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Abstract—We consider the problem of detecting the presence of
a spatially correlated multichannel signal corrupted by additive
Gaussian noise (i.i.d across sensors). No prior knowledge is
assumed about the system parameters such as the noise variance,
number of sources and correlation among signals. It is well
known that the GLRT statistics for this composite hypothesis
testing problem are asymptotically optimal and sensitive to
variation in system model or its parameter. To address these
shortcomings we present a few non-parametric statistics which
are functions of the elements of Bartlett decomposed sample
covariance matrix. They are designed such that the detection
performance is immune to the uncertainty in the knowledge of
noise variance. The analysis presented verifies the invariability of
threshold value and identifies a few specific scenarios wherethe
proposed statistics have better performance compared to GLRT
statistics. The sensitivity of the statistic to correlation among
streams, number of sources and sample size at low signal to
noise ratio are discussed.

Index Terms—multichannel detection, generalised likelihood
ratio test, covariance based detection, covariance absolute value
detection

I. I NTRODUCTION

Detecting the presence of signal affected by channel im-
pairments and corrupted by additive noise is encountered in
a variety of array processing applications. The goal is to
classify the observation into one of the two possibilities [1],
i.e., signal present/not present. The detection statisticfor this
binary hypothesis testing problem is said to be optimal in
the Neyman-Pearson (N-P) sense if it maximizes detection
probability (Pd) for a fixed false alarm level (Pfa). It is well
known that the likelihood ratio test (LRT) assures optimality
in the N-P sense if the two distributions are known precisely.
However, in the case of system with uncertain parameters the
hypotheses are composite. In such case, the statistic whichis
optimal in the N-P sense irrespective of the value taken by
the uncertain parameters is called uniformly most powerful
statistic. There is no straightforward procedure to find it and
they don’t exist in many real life scenarios [2]. An alternate
approach is to obtain the asymptotically optimal detection
statistic called the generalized likelihood ratio test (GLRT)
by replacing the uncertain parameters with their maximum
likelihood estimate (MLE) in the likelihood ratio.

The MLE of the covariances under the two hypotheses
for the multichannel signal corrupted by additive Gaussian
noise observation model is the function of sample covariance
matrix (SCM), because it is the sufficient statistic [3]. A few

variations in the final form of the GLRT statistic depending on
the prior information or assumption about the system model
and its parameters are discussed in the following paragraph.

When the noise across sensors are assumed independent
resulting in diagonal covariance structure GLRT reduces to
coherence ratio test [1] and under i.i.d assumption resulting
in homogeneous diagonal covariance structure GLRT reduces
to sphericity test [4]. In addition, the information about the
number of sources (Nt) contributes in improving the detection
strategy by estimating the noise from the latent roots of the
model. This method is advantageous whenNt is less than
the number of sensors,Nr. Assuming the exact knowledge of
Nt, the GLRT reduces toreduced sphericity test[5] which is
interpreted as a measure of sphericity of the sample covariance
space to the noise subspace. If there is only a single source and
noise variance (σ2) is assumed to be known, GLRT reduces to
maximum eigenvalue test, also known as Roy’s largest root test
(RLRT) [6]. It can also be used as a non-parametric statistic
when number of sources is more than one.

The GLRT statistics are known to be sensitive to the
prior information or assumption about the system model and
its parameters. Also, in practical scenarios no information
regarding the data will be available at the detector and the
sample size will also be limited. To address the shortcomings
with these techniques we resort to non-parametric statistics
which exploit the spatial correlation across sensors similar to
the ones proposed in [7] and references therein. The covariance
absolute value (CAV) statistic, proposed in [8] belongs to this
category which operates directly on the elements of SCM. It
was proposed for the real system model and the test statistic
was defined as,

T (R̂) =

Nr
∑

i=1

Nr
∑

j=1

|rij |
/

Nr
∑

i=1

rii (1)

whererij represents the(i, j)th element of SCM,R̂.
The CAV statistic is used as anad hocmeasure to identify

the contribution of off-diagonal elements. Under the null
hypothesis, the SCM is diagonal due to spatially uncorrelated
noise. Hence the CAV statistic approaches unity under the
null hypothesis and is greater than unity under the alternate
hypothesis due to the existence of correlation either in the
signalling method or when induced spatially. Due to the
effectiveness of CAV its performance is used as a reference to
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compare the blind statistics with the GLRT statistics [9], [5],
[10]. This motivates us to look into other forms of covariance
based ratios which can outperform the well established CAV.
Our previous work [11] extends the analysis of CAV to include
the complex data considering its equivalent form as:

T (R̂) =
∑

1≤i<j≤Nr

|rij |
/

Nr
∑

i=1

rii (2)

Due to the dependent nature of the numerator and the de-
nominator terms, the analysis of the statistic is cumbersome.
Therefore a statistic similar to CAV is formulated using
the elements ofQ, the Bartlett decomposed SCM , where
R̂ = QQH .

