Receiver-driven routing for community mesh networks

Axel Neumann, Leandro Navarro
Department of Computer Architecture
Universitat Politécnica de Catalunya
Barcelona, Spain
neumann @ cgws.de, leandro@ac.upc.edu

Abstract—Community wireless mesh networks are decentral-
ized and cooperative structures with participation rules that
define their freedom, openness and neutrality. The operation
of these networks require routing algorithms that may impose
additional unnecessary technical restrictions in the determina-
tion of routes that can restrict the freedom of community users.
We propose a receiver-driven discretionary routing mechanism
where each receiver (the intended destination of the packet)
can freely specify delivery objectives and remain compatible
with the collaborative approach of community networks. Each
node has a unique identifier and can announce the description
of its offer and also the description of its routing policy
with preferences to deliver traffic to it. BMX6 provides a
”hash-based profile propagation mechanism” to disseminate
descriptions. This receiver-driven routing can be applied to
express preferences for desirable nodes and paths, or to restrict
traffic to trusted nodes enabling trust and security aware
routing. We validate our contributions with a proof of concept
implementation of key concepts, as an extension of the BMX6
routing protocol, that confirms its feasibility and scalability.

Keywords-routing; community mesh networks; metric poli-
cies; trust; security;

I. INTRODUCTION

Community wireless mesh networks are decentralized and
cooperative structures thats grow organically in communities
where network nodes are owned, contributed and adminis-
tered by its members.

Routing in community wireless mesh networks is based
on the principle of cooperation among the participants.
Athough these communities usually have participation rules
as a membership license or peering agreement that define
their freedom, openness and neutrality. The implementation
of these networks require additional technical agreements
and restrictions for data transit among any pair of network
nodes. That includes the use of a specific routing protocol
where nodes can learn and inform about the state of the
network and update their own routing tables.

Current mesh routing protocols [10], including OLSR
[14], BATMAN [12] are based on running a common
algorithm and sharing common metrics to determine the
routes for all network nodes. However, the participants in
the network and its diverse infrastructure should not impose
technical restrictions limiting the freedom of the community
users beyond the accepted participation rules defined by each

Roger Baig, Pau Escrich
Fundacio Privada per a la Xarxa Oberta,
Lliure i Neutral Guifi.net
Catalonia, Spain
{roger.baig, pau.escrich} @ guifi.net

community network agreement. The main challenge is to
provide routing mechanisms that can respect and enhance
community cooperation and individual freedom.

In this work we present a receiver-driven discretionary
routing mechanism where the destination can freely specify
delivery objectives while remaining compatible with the col-
laborative approach of community networks. Our proposal
is based on the assumption that the owner of a packet is
the intended receiver (destination) of it (not the sender),
and that it should be able to control the policies for the
delivery of the packets meant for it. To achieve this, we
propose means for each node to announce the resources its
willing to share and the implications to use them. Further,
we let nodes (from a destination perspective) to select among
the resources announced by others and specify the rules
(policies) according to which nodes will handle its traffic.

Receiver-driven routing can be used by receivers to ex-
press preference for nodes and paths with desired char-
acteristics. A receiver of interactive traffic may prefer to
route traffic preferably through nodes with a track record of
low latency or high availability. Another key application is
enabling trust-driven routing. A receiver may want to get
data only through trusted nodes or avoid unstrusted nodes
that may affect his data such as for non-encrypted traffic.

We have experimented with the ideas as part of BMX6
[13], where each node can have a descriptive profile, and a
global unique and non-ambiguous hash as identifier. BMX6
provides a “hash-based profile propagation mechanism” to
disseminate profile information between nodes of a commu-
nity network. Nodes can use this information to construct
and announce its routing policy to any sender. Building on
this our receiver-driven routing mechanism has been tested.

The rest of the paper presents the design of receiver-
driven routing. We validate our contributions with a proof
of concept implementation of the main idea.

II. RECEIVER-DRIVEN ROUTING

A. Assumptions and Design Considerations

Routing in community networks is based on the principle
of cooperation. To conceptually maximize the opportunities
(in terms of network resources) for cooperation despite
the usually diverse infrastructure and user heterogeneity in

community networks, a principal cooperation should not
depend on specific mandatory rules or policies.

