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Abstract—We consider the problem of detecting the presence of variations in the final form of the GLRT statistic depending o
a spatially correlated multichannel signal corrupted by adlitive  the prior information or assumption about the system model
Gaussian noise (i.i.d across sensors). No prior knowledgss i gnq jts parameters are discussed in the following paragraph
assumed about the system parameters such as the noise vargan When th . d ind dent
number of sources and correlation among signals. It is well en he noise across sensors are assumed Independen
known that the GLRT statistics for this composite hypothess resulting in diagonal covariance structure GLRT reduces to
testing problem are asymptotically optimal and sensitive ¢ coherence ratio test][1] and under i.i.d assumption rewylti
variation in system model or its parameter. To address these in homogeneous diagonal covariance structure GLRT reduces
shortcomings we present a few non-parametric statistics whbh to sphericity test[J4]. In addition, the information abotit

are functions of the elements of Bartlett decomposed sample . - . .
covariance matrix. They are designed such that the detectio number of sources\;) contributes in improving the detection

performance is immune to the uncertainty in the knowledge of Strategy by estimating the noise from the latent roots of the
noise variance. The analysis presented verifies the invatidity of ~model. This method is advantageous wh¥p is less than
threshold value and identifies a few specific scenarios whetde  the number of sensorgy,.. Assuming the exact knowledge of
proposed stafistics have better performance compared to GRT  n; the GLRT reduces teeduced sphericity tegB] which is
statistics. The sensitivity of the statistic to correlatim among . .’ S .
streams, number of sources and sample size at low signal tointerpreted as ameasure of spher|C|ty_ of the sample cowzeia
noise ratio are discussed. space to the noise subspace. If there is only a single soncce a
Index Terms—multichannel detection, generalised likelihood noise varianced?) is assumed to be known, GLRT reduces to
ratio test, covariance based detection, covariance absativalue maximum eigenvalue test, also known as Roy’s largest reot te
detection (RLRT) [6]. It can also be used as a non-parametric statistic
when number of sources is more than one.
The GLRT statistics are known to be sensitive to the
Detecting the presence of signal affected by channel imprior information or assumption about the system model and
pairments and corrupted by additive noise is encounteredi§ parameters. Also, in practical scenarios no infornmatio
a variety of array processing applications. The goal is tegarding the data will be available at the detector and the
classify the observation into one of the two possibiliti&€} [ sample size will also be limited. To address the shortcoming
i.e., signal present/not present. The detection stafistithis with these techniques we resort to non-parametric stisti
binary hypothesis testing problem is said to be optimal which exploit the spatial correlation across sensors aini
the Neyman-Pearson (N-P) sense if it maximizes detectitie ones proposed inl[7] and references therein. The coxaria
probability (P;) for a fixed false alarm levelF;,). It is well absolute value (CAV) statistic, proposed [in [8] belongshis t
known that the likelihood ratio test (LRT) assures optittyali category which operates directly on the elements of SCM. It
in the N-P sense if the two distributions are known preciselyas proposed for the real system model and the test statistic
However, in the case of system with uncertain parameters thas defined as,
hypotheses are composite. In such case, the statistic wgich N, N, N,
optimal in the N-P sense irrespective of the value taken by 5\ 3 N
the uncertain parameters is called uniformly most powerful T(R) = ZZ I ZT” @
statistic. There is no straightforward procedure to findnid a
they don't exist in many real life scenarids [2]. An altematwherer;; represents théi, j)!" element of SCMR.
approach is to obtain the asymptotically optimal detection The CAV statistic is used as atd hocmeasure to identify
statistic called the generalized likelihood ratio test &I} the contribution of off-diagonal elements. Under the null
by replacing the uncertain parameters with their maximuhypothesis, the SCM is diagonal due to spatially uncoreelat
likelihood estimate (MLE) in the likelihood ratio. noise. Hence the CAV statistic approaches unity under the
The MLE of the covariances under the two hypothesesill hypothesis and is greater than unity under the alternat
for the multichannel signal corrupted by additive Gaussidiypothesis due to the existence of correlation either in the
noise observation model is the function of sample covadansignalling method or when induced spatially. Due to the
matrix (SCM), because it is the sufficient statisfi¢ [3]. Avfe effectiveness of CAV its performance is used as a referamce t
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compare the blind statistics with the GLRT statistics [B], [ STATISTICS: TYPEL, 2, 3AND 4