T1(R̂) =
∑

1≤j<i≤Nr

|qij |
/

Nr
∑

k=1

qkk (3)

The Bartlett decomposition makes the elements of lower
triangular Q matrix independent. They have the following
distributional property underH0 [3],

√
N

σ
qii ∼ χN−i+1, 1 ≤ i ≤ Nr

√
N

σ
qij ∼ CN (0, 1), 1 ≤ j < i ≤ Nr

whereχk denotes a chi-random variable withk degrees of
freedom (d.o.f). The independency between the numerator
and denominator terms makes the analysis of the statistics
formulated using the elements ofQ simpler compared to the
ones which use the dependent elements ofR̂.

This motivates us to look into more possibilities of forming
statistics with the elements ofQ. The analysis presented in
this paper considers non-parametric statistics on complexdata
which are designed as functions of elements ofQ in the form
of ratios similar to CAV and their combination. We show
that the combined statistics are robust against uncertainties in
the value of noise variance and correlation. Moreover, a few
scenarios were identified under which these statistics exploit
the correlation property better than the blind GLRT statistics
and the CAV statistic resulting in improved performance.

Section II presents problem formulation, followed by analy-
sis and observations about a number of non-parametric statis-
tics in Section III. Based on the analysis, we propose in section
IV combining these statistics leading to improved performance
and less sensitivity to variation in system parameters.

II. PROBLEM FORMULATION

ObservationX ∈ CNr×N represents a block ofN samples
acrossNr sensors, giving rise to the two hypotheses model:

X =

{

Hs+ η , Signal hypothesisH1

η , Null hypothesisH0

(4)

whereη∈CNr×N is the additive noise, which is assumed to be
zero-mean circular complex Gaussian, spatially uncorrelated
and temporally white with the covariance matrixσ2INr

. The
signal transmitted from theNt number of sources (assuming

TABLE I
STATISTICS: TYPE 1, 2, 3AND 4

Type 1 Type 2

T1 =

∑

1≤j<i≤Nr

|qij |

Nr
∑

k=1

qkk

T2 =

∣

∣

∣

∣

∑

1≤j<i≤Nr

qij

∣

∣

∣

∣

Nr
∑

k=1

qkk

Type 3 Type 4

T3 =

(

∑

1≤j<i≤Nr

|qij |

)2

Nr
∑

k=1

q2
kk

T4 =

∣

∣

∣

∣

∑

1≤j<i≤Nr

qij

∣

∣

∣

∣

2

Nr
∑

k=1

q2
kk

Nt≤Nr) is temporally uncorrelated and assumed to be i.i.d
standard complex Gaussian vector, i.e,s ∈ CNt×N∼CN (0, I).
The channel present between the source and the sensor is
assumed constant over the observation duration and modeled
as correlated complex Gaussian matrix, i.e.,H ∈ CNr×Nt

wherein eachhij ∼ CN (0, 1/Nt). The channel matrixH
is modeled to capture the correlation that might be present
between sensors, and one that is introduced by the channel.
The correlation present in the model is assumed unknown. The
SCM is calculated aŝR=XXH/N .

Our aim is to design a statistic for the classification without
having any information about the system parameters. We
consider non-parametric statistics shown in table I whose
formulations are similar to the CAV statistic in (2). They are
called as Type 1, 2, 3 and 4 and are functions ofQ.

III. A NALYSIS OF TEST STATISTICS: TYPE 1, 2, 3AND 4

The exact closed form expression for the distribution of
the statistic under the null hypothesis is required to find
the detection threshold. Approximations are used when exact
closed form expressions are not available and are intractable.

A. Threshold Calculations

1) Type 1:For theT1 statistic defined in Table I, note that,
|qij | ∼ Rayleigh (1/

√
2). The distribution of sum of these

NR=Nr(Nr − 1)/2 independent Rayleigh random variables
can be calculated as in [12]. However, we approximate the
sum distribution by the Gaussian tail approximation with the
following parameters.

