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Abstract—Traditional fingerprint based localization techniques 
mainly rely on infrastructure support such as RFID, Wi-Fi or 
GPS. They operate by war-driving the entire space which is both 
time-consuming and labor-intensive. In this paper, we present M-
Loc, a novel infrastructure-free localization system to locate 
mobile users in a metro line. It does not rely on any Wi-Fi 
infrastructure, and does not need to war-drive the metro line. 
Leveraging crowdsourcing, we collect accelerometer, 
magnetometer and barometer readings on smartphones, and 
analyze these sensor data to extract patterns. Through advanced 
data manipulating techniques, we build the pattern map for the 
entire metro line, which can then be used for localization. We 
conduct field studies to demonstrate the accuracy, scalability, and 
robustness of M-Loc. The results of our field studies in 3 metro 
lines with 55 stations show that M-Loc achieves an accuracy of 93% 
when travelling 3 stations, 98% when travelling 5 stations. 

Keywords—Metro train; smartphone; localization; barometer; 
magnetometer;  

I.  INTRODUCTION  

With a growing number of mobile phones, Location Based 
Services (LBS) have become more and more popular. Finding 
mobile user’s location (i.e., localization) is one of the key 
enabling technologies. An outdoor navigation service typically 
use GPS-enabled mobile phones to find nearby places. There 
has been an increasing demand for LBSs used in indoor 
environments. The Google Maps [1] for mobile phones will 
support indoor navigation [2] which shows where you are and 
guide you to where you want to go in an indoor environment. 
For example, in a shopping mall scenario, this service provides 
mobile users with turn-by-turn navigation to where they want 
to go. In such an indoor environment where GPS is not 
available, many Wi-Fi based localization techniques [4-6] [8] 
have been proposed and widely used. For example, RADAR [6] 
uses Wi-Fi signal strength. The idea is to war-drive a building, 
and then create a radio map linking physical locations and Wi-
Fi fingerprints. 

While the main focus of indoor localization research has 
been centered around in-building scenarios, no attention is 
given in locating mobile users when they are taking metro
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trains. Metro trains have been the most important means for 
urban transport, and every large city in the world has metro 
systems in operation. Localizing mobile users in metro lines 
not only extends existing LBSs to this blind spot, but also 

promotes and encourages the use of public transport in 
achieving urban sustainability.  

How to locate mobile users in a metro train is not a trivial 
task. GPS does not work underground. A Wi-Fi fingerprint 
based approach may be applied in this scenario provided Wi-Fi 
access points can be deployed along each metro line. However, 
Wi-Fi based solutions obviously not only incur high 
installation and maintenance costs, but also increase the chance 
of interfering with the metro control system. Today, only a few 
metro lines provide Wi-Fi coverage, mostly in metro stations 
only. Until 25 Apr 2013, in New York, there are only 36 metro 
stations have Wi-Fi access (i.e., 13% of all metro stations [3]). 
Hong Kong has just start providing Wi-Fi access from 8 July 
2013 for a limited number of metro stations. Some metro 
control systems (e.g., Siemens’ EMCS system [18]) use Wi-Fi 
to keep metro trains in connection with the control center, but 
they are not public accessible. In addition, when applying Wi-
Fi fingerprinting in metro lines, war driving is not an easy task 
since it is difficult to obtain Wi-Fi fingerprints when trains are 
running underground.  

What if we don’t use Wi-Fi? An intuitive way is to use 
RFID techniques like [19] to locate mobile users in a metro 
line. This requires that every mobile user carry a tag, and RFID 
readers are deployed in each metro cabin. When a user enters 
into a train, the reader gets the tag ID, and the location of the 
train can be obtained from the metro control system. This 
approach needs infrastructure support which is costly, and it 
leverages the train location system.  

Motivated by the recent advance of smartphone sensing, in 
this paper, we propose to use magnetometer and barometer 
sensors on smartphones and build sensor fingerprints through 
crowdsourcing which requires neither infrastructure nor war 
driving. Our approach is based on the following observations. 
When a train is running in the tunnel from station A to station 
B, the magnetometer and barometer readings scanned from a 
user’s smartphone show unique patterns due to a variety of 
physical environments in different tunnels. Such patterns can 
be exploited as fingerprints to locate the train by pattern 
matching. To get the fingerprints of magnetic field and 
barometric pressure in each tunnel, different from the 
traditional approach which war drives the entire metro line, we 
leverage on crowdsourcing. Each mobile user taking the metro 
will contribute partial data which will be then combined for 

1 Metro, also named subway or underground, in this paper, refers to the 

trains run underground. 