[1Q]. This motivates us to look into other forms of covarianc

based ratios which can outperform the well established CAV,
Our previous work{[111] extends the analysis of CAV to include
the complex data considering its equivalent form as: > gyl i
1< <i<Ny 1<) <i<Ny
) N, T = R — Ty = N,
T(R) = g L "
(R) Z |le| ZT“ 2 kgl Akk kgl dkk
1<i<j<N, =1
Due to the dependent nature of the numerator and the de-
nominator terms, the analysis of the statistic is cumbeesom S gl : NE
Therefore a statistic similar to CAV is formulated using 1<jST< N, 7 1§j<i§N7‘q”
the elements ofQ, the Bartlett decomposed SCM , where Ts= Ne Ta= Ny
R = QQ". T =
N
Ti(R) = Z |45 Z‘Jkk () N,<N,) is temporally uncorrelated and assumed to be i.i.d
1<j<i< N, k=1

standard complex Gaussian vector, & CV**N ~CN(0,T).
The Bartlett decomposition makes the elements of low&he channel present between the source and the sensor is
triangular Q matrix independent. They have the followingassumed constant over the observation duration and modeled

distributional property undes? [3], as correlated complex Gaussian matrix, iH, e CN-*N:
VN wherein eachh;; ~ CN(0,1/N;). The channel matrixt

—— Qi ~ XN—it+1, 1<i<N, is modeled to capture the correlation that might be present

between sensors, and one that is introduced by the channel.

@qij ~CN(0,1), 1<j<i<N, The correlation present in the model is assumed unknown. The

SCM is calculated a®R=XX" /N

where x, denotes a chi-random variable with degrees of  Our aim is to design a statistic for the classification withou
freedom (d.o.f). The independency between the numerat@iving any information about the system parameters. We
and denominator terms makes the analysis of the statistigmsider non-parametric statistics shown in talle | whose
formulated using the elements 6 simpler compared to the formulations are similar to the CAV statistic iil (2). Theyear
ones which use the dependent elementRof called as Type 1, 2, 3 and 4 and are function€)f

This motivates us to look into more possibilities of forming i
statistics with the elements @). The analysis presented in """
this paper considers non-parametric statistics on congéx ~ The exact closed form expression for the distribution of
which are designed as functions of elementuin the form the statistic under the null hypothesis is required to find
of ratios similar to CAV and their combination. We showhe detection threshold. Approximations are used whentexac
that the combined statistics are robust against uncegait closed form expressions are not available and are intrigctab
the value of noise variance and correlation. Moreover, a feW Threshold Calculations

scenarios were identified under which these statisticsoéxpl - ) .
. ; L 1) Type 1:For theT; statistic defined in Tablé I, note that,
the correlation property better than the blind GLRT staisst ;] ~ Rayleigh (1//2). The distribution of sum of these

and the CAV statistic resulting in improved performance. Np=N,(N, — 1)/2 independent Rayleigh random variables

_Sectlorl:I] pres_ents problem formulation, followed by _analy?an be calculated as in_[12]. However, we approximate the
sis and observations about a number of non-parametris-stafi

tics in SectiofiIl. Based on the analysis, we propose iriect sum Q|str|but|on by the Gaussian tail approximation witk th
e "y . X following parameters.
[VIcombining these statistics leading to improved perfanoe
and less sensitivity to variation in system parameters. _ Ngr m 2 T\ Nr
=g\ v=P73)% O

A NALYSIS OF TEST STATISTICS TYPE 1, 2, 3AND 4

Il. PROBLEM FORMULATION . ot 4 simulat i Bat R "
. ince straightforward simulation show that the Gaussidn ta
ObservationX € CV-*¥ represents a block o samples g