µN =
NR√
2

√

π

2
, σ2

N =
(

2− π

2

) NR

2
(5)

Since straightforward simulation show that the Gaussian tail
approximation is more accurate than [12] for the above case,
the threshold calculated with this approximation method is
used to evaluatePd in Fig.1. The denominator is trace ofQ,
which is approximated to its mean valueµχ (see Appendix
A) under moderately large sample size assumption. Therefore,
the parameters of the Gaussian distribution in (5) are scaled
by 1/µχ and the threshold forT1 for a givenPfa is given by,

γth=(µN/µχ) + (σ2
N/µ2

χ)Q
−1(Pfa)



Q denotes the tail probability of a Gaussian distribution.
2) Type 2:Using similar arguments,T2 can be shown to be

a scaled Rayleigh with parameter
√

NR/2/µχ. The Rayleigh
CDF with this parameter is used to calculate the threshold.

3) Type 3: Note that the numerator ofT3 is the square
of the numerator ofT1 with approximate distribution given
in (5). After squaring and scaling with1/σ2

N , it transforms
to non-centralχ2 with 1 d.o.f and non-centrality parameter
δ=(µN/σN )2. The denominator isχ2 with d = (N +1)Nr −
Nr(Nr + 1)/2 d.o.f. When scaled properly the ratio follows
F1,d(δ) distribution, i.e.,

d

σ2
N

T3 ∼ χ2
1(δ)

χ2
d/d

∼ F1,d(δ) (6)

Similar statistic is proposed in [13] for the real system model.
4) Type 4: When the numerator ofT4 is scaled with

(Nr(Nr − 1))−1, it follows χ2 distribution with2 d.o.f. The
denominator is similar to (6). Hence,

d

2Nr(Nr − 1)
T4 ∼ χ2

2/2

χ2
d/d

∼ F2,d (7)

B. Simulation set-up and Observations

We considerNr=6 andNt=4. [14] and [6] among others
assume largeN (N ≫ 100), we however assume moderate
N (N ≈ 100) similar to [5] and [15]. Since we consider the
blind detection problem we assume that the structure of the
covariance matrix under the signal hypothesis is not known
at the detector.If the detector were not blind and knows the
covariance structure, then the test statistic could be formed
to exploit it. We restrict our focus to the blind detection
and impose AR(1) spatial covariance structure [16] on the
multichannel signal for the simulation purpose (for comparison
of different statistics ability to exploit correlation) such that,

X = P1/2H̃s+ η

P1/2H̃ corresponds toH in (4), where elements of̃H are in-
dependent and̃hij ∼ CN (0, 1/Nt). P captures the correlation
present in the system andP1/2 is its Cholesky decomposition.

P =











1 ρ ρ2 . . .
ρ 1 ρ . . .
ρ2 ρ 1 . . .
...

...
...

. . .











and H = P1/2H̃ (8)

The average received signal to noise ratio across each sensor
is given by,

SNR=
E[tr(vvH)]

E[tr(ηηH)]
, wherev = P

1

2 H̃s

For each SNR, the distribution of the statisticsT1, T2, T3

andT4 under the two hypotheses are obtained through 1000
Monte-Carlo realizations. The detection threshold is found
using the null distribution of the statistics keeping a fixed
constraint on the value ofPfa (=0.1). The performance (Pd)
evaluated using this threshold is denoted assimulationwhereas
Pd obtained with the thresholds found in section III-A is

denoted asApproximationin Fig. 1. To verify the accuracy
of approximations used in deriving the threshold, thePfa is
calculated using the null distribution of the statistic obtained
through Monte-Carlo simulation and plotted along withPd.

The calculations in section III-A indicate that the detection
thresholds are independent of noise variance and Fig. 1 verifies
the accuracy of these calculations in maintainingPfa at the
preset value0.1. It also verifies the validity of threshold at
sample sizeN = 100. In terms of performance we observe
from Fig. 1 thatT1 and T3 are equivalent andT2 and T4

are equivalent. Note that bothT2 and T4 have cross terms
(refer (14) in Appendix B) making them highly sensitive to
correlation among streams.

It would be desirable to have the performance independent
of the correlationρ because correlationρ is not known. How-
ever, we desire to retain the good features ofT1 (or T3) under
low correlation and that ofT2 (or T4) under high correlation.
We now propose the combination statistics,T12 = T1 + T2

andT34 = T3 + T4 such that inT12 (or T34), T1 (or T3) will
dominate under low correlation andT2 (or T4) will dominate
under high correlation.