Therefore, instead of enforcing the same behavior to all
components of a community network by employing specific
prevention mechanisms, the participation rules should be
open and only demand a formal (and authenticated) an-
nouncement of offered resources and related implications.
Users should be empowered to dynamically select the set of
published resources and acceptable implications as needed
for their individual objectives.

Practically, any infrastructure owner willing to (at least)
partially share his resources should be able to identify him-
self and specify his offer and the implications or limitations
that he associates with this offer in a node-specific profile
(also called description in the following). Such a profile may
include the following “offer” attributes:

« Routing topology and reachability information.

e Supported metric functions (e.g. ETX, ETT, hop-
count).

o Locally reachable networks, offered gateway and proxy
services.

« Traffic shaping implications for packets routed via this
node.

o Identity information (eg: this node is owned by X, you
may not trust me).

o Responsibility information (this node is managed by Y
who certified its operation according to policy Z).

Being aware of the profiles of all nodes in a network, each
community network user (the routing protocol in its node)
could select among the available resources those he wants
to accept for the forwarding of his own traffic (by adding
forwarding requirements to his own profile). A list of typical
requirements for a forwarding policy could be:

« End-to-end path establishment (route selection) accord-
ing to its choice of metric function.

¢ Only via nodes that do not apply traffic shaping.

e Only using gateway services of node A and B.

e Only route my traffic via nodes owned or managed by
C.

Following this approach an enhanced level of trust and
security can be achieved simply by allowing nodes to waive
some offered resources for the forwarding of their data
(e.g. due to being untrusted). Maybe the resulting end-to-
end paths are suboptimal or even not possible (compared to
using all offered links and nodes of the network). However,
we believe this is similar to real-life security: individually I
may decide not to cross dark forests at night and sometimes
I must accept a long way around or even that I can not reach
the guy living in the middle of a forest.

From our experience with the guifi.net[26] community
network we can report specific examples illustrating the
advantages for community networks. For instance we are
faced organizations reluctant to share their already existing

network infrastructure and join the community simply be-
cause they have no means to control that their own traffic
is not routed via unknown nodes (in particular the nodes of
their competitors). Offering such companies the opportunity
to exclude untrusted nodes as candidate nodes for relaying
their traffic would indeed relieve the situation and create
a win-win situation for the companies and the network
community.

B. Principles and Proposed Mechanism

Receiver-driven routing is targeted at enabling user-
individual routing with respect to available network re-
sources and each user’s forwarding requirements. Our pro-
posal is based on the assumption that the owner of a
packet is the intended receiver of it (not the sender nor
any intermediate node) and therefore the receiver should be
able to control how the packet shall be forwarded. Further,
we argue that this assumption naturally fits into today’s
IP architecture where the packet forwarding is typically
destination driven as each node along the path is consulting
it’s routing table only for the destination address of a packet
to identify the next hop. Thus, letting the destination node
control how it’s next hop in the routing tables should be
selected already allows for a destination-specific directing
of all traffic destinated to this node. In contrary, pursuing to
support sender-individual (sender-driven) routing, given the
destination-driven operation of routing-tables, would require
either strict source routing or maintaining individual routing
tables (policy routing) for all potential source addresses and
in all nodes of a network, introducing performance penalties
and new coordination challenges.

We propose a (i) “receiver-driven routing mechanism” that
leverages a (ii) “hash-based description propagation mech-
anism” to disseminate requirements and profile information
between nodes of a community network.

To enable the distributed application of node-individual
forwarding policies we associate routing update messages
with a specification of the forwarding requirements of des-
tination nodes. All other nodes are requested to use this
specification when identifying the next hop and configure its
routing table entry towards this destination address accord-
ingly. A consequence of this approach is that if intermediate
nodes are following the forwarding policies defined by each
destination node, then the traffic directed to any destination
node will only be forwarded according to its own rules.
Further, if the destination node is able to specify a set
of trustable nodes and requests intermediate nodes to only
forward its data via these trusted nodes, then, once a data
packet is routed via any of these trusted nodes it will never
leave the set of trusted nodes along its path until it is
delivered to its final destination or dropped because an end-
to-end path is not possible within the set of trusted nodes.