Fig. 1. The overview of M-Loc 

extracting patterns by an algorithm. To achieve this, we first 
design a scalable, noise-free event detection algorithm to detect 
the event of train stopping or leaving a station based on 
accelerometer and barometer readings. By knowing these 
events, we can then obtain the barometer and magnetometer 
readings when a metro train is running in a tunnel. Second, the 
readings are collected and uploaded into a cloud server which 
runs our DTW [16] based pattern matching algorithm to extract 
and compare the patterns for different tunnels. We then merge 
different user traces by a merging algorithm to generate a 
pattern graph for the tunnels. By comparing the graph with the 
metro line map, we are able to link each pattern in the graph to 
a specific tunnel. A mobile user can then download the pattern 
map from the cloud sever for localization by looking up the 
map. In summary, we make the following contributions: 

1) We propose a novel metro train localization approach, 
named M-Loc, to identify the locations of mobile users in 
metro trains. Compared to traditional Wi-Fi fingerprinting 
based approaches, M-Loc requires neither infrastructure nor 
war driving. 

2) Using smartphone sensing and crowdsourcing, we 
propose several algorithms to handle noisy sensor readings and 
perform pattern matching, which make our solution more 
practical and scalable. 

3) We conduct a field study in a real metro system with 3 
metro lines and 55 stations, and analyze the performance of M-
Loc. The results show that M-Loc achieves an accuracy of 
above 90% when a passenger travels 3 stations and over 98% 
when travels 5 stations. 

The rest of this paper is organized as follows. Section 2 
gives the overview. The detailed design is shown in Section 3. 
Section 4 describes our evaluation. Section 5 discusses the 
related work, and finally, Section 6 concludes the paper. 

II. SYSTEM OVERVIEW 

We give an overview of M-Loc in this section, as shown in 
Fig. 1. The system operates in two phases. In the first phase, 
we crowdsource both magnetometer and barometer readings 
from passengers’ smartphones. We then analyze the patterns 
from these readings to extract the unique pattern for each 
tunnel (i.e., a tunnel between two adjacent stations), and 
generate the pattern map. In the second phase, users download 
the map for localization.  

A. In the first phase 
M-Loc builds the pattern map of a metro line by 

crowdsourcing. In order to get patterns of all the tunnels in a 
metro line, our idea is to first extract patterns from user traces, 
and then discover the patterns which are linked to specific 
tunnels. With crowdsourcing, each user contributes a complete 
or partial trace of his entire trip when travelling in a metro line. 
We detect the event of train stopping or leaving a station, and 
collect both magnetometer and barometer readings when the 
train is running in the tunnels. Each user trace contains only 
partial patterns of a metro line. By merging the traces from 
different users, we are able to obtain a complete graph which 

contains all the patterns of the metro line. The structure of the 
graph can then be mapped to the real metro line map, and links 
each pattern to a specific tunnel.  

In more details, when a user travels in a metro train, the 
mobile client software collects acceleration, barometric 
pressure and magnetic field data. To recognize the event of 
train stopping at a station, we use acceleration and barometric 
pressure data. The acceleration data show clear signatures 
when the train decelerates to stop and accelerates to leave. In 
addition, the barometric pressure in the train will show clear 
jumps when the doors of the train open or close. Combining 
these two signatures, we are able to accurately detect train 
stopping at a station, and we name it a train stop event. 
Meanwhile, we name the process when the train is running in 
the tunnel between two adjacent stations a train running event. 
By these train stop events, we divide a stream of barometer and 
magnetometer readings arrived in time order into fractions, and 
each fraction associated with either a train stop event or a train 
running event. We call the sequence of stop and running events 
as a user trace. When a user leaves the metro train, the trace 
will be uploaded to the cloud server. In the cloud server, we 
know each running event occurs in a tunnel, but which tunnel 
is unknown. Since the train running events in each tunnel have 
a common unique pattern, we design a DTW based pattern 
matching algorithm to find all the running events of the same 
tunnel. We then apply a merge algorithm to merge the traces 
from different users. Finally, we generate a pattern graph which 
covers the entire metro line. We can map the running event 
patterns to the tunnels by comparing the pattern graph with the 
metro line map, and get the patterns of all the tunnels.  