IV. COMBINATION OF STATISTIC

A. T12 statistic

When the denominator is replaced with the mean valueµχ,
the combination statistic effectively has mean and variance
(from the similar arguments used in Type 1 and Type 2
threshold calculations) given as,

µ12 =
NR√
2µχ

√

π

2
+

√
NR π

2µχ
, σ12 =

(

2− π

2

) NR

µ2
χ

(9)

The detection threshold using Gaussian tail approximationis,

γth = µ12 + σ12Q
−1(Pfa)

B. T34 Statistic

From (6), the scaled/σ2
N makesT3 follow F1,d(δ). Since

the scaling should be same for both terms,T4 after scaling is,

d

σ2
N

T4 =

| ∑

1≤j<i≤Nr

qij |2/σ2
N

Nr
∑

k=1

q2kk/d

(10)

The numerator of (10) is Rayleigh random variable with
parameter

√

NR/2/σN . When squared, it is distributed as
exponential random variable with parameter∆=2/(2− π/2)
which is independent of system parametersNr andN . There-
fore the ratio in (10) is scaledF2,d distribution with factor∆.
Effectively the distribution of scaledT34 is written as sum of
two correlated F distributions (central and non-central),i.e.,

d

σ2
N

T34 ∼ F1,d(δ) + ∆F2,d ≡ A+B (11)

where ≡ denotes termwise equivalence. The approximate
correlation between the two terms is given in Appendix B.
If (µA, σ

2
A) and (µB, σ

2
B) are mean and variance ofA andB,
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Fig. 1. Pd vs. SNR for (a) ρ = 0.3 and (b)ρ = 0.7

the γth can be calculated using Gaussian tail approximation,
i.e.,

γth = µ34 + σ34Q
−1(Pfa) (12)

whereµ34 = µA + µB andσ2
34 = σ2

A + σ2
B + 2ρAB σAσB .

V. SIMULATION RESULTS AND DISCUSSION

We compare the performance ofT12 andT34 with the CAV
statistic and blind GLRT statistics, such as coherence ratio
test and sphericity test. Also, we consider reduced sphericity
test and RLRT which assume complete knowledge about the
parametersNt and σ2 respectively. This will enable us to
know the loss in performance of the blind statistics for not
knowing these parameters. Also, we analyse the sensitivityof
the statistics to variation in system parameters at very low
SNR (−10 dB). The RLRT statistic is omitted in sensitivity
comparison because it is less sensitive to variation inρ andNt.
The simulation set-up is similar to III-B and chosen system
parameters are indicated in each figure.

A. Pd vs.SNR

The performance of the statistics at different SNR under
low correlation (ρ = 0.3) and high correlation (ρ = 0.7) is
plotted in Fig. 2(a) and 2(b). We observe that the performance
of theT34 statistic is equivalent to the coherence ratio statistic
(blind GLRT statistic) under low correlation and has a better
performance compared to blind GLRT statistics under high
correlation.T12 is advantageous compared toT34 under high
correlation, however, performs poorly under low correlation.
The complete knowledge about the noise variance makes the
RLRT statistic perform better than blind statistics. The loss in
performance due to lack of knowledge about the noise variance
is significant under low correlation. Under high correlation the
combination statistics reduce this loss by exploiting the spatial
correlation. Moreover, the combination statistics exploit the
correlation property better than the CAV statistic.

The overshoot inPfa indicates the effect of underestimation
of the threshold. It is because the variance in (9) is calculated
neglecting the correlation betweenT1 andT2. The Gaussian
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Fig. 3. Pd vs. ρ for Nt = 1 andNt = 4

tail approximation is accurate for theT34 statistic. It verifies
the validity of threshold under low sample sizes (N = 100)
and also the robustness against the uncertainty in the valueof
noise variance.

B. Correlation among streams (ρ)

It is expected that the detection performance should increase
due to deviation in the observation’s spherical structure as
correlation among streams increases. The Fig. 3 depicts the
effect of variation in the value of correlation on the perfor-
mance of the statistics for a fixed number of sources in the
system. If there are more than one source (Nt>1), increase in
correlation improves the performance ofT12 andT34 statistic
and this improvement is significant compared to the blind
GLRT statistics. This shows that the combination statistics
exploit the correlation property better than the blind GLRT
statistics. However, when there exists only a single source
(Nt=1, rank-1 channel), the correlation among channels in
worse conditions results in decrease in performance (Pd) with
increase in correlationρ. The combination statisticsT12 and
T34 perform poorly under this condition.
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Fig. 2. Pd vs SNR for (a) ρ = 0.3 and (b)ρ = 0.7

C. Number of sources (Nt)

The performance of the statistics (Pd) decreases with in-
crease in the number of sources [17]. This is due to the
alignment of dominant right singular vectors of the channel
in the statistical direction of the transmit covariance matrix,
which is well known in MIMO literature by the namechannel
hardening effect[18].