- . approximation is more accurate than|[12] for the above case,
acrossN, sensors, giving rise to the two hypotheses mOdelt'he threshold calculated with this approximation method is
[ Hs+mn, Signal hypothesisz3 used to evaluaté’; in Fig[d. The denominator is trace €},
X = ) 4) S . . .
n, Null hypothesis which is approximated to its mean valyg (see Appendix
whereneCV*V is the additive noise, which is assumed to IJ@ under moderately large sample size assumption. Thazefor
. . . e parameters of the Gaussian distribution[in (5) are dcale
zero-mean circular complex Gaussian, spatially uncdHéIab 1/11, and the threshold fof} for a given Py is given b
and temporally white with the covariance mattXIy, . The Y L b ! g fa S g Y.

signal transmitted from théV; number of sources (assuming Yin=(un/tix) + (0% /13)Q ™ (Pra)



@ denotes the tail probability of a Gaussian distribution. denoted asApproximationin Fig.[d. To verify the accuracy

2) Type 2:Using similar argumentd;, can be shown to be of approximations used in deriving the threshold, g is
a scaled Rayleigh with parametefNz/2/u, . The Rayleigh calculated using the null distribution of the statistic aibed
CDF with this parameter is used to calculate the thresholdthrough Monte-Carlo simulation and plotted along with.

3) Type 3: Note that the numerator df; is the square  The calculations in sectidnIIHA indicate that the detenti
of the numerator ofl; with approximate distribution given thresholds are independent of noise variance andFig. fiegeri
in (B). After squaring and scaling with/o?%;, it transforms the accuracy of these calculations in maintainifig at the
to non-centraly? with 1 d.o.f and non-centrality parameterpreset valued.1. It also verifies the validity of threshold at
§=(un/on)?. The denominator ig? with d = (N +1)N,.— sample sizeN = 100. In terms of performance we observe
N,.(N, + 1)/2 d.o.f. When scaled properly the ratio followsfrom Fig.[d that7; and T3 are equivalent and® and 7}

F1,q4(0) distribution, i.e., are equivalent. Note that both, and 7, have cross terms
) (refer [14) in AppendiXB) making them highly sensitive to
d Xi(9) ;
— T3 ~ =5 7 Fy.4(0) (6) correlation among streams.
N Xa/ It would be desirable to have the performance independent

Similar statistic is proposed in [13] for the real system mlod of the correlatiorp because correlatiop is not known. How-
4) Type 4: When the numerator off; is scaled with ever, we desire to retain the good feature§p{or 73) under
(N,.(N, —1))~1, it follows y? distribution with2 d.o.f. The low correlation and that of; (or T;) under high correlation.

denominator is similar td{6). Hence, We now propose the combination statisti@§, = 71 + 1o
d 3/2 andTs4 = T5 + Ty such that inTy5 (or Ts4), 17 (or T3) will
Ty ~ g ~ Fyq (7) dominate under low correlation aif@ (or 7)) will dominate
2N (Nr —1) Xa/d under high correlation.

B. Simulation set-up and Observations

We considerN,.=6 and N;=4. [14] and [6] among others o
assume largeV (N > 100), we however assume moderatd\: 112 statistic
N (N =~ 100) similar to [5] and [15]. Since we consider the When the denominator is replaced with the mean valye
blind detection problem we assume that the structure of ttiee combination statistic effectively has mean and vaganc
covariance matrix under the signal hypothesis is not knowfftom the similar arguments used in Type 1 and Type 2
at the detectorlf the detector were not blind and knows thehreshold calculations) given as,
covariance structure, then the test statistic could be mm —
to exploit it We restrict our focus to the blind detection ;5 = ﬁ\/z_y M, 019 = (2_ f) Nr 9)
and impose AR(1) spatial covariance structure| [16] on the V24, V2 24 2 X

IV. COMBINATION OF STATISTIC

Hx

multichannel signal for the simulation purpose (for con@T The detection threshold using Gaussian tail approximasion
of different statistics ability to exploit correlation) cu that,

- Yth = p12 + 012Q " (Pa)
X =P fs+n *

B. T34 Statistic

From [8), the scalel/o3 makesT; follow Fy 4(d). Since
the scaling should be same for both terfig,after scaling is,

P'/?H corresponds td in @), where elements di are in-
dependent andl;; ~ CA'(0,1/N;). P captures the correlation
present in the system amf'/? is its Cholesky decomposition.