The algorithm supporting this approach may operate as
follows:

o Require for each node:

— A public and private key pair. The hash of the
public key is used for non-ambiguous identification
of the node.

— A description (profile) of itself including its pub-
lic key, offered resources and implications, and
forwarding requirements (see above), signed with
its private key. These descriptions can be unam-
biguously referenced using the hash of the overall
description (not the public key hash).

« Each node description and the corresponding signatures
are propagated over the network.

o Like any Destination Sequenced Distant Vector Proto-
col, each node periodically propagates routing update
messages containing a sequence number, metric values,
and (instead of a destination address) a reference to the
description of the originator node (description hash).

o When node A receives a routing update originated by
node D (and propagated) via neighbor N then:

— A looks up the referenced description from D and
checks whether N is in the set of nodes that D
trusts and that N fulfils the forwarding require-
ments defined by D. Note that A itself must not
necessarily be a trusted node of D. This allows
even untrusted nodes to send packets to D as long
as they can forward the packet via one of their
neighboring nodes that is trusted by D.

— If the condition is not met, then the routing update
is silently dropped.

— If the condition is met, N is a potential next hop
for forwarding traffic towards D, and then:

A uses the metric function defined via D’s descrip-
tion to calculate the current metric value to reach
D, uses this value for ranking between alternative
next hops towards D, and for the further propaga-
tion of D’s routing updates.

A configures the routing table towards the ad-
dresses defined in D’s profile via the best ranking
neighbor.

C. Technical Protocol Requirements

Based on the above presented mechanism a number of
protocol requirements can be identified. In the following we
summarize these requirements and point to existing concepts
and solutions that can be used for the implementation and
validation of our ideas.

Although our proposed mechanisms may also be ap-
plicable (with conceptual adaptions) to link-state based
routing protocols we believe that a (proactive) table-driven
destination-sequenced distance-vector based protocol will fit
best to allow an efficient and loop-free operation of our
proposal. The main argument here is that for link-state
based protocols our approach would require a continuous

(re-)calculation of the complete end-to-end path between all
nodes of a network and this for each node’s (forwarding)
policy. However, for distance-vector based protocols the
calculation must only be done for the next hop towards each
originator and each with respect to the policy specification
of the originator.

An information propagation mechanism for disseminating
node profiles in the network has to satisfy the following
requirements:

o The mechanism must be capable to deal with so called
opportunistic networks [9]: important to ensure that
node profile information becomes available as soon as
possible and despite the existence of unstable and tem-
porary broken links or even disconnected fractions of
the network because the availability of this information
is a prerequisite for other nodes to instantly resolve and
process node identities, attributes, and routing updates.

o Independent propagation of profile information and
routing updates: needed since routing updates rely on
previous local availability of the originator’s profile.

e Referencing: to allow for an efficient (in terms of traffic
and computational overhead) association of frequent
and periodic routing updates with the originator’s pro-
file information it must be possible to non-ambiguously
reference originator profiles with comparatively com-
pact profile identifiers (e.g. the hash of a profile).

o Dynamic profile updates and continuous synchroniza-
tion of this information with other nodes: required to,
on the one hand, let nodes change their resource offers
and implication announcements and, on the other hand,
let nodes adapt their forwarding-policy specification to
either changed resource availabilities or new traffic,
security, or trust requirements.

e Originator identification, authentication, information
integrity, and non-repudiation: needed by receiving
nodes to validate the authenticity and integrity of profile
information originated by other nodes.

o Versioning: profile information and referencing must
allow receivers to distinguish old from new versions
from the same originator. This is needed to ensure that
processing of routing update messages can always be
associated with the latest valid profile of originators.

o Listing of nodes: to support the traffic forwarding
only via trusted nodes the routing protocol must allow
dynamic white/black listing of particular intermediate
nodes that could be used or must be ignored during the
selection of potential next-hop nodes for the routing.
Furthermore, the routing protocol must be capable to
create and process a syntax for specifying and commu-
nicating those trusted nodes.