The effect of variation in the number of sources on the
performance of the statistics under low and high correlation is
plotted in Fig. 4(a). Under low correlationT12 performs poorer
than the blind GLRT statistics, however, it outperform all the
other statistics (includingT34) under high correlation. The
performanceT34 statistic is equivalent to blind GLRT statistics
under low correlation and performs better than blind GLRT
statistics under high correlation. The combination statistics are
almost invariant to variation inNt under high correlation.

D. Sample size (N )

The performance with variation in sample size (N ) fixing
the other two parametersNt and ρ is plotted in Fig. 4(b).
As expected, the detection probability for all the statistics
approaches 1 as the sample size increases. TheT12 andT34

statistics perform better than blind GLRT statistics underhigh
correlation for all sample sizes. When low correlation scenario
is consideredT12 performs poorer than GLRT statistics, how-
ever,T34 statistic is equivalent to the blind GLRT statistics.
Therefore,T34 is the best choice if the statistic has to perform
equally well under both high and low correlation scenario.

VI. CONCLUSION

The performance improvement for the considered multi-
channel detection problem, compared to sensitive and asymp-
totically optimal GLRT statistics, is achieved through combin-
ing the non-parametric statistics. The threshold calculations
verifies the independent nature of the detection thresholdson
the value of noise variance making the statistics robust to
uncertainty in them. The Monte-Carlo simulation verifies it
and also validates the approximation techniques used.

Under high correlation the proposed combination statistics
have better performance compared to blind GLRT statistics
and the CAV statistic from which all the designed statistics
are motivated. Also, they are insensitive to variation inNt

and have better performance at low sample sizes. Under low
correlation, the performance ofT34 is equivalent to blind
GLRT statistics, however, performance ofT12 is poorer than
blind GLRT statistics. Therefore, if the statistic has to be
chosen independent of correlation,T34 would be a better
choice. The only scenario where the combination statisticsfail
is when there exists only a single source (Nt=1) in the system.
In such scenario, bothT12 andT34 perform worse compared to
blind GLRT statistics and CAV statistic. Extending the analysis
to more general correlation model opens up many possibilities
for future work.

APPENDIX

A. Approximation for the trace ofQ

Whenk is large, the mean ofχk random variable is,

µ =
√
2
Γ ((k + 1)/2)

Γ(k/2)
≈

√
k

(

1− 1

4k

)

The variance ofχk random variable, (k − µ2) is far less
compared to its meanµ when k is moderately large. This
is shown here.

k − µ2

µ
≈ k − k(1− 1

4k )
2

µ
≈ 1

2µ
≪ 1

Hence, the trace ofQ is replaced with its mean given by,

µχ = E

(

Nr
∑

k=1

qkk

)

=
√
2

Nr
∑

i=1

Γ(N−i+2

2
)

Γ(N−i+1

2
)

(13)

B. Approximate correlation coefficient

q12, q13 . . . q1Nr
, q23, q24 . . . qNr−1Nr

be represented as
a1 + jb1, a2 + jb2 . . . aNR

+ j bNR
. Note that they are all
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independent. LetY and Z be numerator ofT3 and T4

respectively, then

Y=





∑

1≤j<i≤Nr

|qij |





2

=

NR
∑

k=1

(a2k + b2k) + 2
∑

k 6=l

√

a2k + b2k

√

a2l + b2l

Z=

∣

∣

∣

∣

∑

1≤j<i≤Nr

qij

∣

∣

∣

∣

2

=

NR
∑

k=1

(a2k + b2k) +
∑

k 6=l

(2akal + 2bkbl) (14)

The cross term is calculated as,

Y Z =

NR
∑

k=1

(a2k + b2k)
2 +

∑

k 6=l

(a2k + b2k) (a
2
l + b2l )

+2
∑

k 6=l 6=m

(a2k + b2k)
√

a2l + b2l
√

a2m + b2m

+2
∑

k 6=l

(a2k + b2k)
3/2 (a2l + b2l )

E[Y Z]= NR[2 + (NR − 1)(1 + 0.25π(NR − 2) +
√
π Γ2.5)]

The mean and variance ofY , Z are calculated as,

µY =NR + 0.25πNR(NR − 1), σ2
Y = 2 + 4δ

µZ=NR, σ2
Z = N2

R

whereδ is the non-centrality parameter defined in (6).ρY Z is
calculated using these parameters andρAB ≈ ρY Z .
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