2 2
qij|~ /0
1 p p* ... d |1§j<zi:§N7~ i
b 1 s . —~ Ti= NT (10)
P=|2 , 1 .. |and H=P'/’H (8) N k;q,%k/d

The numerator of[(10) is Rayleigh random variable with
The average received signal to noise ratio across eachrsemgwameter,/Ny/2/oy. When squared, it is distributed as

is given by, exponential random variable with parameter2/(2 — w/2)
Eltr(vvH)] L which is independent of system paramet®sand N. There-
SNR= W , wherev = P2Hs fore the ratio in[(ID) is scalefl, ; distribution with factorA.

Effectively the distribution of scaled’, is written as sum of
For each SNR, the distribution of the statisti€s, 7>, 73  two correlated F distributions (central and non-centiag),

and 7 under the two hypotheses are obtained through 1000

Monte-Carlo realizations. The detection threshold is fbun — T3y~ F14(0) +AFg=A+B (12)
using the null distribution of the statistics keeping a fixed IN

constraint on the value afy, (=0.1). The performanceK,;) where = denotes termwise equivalence. The approximate
evaluated using this threshold is denotediasulationwhereas correlation between the two terms is given in Appendix B.
P, obtained with the thresholds found in section TlI-A idf (14,0%) and g, 0%) are mean and variance df and B,
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Whereu34 = A+ UB anda§4 = 0124 + UQB +2papoacp.
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V. SIMULATION RESULTS AND DISCUSSION

We compare the performance 6f; andT54 with the CAV
statistic and blind GLRT statistics, such as coherenc® ra'g
test and sphericity test. Also, we consider reduced spheric
test and RLRT which assume complete knowledge about t i%’“’
parametersN, and o2 respectively. This will enable us to %% _*_T;j
know the loss in performance of the blind statistics for nc 81 02 03 0.4 05 0.6 07 0.8 0.
knowing these parameters. Also, we analyse the sensitivity
the statistics to variation in system parameters at very low Fig. 3. Pyvs.pfor Ny =1andN; =4
SNR (=10 dB). The RLRT statistic is omitted in sensitivity
comparison because it is less sensitive to variatignand V,.

The simulation set-up is similar {0 Il}B and chosen systefail approximation is accurate for thg;, statistic. It verifies
parameters are indicated in each figure. the validity of threshold under low sample size§ & 100)
A. P, vs.SNR and also the robustness against the uncertainty in the wélue

- . noise variance.
The performance of the statistics at different SNR under

low correlation p = 0.3) and high correlationg = 0.7) is B. Correlation among streamg)
plotted in Fig[2(d) anf 2(p). We observe that the perforreanc’
of the T4 statistic is equivalent to the coherence ratio statistic It is expected that the detection performance should iserea
(blind GLRT statistic) under low correlation and has a lrettelue to deviation in the observation’s spherical structuse a
performance compared to blind GLRT statistics under higlorrelation among streams increases. The [Hig. 3 depicts the
correlation.Tys is advantageous comparedy, under high effect of variation in the value of correlation on the pesrfor
correlation, however, performs poorly under low correlati mance of the statistics for a fixed number of sources in the
The complete knowledge about the noise variance makes flystem. If there are more than one sourdgx1), increase in
RLRT statistic perform better than blind statistics. Theslin correlation improves the performance’Bf, and T3, statistic
performance due to lack of knowledge about the noise vagiarend this improvement is significant compared to the blind
is significant under low correlation. Under high correlattbe GLRT statistics. This shows that the combination stasistic
combination statistics reduce this loss by exploiting thatisl exploit the correlation property better than the blind GLRT
correlation. Moreover, the combination statistics exptbie statistics. However, when there exists only a single source
correlation property better than the CAV statistic. (Ny=1, rank-1 channel), the correlation among channels in
The overshoot inP, indicates the effect of underestimatiorworse conditions results in decrease in performarit \{ith
of the threshold. It is because the variance[in (9) is caledla increase in correlatiop. The combination statistic$}, and
neglecting the correlation betwedn and 7. The Gaussian T34 perform poorly under this condition.