e Scalable verification of authenticity and credibility:
since the users (node administrators) of a large com-
munity network can hardly know and maintain com-

prehensive black or white lists, classifying all nodes
of the network into trustable or not, mechanisms are
desirable to let users rely on already existing chains or
networks of trust. A natural candidate for this problem
would be given by what is known as a web of trust.

o The routing protocol must allow the dynamic (re-)
configuration of metric functions and parametrizations:
although existing routing protocol implementations ex-
ist that allow the usage of different metric functions (for
example the OLSR implementation of OLSR.org [20]
allows this via metric plugins and Babel [11] comes
with separate implementations for different metric fla-
vors), to the best of our knowledge none of the existing
open routing protocol implementations are currently
able to change this behavior on the fly. However, this
is needed to dynamically apply node-individual metric
specifications without restarting the network. Further,
the routing protocol must be capable to create and
process a syntax for specifying metric functions and
parametrizations as needed to express and communicate
the desired route-selection behavior to other nodes.

o Mechanisms for secure communication (authentication,
integrity, confidentiality, non-repudiation) with neigh-
boring (potential next hops) nodes: necessary to ensure
that protocol data is indeed exchanged between authen-
tic neighboring nodes and that to-be forwarded data is
forwarded via the intended neighbor. To support this,
existing security solutions like IPSEC [21] can be used.

o Suite of cryptographic tools for calculation of security
attributes: a variety of open libraries exist for solving
the required cryptographic mechanisms using standard-
ized APIs. We are focusing on the openSSL [22] API
which is also supported by CyaSSL [23], a lightweight
and efficient SSL library for embedded devices.

III. VALIDATION AND PRELIMINARY RESULTS

As a proof of concept, key mechanisms of our pro-
posal have been implemented based on existing work of
the BMX6 routing protocol and validated by emulation of
typical scenarios. In the following we quickly summarize
the requirements already provided by the BMX6 routing
protocol and the functional extensions that have been de-
veloped. Following the description of the methodology and
tested scenario we summarize performance and scalability
observations in terms of computation and communication
overhead.

A. Leveraged BMX6 mechanisms

Our current implementation builds on top of the BMX6
routing protocol [13] because its concepts and implementa-
tion [24] already leverage and provide key mechanisms for
the requirements as discussed in Section II-C. In particular,
it is a proactive, table-driven routing protocol for mesh
networks, leveraging concepts of destination-sequenced,

distance-vector protocols. Further, the current implemen-
tation is fully open-source (GPL licensed), and actively
maintained and used (for example in various Guifi.net [26]
community-network clouds and fully integrated in com-
munity network node-system distributions like gqMp [25]).
BMXG6 also provides an opportunistic-network tolerant infor-
mation propagation mechanisms operating independently of
the routing-update mechanism and allowing efficient refer-
encing of descriptions via hashes and individual identifiers,
continuous and dynamic description updates, and version-
ing. Further, the mechanism allows to piggyback arbitrary
additional content via description extensions and propagate
them with the rest of the node’s profile in a network. This
feature has already been used by third-party applications to
disseminate detailed topology information for visualization
purposes, service announcements, and instant messaging
data. In the scope of this proposal, this feature is used for the
propagation of white/black lists of trustable nodes, security
attributes (public keys, description signatures, trust chains),
metric-functions, and policy specifications.

B. Extensions toward Receiver/Preference Driven Routing

Our current extensions allow the concurrent application of
different metric functions (including hop-count and expected
transmit count (ETX) [17], a rudimentary expected transmit
time (ETT) metric [16], and transmit quality (TQ), a multi-
plicative and link-asymmetry aware routing metric proposed
by the B.A.T.M.A.N. [18] protocol. Because the TQ metric
is used in our later validation it is briefly described here.
The TQ metric function considers greater metric values as
better than smaller ones and it’s value decreases each time
the containing routing update message propagates from one
node to another. Each node calculates the end-to-end path
metric value to a given destination by multiplying the metric
value (as contained in the received routing update) with the
link-transmit quality (being a value between O and 1) that
represents the measured success rate for transmitting hello
packets via the link via which the routing update message
was received. If the link success rate is 1 then only the
smallest possible value is substracted from the metric value.

