our approach is that we
will not attempt guesses outside the boundaries of the observed
clusters. As a consequence, we account for these missing
predictions with a hit rate metric, which tracks the fraction of
guesses attempted over the total number of possible guesses.
In the evaluation of the success rate of predictions, we will
therefore only consider the cases in which a guess is made (i.e.
a hit) which turns out to be correct. As a further measure of
the ability to provide predictions for a given user, we introduce
a coverage metric that describes the ratio between the union
of all clusters’ temporal support and a 24-hour period, which
corresponds to the fraction of the time for which a prediction
is available.

B. Prediction Results
As we discussed previously In order to users displaying

significant features in their daily behavior, we will focus on
the set of users who belong to the STV category, obtained from
the global dataset using the segmentation methods described
in Section II-C, as our sample for the following evaluation.
We compute the prediction results for the Foursquare check-
in dataset (4SQ) in the weekdays (WD), weekends (WE),
and WD-WE combined (ALL) traces. Due to the moderate
richness in events of the STV users, we expect them to be
a representative example of a typical mode of interaction by
regular users of social networking applications.

Figure 7 shows the results of spatial and venue category
forecasts based on the 4SQ-WD dataset in terms of hit and
success rate for a training period length M , ranging from one
to six months. The value of k used in this case is five, and
all reported results are averages of experiments conducted with
12
M -way randomization in the choice of non-overlapping blocks
of M contiguous months of training data. We can observe
from the picture how both hit and success rate increase for
increasing values of M : after six months of training, the hit
rate of category predictions is above 80%, with a success rate
of more than 66%. In the case of spatial predictions, both hit
rate and accuracy are lower: for the same six-month training
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Figure 7. Category and Spatial predictions: hit and success rate results for the 4SQ dataset (WD, WE, ALL) - coverage metric in grey

length, a valid prediction exist only for 58% of the events,
with a success rate of about 32%. Finally, we notice that the
average coverage rate of the predictions, represented in Figure
7 by the narrow grey bars, increases with the length of the
training period but is always strictly smaller than the average
hit rate: this result confirms that check-in events are unevenly
distributed throughout the day, and that predictive clusters tend
to cover periods in which check-ins are more likely.

C. Adaptive Spatial Predictions

Observing the outcomes of spatial and category predictions,
we noticed that some activities lend themselves reliably to
Spatial predictions, while others show little consistency in the
prediction outcome: for instance, “Travel Spots” such as train
and subway stations are a remarkably stable feature of user
routines; on the other hand, “Food” venues sometimes do not
allow good spatial predictions, as for instance an epicurean
user could be sampling every time a different restaurant from
a large list of favorites. We now investigate the correlation
between our ability to formulate both category and spatial
predictions in order to improve the reliability of the latter.

We introduce a second step in the training process of our
clusters: after the two sets of category and spatial clusters
have been formed, we use the training data for a second time
to estimate the probability that an event for which a category
prediction exists will lend itself to a correct spatial prediction
on the training set. For each user, we compile a table that
assigns every category cluster a reliability score for spatial
predictions, defined as the fraction of correct guesses over the
relevant events in the training set. After training, the value
of the reliability score for of a category cluster will inform
the decision of whether or not a spatial prediction should be
attempted, thus trading a lower hit rate against an increase of
the success rate of the fewer spatial predictions attempted. In
Figure 8 we compare the results in terms of hit and success
rate for normal and adaptive spatial predictions made over
the 4SQ dataset with a reliability threshold of 50%. We can
observe in most cases the expected slight reduction in the hit
rate, which is compensated by a noticeable increase in the
successful prediction rate.

VI. RELATED WORK

The participatory approach to social data collection has
rapidly become popular in the literature, producing a wealth
of related studies. In [13], Li and Chen quantitatively analyze
large-scale LBSN traces and offer a generic perspective on
user profiles, update activities, mobility characteristics, social
graphs, and attribute correlations. Eagle [14] shows ways to
use social sensing to study human behavior, namely to discover
daily activity patterns, to infer relationships, and to determine
significant locations. Ye et al. [15] presents a semantic annota-
tion technique for location-based social networks, where user
check-in behavior is analyzed to extract the significance of
individual places and the implicit relationships among similar
places. In [16], Ferrari et al. study 13 million geo-tweets
collected from New York Metropolitan area to understand
urban crowd behavior. Their elegant probabilistic topic-model
analysis uncovers patterns that highlight hidden urban dy-
namics and recurrent spatio-temporal crowd phenomena in
a urban scenario. Joseph et al. [17] apply Latent Dirichlet
Analysis (LDA) on Foursquare data from check-ins in New
York City and the Bay Area to produce latent collections of
people with similar interests and social activity trajectories.
In [11], Noulas et al. investigate user check-in dynamics in
an attempt to uncover meaningful spatial-temporal patterns
of user mobility in urban spaces. While their work focuses
on understanding collective location dynamics, our approach
is tailored to analyzing individual user’s recurring activity
patterns. The work with the closest goal to ours, although
based on a different type of data source, is [18]. Its authors
used LDA to discover activity routines in the Reality Mining
data set from MIT, a dataset containing one year worth of
mobile phone traces from 94 volunteers.

Literature is also rich on the subject of predicting future
locations and activities of users based on traces collected op-
portunistically from either mobile or social networks. In [19],
Ying et al. propose an approach for predicting next location of
an individual based on both geographic and semantic features
of her trajectories. The predicting technique leverages clusters
of similar users to predict a user’s next location. In [8], Scellato
et al. introduce NextPlace, a spatial-temporal framework based
on non-linear timeseries analysis of start times and duration of
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Figure 8. Adaptive Spatial predictions: coverage, hit, and success rate results for the 4SQ dataset (WD, WE, ALL) - coverage metric in grey

visits to significant locations. Their technique can forecast the
next location of a user, as well as the length of time the user
will spend there. Also relevant is [20], where authors examine
GPS traces to predict a driver’s destination, based on her habits
and general driving behavior. Although accurate, these studies
require sources of location data with much higher spatial and
temporal resolution than can be derived from social network
traces. Participatory sensing approaches, such as the one we
presented in this paper, operate instead on datasets composed
of relatively sparse and coarse-grained location samples.

Presently, our method does not rely on a global trajectory
pattern base, nor does it consider the interplay between differ-
ent users across the same locations. We are considering the use
of homophily-based learning, where similar users’ collective
check-in histories can be leveraged to recognize individual
user activity. We expect techniques such as presented in [21]
to be effective at increasing the inference density.

VII. CONCLUSION

Social networks have a huge potential as sources of insight
on human behavior and recurring activity patterns. A partici-
patory approach to data collection applied to social networks,
a passive and non-invasive method, has the ability to easily
scale up and cover large human populations. In this paper
we performed an analysis of significant spatial and temporal
features emerging from a year-long trace from 825 users
of the Foursquare and Geo-tagged Twitter social networks.
We presented a method to extract user routines and identify
the activities associated with their spatial-temporal features.
Finally, we explored ways to extend the benefits of available
metadata across different traces by matching corresponding
points and features that appear in different datasets.
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