o
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of Detection (Fc")

o
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——Reduced sphericity
—v-Coherence Ratio




6X4 ,N=100, lf’aZO'l ,p=0.3 6X4 , N=100, lf’a=0.1 ,p=0.7

—©-Sphericity
——Reduced sphericity
- Coherence Ratio |7

—6-Sphericity
—9—Reduced sphericity
- Coherence Ratio ||

——RLRT | ——RLRT |
—=-CAV —=-CAV

—<Tp . <Ti .
=T34 i =Ty 4

—+ Pfa for T12 —_ Pfa for le

_,,_Pfa for T34 _,,_Pfa for T34

d6 14 12 -0 8 s 4 =2 o 2 4 d6 14 12 -0 8 s 4 =2 o 2 4
SNR SNR
@ (b)
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C. Number of sources\;) Under high correlation the proposed combination stasistic

The performance of the statistic®{) decreases with in- have better perfo_rmance compared to blind _GLRT sta_tis.tics
crease in the number of sourcés][17]. This is due to tiged the.CAV statistic from whl_ch all _the deS|gn.ed. statistics
alignment of dominant right singular vectors of the chann&f® motivated. Also, they are insensitive to variationNip
in the statistical direction of the transmit covariance nnat nd have better performance at low sample sizes. Under low
which is well known in MIMO literature by the namghannel Ccorrelation, the performance dfs, is equivalent to blind
hardening effecfi8]. G!_RT statistics, _hqwever, performa}nce B is poorer than

The effect of variation in the number of sources on thlind GLRT statistics. Therefore, if the statistic has to be

performance of the statistics under low and high correfeiso €hosen independent of correlatiofi, would be a better
plotted in Fig[4{@). Under low correlatidh , performs poorer _ch0|ce. The only_ scenario w_here the comblnr_mon statigiits
than the blind GLRT statistics, however, it outperform &t t IS when there exists only a single souré@ €1) in the system.
other statistics (including4) under high correlation. The /N Such scenario, bothi, andT3, perform worse compared to
performancd’s, statistic is equivalent to blind GLRT statisticsP!ind GLRT statistics and CAV statistic. Extending the ysal
under low correlation and performs better than blind GLR{P More general correlation model opens up many posssiliti
statistics under high correlation. The combination siatisare for future work.

almost invariant to variation iV, under high correlation.
APPENDIX

D. Sample sizeX)

The performance with variation in sample siz¥)(fixing

the other two parameterd, and p is plotted in Fig[4(g). Whenk is large, the mean of; random variable is,
As expected, the detection probability for all the statsti T ((k+1)/2) 1
approaches 1 as the sample size increases.IThand T3, = Vo A TR ok (1 — —)
statistics perform better than blind GLRT statistics uniigh (k/2) 4k
correlation for all sample sizes. When low correlation $t8n The variance ofy, random variable, K — 42) is far less
is considered’}, performs poorer than GLRT statistics, hoWzompared to its meap when & is moderately large. This
ever, Tz, statistic is equivalent to the blind GLRT statisticSis shown here.
Therefore T34 is the best choice if the statistic has to perform
equally well under both high and low correlation scenario. k—p? ~ k—k(1 - ﬁ)Q 1

% % 2p

ence, the trace of) is replaced with its mean given by,

A. Approximation for the trace o)

VI. CONCLUSION

The performance improvement for the considered muIt'i_-|
channel detection problem, compared to sensitive and asymp N, N, (N=it2)
totically optimal GLRT statistics, is achieved through dom py =F (Z qkk> =2 Z Nfiﬂ (13)
ing the non-parametric statistics. The threshold calmat k=1 i=1 I(==+)
verifies the independent nature of the detection threshmids . . -~
the value of noise variance making the statistics robust ?0 Approximate correlation coefficient
uncertainty in them. The Monte-Carlo simulation verifies it ¢i2, ¢13... ¢in,, @23, @24 ... gn,—1 N, D€ represented as
and also validates the approximation techniques used. ay + jbi, as + jba...an, + jbn,. Note that they are all
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