To support node-individual metric functions we have
defined a metric description syntax and added description
extensions for the metrics plugin of BMX6 in a way that
a destination node can select between several base met-
ric functions and customize them with general and base-
function specific parameters. For example it is possible to
define the sliding window size for best next-hop ranking
when averaging the metric values received via recent routing
updates (originator messages in BMX6 terminology). A
dynamic description update including the current metrics
specification is triggered whenever the configuration is
changed and instantly processed and applied by receiving
nodes when selecting the best hop neighbor for a particular
destination node.

C. Validation via proof-of-concept

To validate the expected behavior of our implementation
different networking scenarios have been tested (as described
below) using the network emulation environment [15]. MLC
facilitates Linux Containers (LXC) to instantiate (depending
on host CPU and memory resources up to hundreds of)
virtual nodes, each with an isolated networking environment
and employs Linux networking tools (like ip, tq, tc, ebtables,
brctl) to create virtual links between node interfaces, includ-
ing per link and link-direction specific packet loss.

In order to validate the distributed application of node-
individual metric functions, a purely hop-count based metric
function was compared with the multiplicative and link-
asymmetry aware TQ metric function. Resulting forwarding
paths between nodes specifying different metric functions
for the routing of their traffic have been compared using
the ping record route option. To stimulate the functions for
selecting different routes, a simple ring topology with a total
of 5 nodes (e.g.: A-B-C-D-E-A) but highly asymmetric link
characteristics between neighboring nodes has been set up.
The link asymmetries were configured so that no loss occurs
for packets transmitted from any node to its right neighbor
but 20% of packet loss occurs in the opposite direction (to
its left neighbor). Initially, all nodes were configured with
the hop-count metric and as expected, any resulting path
traversed at most two hops. After dynamically reconfiguring
node E for selecting the TQ metric function all traffic meant
for node E was routed clockwise along the ring topology.
In particular, a ping record route from A to A’s left-hand
neighboring node E showed that the packet was routed along
A-B-C-D-E while a ping from A to D continued to traverse
(in the opposite direction) along A-E-D.

In summary, the tested scenario proves the key idea for
receiver-driven routing, being the feasibility to let desti-
nation nodes specify and achieve the application of their
specific forwarding policies. As future work we will extend
our implementation with the propagation and handling of
white/black lists of trustable nodes and security attributes.

D. Performance and scalability

The discussion of performance impacts is divided into
typical operational phases of a routing protocol, namely
the discovery phase (propagation and processing of node
descriptions), the maintenance phase (propagation and pro-
cessing of routing updates), and the forwarding phase (for-
warding data according to the current state of the routing
table).

Unless otherwise noted, all measurements were performed
using the MLC emulation environment as introduced in
Section III-C. However, instead of a ring-topology with
asymmetric links, a grid-like torus topology with N=XxY
nodes and perfect links (no packet loss) was configured
with each node having one interface and four neighbors. The
topology had X=170 nodes per row and Y nodes per column

UDP Protocol Overhead depending on BMX6 description update interval

T T T T T T
ﬁ Total overhead, with metric extension
300 | Routing updates (OGMs), with metric extension i
Description updates, with metric extension
gg Total overhead, without metric extension
Routing updates (OGMs), withotit metric extension o
Description updates, without metric extension

200 g P H 4

350 T

Eiiip 3

+0O

250

150 : : . : : 4

[Bytes per second]

100 - —

PK
50 : : ; H 4
*

0 X s = L kK L L
0 1000 2000 3000 4000 5000 6000 7000 8000
[update interval]

Figure 1. Protocol traffic overhead with and without our metric extensions
for different description update intervals.

with Y being in the range [20,30,...200] to obtain the desired
network size. Protocol-traffic overhead was captured using
the traffic-statistics tool provided by BMX6 which allows to
account for different message types, incoming, and outgoing
traffic. CPU and memory consumption of BMX6 processes
was captured using the unix fop utility.

During the discovery phase, no significant impact could
be observed for the computational overhead caused by the
processing of our description extensions and only a marginal
impact could be measured for the related protocol-traffic
overhead due to its extended size for propagating the to-
be-used metric functions and parametrizations. In fact our
metric extensions increases the existing description by only
16 bytes which must be compared to the overall description
size ranging (depending on amount of announced networks
and other attributes and services) between 110 and several
hundreds of bytes. Figure 1 shows the total, OGM, and
description update related protocol traffic overhead with and
without our metric extensions and for different description
update intervals. Each measurement point shows a single
measurement averaged over 100 seconds. It should be noted
that small intervals (e.g. 1000 seconds and less) are very
unlikely as a description update is only triggered due to
the reconfiguration of a node. From the figure it could be
seen that the additional overhead introduced by our metric
extensions can be considered marginal.

For the outstanding validation of verifying authenticity
and integrity of description updates, we indeed expect a
significant performance hit. However, some preliminary tests
using the Linux OpenWRT embedded OS and the OpenSSL
Speedtest on a typical device like the ubiquity RouterStation
(AR7161 - MIPS 24K CPU running at 680MHz) showed the
feasibility of calculating a SHA1 hash for up to 8192 size
blocks in less than 0.3 ms and signing/verifying data with
264 versus 3116 bps using a 512 bit RSA key pair (and
signing/verifying with 50 versus 1040 bps using 1024 bit
RSA key). Extrapolating these measurements for signing a
BMX6 description of up to 1K means that a node (based
on this hardware and not using any hardware-based crypto
acceleration) would need less than 1.7 seconds for hashing

UDP Protocol Overhead per node

300 T T T T T T
Total + +
Routing updates (OGMs) o+
250 : : : et -
= + 4+
£ 200 - : : : + : .
o + +
& +
o L i + i : i
g 150 T 4o
g +
g 100+ : 8
50 : : .
0 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
[nodes]
Figure 2. Total and OriGinator Message (OGM) related overhead versus

number of nodes.

its own description and RSA512-based signing of the result-
ing 160 bit SHA1 hash (required only during startup and
reconfiguration scenarios) and would require “only” 50 ms
for hashing and verifying other nodes descriptions (which is
required only for casual description update of other nodes).

Related to the maintenance phase, no impact was expected
nor observed for the traffic overhead because none of the
periodic messages needed for monitoring (probing) and
for propagating link and end-to-end path variations are
affected. In particular the routing update messages remain
unchanged and are only processed differently. The impact,
caused by the modified processing of destination-specific
metric functions and differing only in using a function
pointer instead of a hardcoded function, again results in
non-measurable performance penalties. In fact, the only
(still-hardly) measurable impact could be assigned to the
overhead caused by specific functions simply because in our
implementation different metric algorithms require different
amounts of normalizations, multiplications, divisions, or
even square-root calculations. However, this effect would
be the same when supporting only a unique and hard-coded
function.

It should be noted that the marginal impact of the
maintenance phase can be considered most relevant for
the overall overhead and scalability of a routing protocol
because in large networks, the great majority of traffic and
related processing is caused by the continuous propagation
and processing of periodic routing updates. To justify this,
we have measured the total and OGM-related overhead of
BMX6 depending on the number of nodes in a network.
Each measurement point, as shown in Figure 2, represents
the UDP overhead averaged over 100 seconds during the
maintenance phase of the protocol. It could be seen that
OGM-related overhead increases with roughly the same
gradient as the total protocol traffic overhead.

However, a slightly increased performance penalty is ex-
pected for the requirement of secure communication of pro-
tocol data with neighboring nodes. But again, this overhead

will be caused by the Linux kernel and the employed IPSEC
implementation since the validation, calculation, and con-
figuration of security attributes for the IPSEC stack will be
done as an outcome of the discovery phase. Recent hardware
measurements published in the OpenWRT wiki [28] report
that reasonable IPSEC-encrypted throughput performance
can be achieved with current embedded devices. For example
using the AES256 cipher, encryption at up to 37Mbps is
possible using a (AR7161) MIPS 24K CPU running at
680MHz. This is is enough to secure the comparatively
small protocol traffic load between neighboring nodes (less
than 3Kbps for a 200-nodes network) and even reasonable
to encrypt user data.

For the forwarding phase no additional overhead was
expected nor measured. This is because the protocol only
configures the kernel’s routing table (as the outcome of the
maintenance phase) and relies on the lookup of routing table
entries for each packet as performed by the Linux kernel.

IV. RELATED WORK

Related to reliability (security) and responsibility: [1]
provides interesting numbers on the awareness and counter
measurements on routing security in the internet. [2] pro-
vides a survey on security issues in mesh networks present-
ing specific approaches to address secure/reliable routing in
mesh networks. This work is aligned with these.

Related to discretionary routing and heterogeneous ob-
jectives, very little attention has been devoted to the si-
multaneous support of heterogeneous (routing) objectives in
collaborative networking.

The pico-peering agreement [19] provides a minimum
baseline template for defining an abstract interoperability
agreement between owners of individual network nodes but
leaves technical solutions to achieve an efficient multi-hop
networking completely open. The guifi.net licence [26] is
more specific in terms of expected conduct but often softens
the main statement with exceptions (eg Section 3.2. “When-
ever possible, the general criteria must be””). Also it demands
that “network management criteria must be published” but
leaves open how protocols could automatically consider the
published criteria of specific nodes for routing.

In terms of technical solutions, [3] presents a routing-
protocol coordinator that allows nodes to communicate with
each other even though they are equipped with heteroge-
neous routing protocols. [4] approaches the interoperability
problem in WMNss by proposing a cross-layer heterogeneous
routing protocol.

To some extent, current routing protocol implementations
have solved specific issues of the dilemma. For example
OLSR [14], BMX6 [13] have integrated support to let
each mesh-nodes select an individual gateway node to the
internet. The community projects [25], [27] enabled multi-
stack routing, using address-range separation and policy

routing to allow simultaneous usage of different routing
protocols.

To the best of our knowledge, no work has been published
yet that aims to combine the two directions of reliability and
discretionary routing policies into a coherent framework.

V. CONCLUSION

We have presented a receiver-driven discretionary routing
mechanism for community networks where each receiver
can freely specify delivery objectives and remain compatible
with the collaborative aim of community networks. This
routing mechanism can be applied to express preferences
for desirable nodes and paths, or to restrict traffic to trusted
nodes enabling trust and security aware routing. A proof-
of-concept implementation of key concepts, developed as
an extension of the BMX6 routing protocol, confirms its
feasibility and scalability.

In future work we plan to develop a complete implementa-
tion of the routing mechanism over BMX6, including syntax,
authentication, signature and engine for policy specifica-
tions, definition of the bootstrapping procedure. In particular
we are interested in further exploring the characteristics and
limits of the protocol over larger and more realistic scenarios
with the support of the Community-Lab [29] testbed for a
detailed evaluation.

ACKNOWLEDGMENT

The authors would like to thank Ester Lépez and the
whole qMp.cat team for their invaluable contributions in
terms of advice, motivation, discussion, deploying, debug-
ging, reviewing, and evaluating this work. This research is
supported by the European Commission in the CONFINE
[29] project.

REFERENCES

[1] Security Agency (ENISA), GNKS, NLnet Labs, July 01,
2010, State-of-the-art Deployment and Impact on Network
Resilience.

[2] Muhammad S. Siddiqui and Choong Seon Hong, Security
Issues in Wireless Mesh Networks, 1EEE International
Conference on Multimedia and Ubiquitous Engineering
(MUE’07), 2007.

[3] N. Kang, S. Yoo, Y. Kim, S. Jung, and K. Hong,
Heterogeneous Routing Protocol Coordinator for Mobile Ad
Hoc Networks, in Proc. UCS, 2006, pp.384-397.

[4] Shih-Hao Shen and Yueh-Min Huang and Jen-Wen Ding,
A cross-layer design for heterogeneous routing in wireless
mesh networks, 2008 Int. J. Pervasive Computing and
Communications.

[5] Parul Tomar, Prof. P.K. Suri, Dr. M. K. Soni, A Comparative
Study for Secure Routing in MANET, International Journal
of Computer Applications 4(5):17-22, July 2010.

[6] Wireless Mobile Network Security, Bing Wu, Jianmin
Chen, Jie Wu, Mihaela Cardei, A Survey on Attacks and
Countermeasures in Mobile Ad Hoc Networks (Eds.) pp. ¢
2006 Springer Chapter 12

[7] Loay Abusalah, Ashfaq Khokhar, and Mohsen Guizani,
A Survey of Secure Mobile Ad Hoc Routing Protocols,
IEEE Communications Surveys and Tutorials 10(1-4): 78-93
(2008).

(8]

91

[10]

[11]
[12]

[13]

(14]

[15]

[16]

(7]

(18]

[19]
[20]
(21]
(22]
(23]
[24]
[25]
[26]

[27]
(28]

[29]

Siddhartha Gupte, Mukesh Singhal, Secure routing in mobile
wireless ad hoc networks Proceedings of the 5th WSEAS
international conference on Applied computer science
(ACOS’06), USA, 996-1002.

Chung-Ming Huang, Kun-chan Lan and Chang-Zhou Tsai,
A Survey of Opportunistic Networks, 22nd International
Conference on Advanced Information Networking and
Applications - Workshops, 2008.

Ian F. Akyildiz, Xudong Wang, and Weilin Wang, “A Survey
on Wireless Mesh Networks”, Computer Networks and ISDN
Systems archive, Volume 47 Issue 4, 15 March 2005.

J. Chroboczek, The Babel Routing Protocol, IETF RFC
6126, April 2011.

Axel Neumann, Corinna Aichele, Marek Lindner, Simon
Waunderlich, Better Approach To Mobile Ad-hoc Networking
(B.A.TM.A.N.), IETF Draft, October 2008.

Axel Neumann, Ester Lopez, Leandro Navarro, An evaluation
of BMX6 for Community Wireless Networks 1st International
Workshop on Community Networks and Bottom-up-
Broadband (CNBuB), IEEE 8th International Conference
on Wireless and Mobile Computing, Networking and
Communications (WiMob), Barcelona, 2012.

Thomas Clausen and Philippe Jacquet, Optimized Link State
Routing Protocol (OLSR), IETF RFC 3626, October 2003.

Axel Neumann, Investigating Routing-Protocol
Characteristics with Mesh Linux Containers (MLC),
Workshop, UPC, Barcelona, SpainNovember 2011,

[Online], Available: https://raw.github.com/axn/mlc/master/
MeshLinuxContainers-x07.pdf

Georgios Parissidis, Merkourios Karaliopoulos, Rainer
Baumann, Thrasyvoulos Spyropoulos, Routing metrics for
Wireless Mesh Networks, Chapter in Guide to Wireless Mesh
Networks, Springer London, 2008.

Richard Draves and Jitendra Padhye and Brian Zill,
Comparison of routing metrics for static multi-hop wireless
networks, In ACM SIGCOMM, 2004.

Axel Neumann, Corinna Aichele, Marek Lindner, Simon
Wunderlich, Better Approach To Mobile Ad-hoc Networking
(B.A.T_]M.A.N.), IETF Draft, October 2008.

Pico Peering Agreement v1.0, http://www.picopeer.net/
PPA-en.html

OLSRd - an adhoc wireless
http://olsr.org

strongSwan - the OpenSource IPsec-based VPN Solution,
March 2013, [Online], Available: http://www.strongswan.org
OpenSSL - Cryptographic and SSL/TLS Toolkit, March 2013,
[Online], Available: http://www.openssl.org/

CyaSSL Embedded SSL Library, March 2013, [Online],
Available: http://www.yassl.com/yaSSL/Products-cyassl.html
BMX6 mesh networking protocol, http://bmx6.net

QMP, quick Mesh project, http://qmp.cat

Guifi.net, http://www.guifi.net
http://wiki.leipzig.freifunk.net/Hauptseite

OpenWRT public Wiki, IPsec Basics, Hardware performance
and IPsec tuning March 2013, [Online], Available:
http://wiki.openwrt.org/doc/howto/vpn.ipsec.basics

European Commission FP7, Future Internet Research and
Experimentation Initiative (FIRE), CONFINE Project:
Community Networks testbed for Future Internet, contract
FP7-288535, http://confine-project.eu

mesh routing daemon,