B. In the second phase  
For localization, users download the pattern map from the 

cloud server to their smartphones. When a user travels in a 
metro train, both barometric pressure and magnetic field data 
are logged, and the train stop and running events are detected 
in real time. The pattern matching algorithm will be used to 
match the train running event to the tunnel based on the pattern 
map. Finally, the location of the train is known, so is the 
location of the user.  



III.  SYSTEM DESIGN 

We first give the details of the train stop event detection 
and the pattern map generation, we then describe how to use 
the map for localization.  

A. Train Stop Event Detection 
In order to detect a train stop event, we first analyze the 

available sensors on smartphones, and justify our choice of 
accelerometer and barometer. Later, we show the detailed 
approach for detection.   

1) Accelerometer signature 
A metro train stops at a station follows a similar process − 

decelerating to stop at a station, open the doors, close the doors 
and accelerating to leave. It is clear that accelerometer can 
capture these motion events. The readings of the accelerometer 
will show a clear signature. As shown in Fig. 2(a), it appears as 
a crest when decelerating and a trough when accelerating. 
Actually in the real case, the acceleration signature may show 
slightly different depending on the direction of the smartphone. 
Fig. 2(a) shows the signature when the x-axis of the 
smartphone is in the same direction of the train, while in Fig. 
2(b) the x-axis is in the opposite direction of the train, where it 
appears as a trough when decelerating and a crest when 
accelerating. What appears most often is the situation where a 
phone’s direction is random, as shown in Fig. 2(c), the 
acceleration of the train when accelerating and decelerating 
appears in the three axes of the accelerometer, each with a 
smaller crest or trough. 

2) Barometer signature 
In addition to accelerometer, we observe that barometer of 

smartphone also shows a clear signature in the process of a 
train stop event. With air conditioning or ventilation equipment 
used in every train, barometric pressure appears different 
between the inside and outside of a train cabin. For this reason, 
when the train stops and opens the doors, there exists a sharp 
drop in barometric pressure. On the contrary, there exists a 
sharp increase in barometric pressure when the doors close. 
This change appears clearly in the readings from the barometer 
sensor. We show this signature in Fig. 3(a) and it is an 
important feature for detecting a train stop event.  

3) Issues with acceleration 
Each acceleration sample is a triple, including a reading of 

x, y and z, respectively, each represents a direction of the 
smartphone, as shown in Fig. 3(b)(1). It should be noted that 
the acceleration caused by gravity is included in the triple. 

When the train is accelerating or decelerating, the readings are 
the combination of the acceleration of the train and the gravity; 
this is shown in Fig. 3(b). We observe a sharp crest and trough 
from Fig. 2(a) for only one axis, but a weak crest and trough 
from Fig. 2(c) since it distributes among all the three axes. 
These observations are due to various smartphone’s 
orientations. To detect the train stop event, we need to find the 
pair of crest and trough. Assume that we use only one axis data. 
For the case in Fig. 2(a), the crest and though are clear and easy 
to detect. For the case in Fig. 2(c), every crest or though is not 
clear and is not easy to detect. We combine the readings from 
all the three axes. Fig. 2(c) shows the result of combining three 
axes. As we can see, both the crest and trough almost 
disappeared. This may be due to gravity, and the direction of 
accelerating/decelerating and the direction of gravity are 
mutually perpendicular. A slight acceleration change in the 
vertical direction of gravity will cause very small change to the 
combination of the acceleration. For example, the gravity is 
9.8m/s

2
, when the train accelerating is about 2 m/s

2
, the 

combination is changed from 9.8 m/s
2 
to 10 m/s

2
, only 0.2 m/s
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change of accelerometer reading is not obvious enough for 
detecting a train stop event. 

4) Using variation of acceleration 
To solve this issue, we use the variation of acceleration. 

Since the gravity keeps unchanged, the variation of 
acceleration is only affected by train acceleration. The 
combined variation of the three axes is the variation of train 
acceleration. The way to get the variation of each axis and the 
combination are shown in Equations 1-7. The direction of the 
combination is set as the direction of the axis with the max 
mean variation. Fig. 3(c) shows the combination of the 
variation of the three axes. In this figure, the deceleration 
process is transformed to a curve ending with a sharp crest. 
Similarly, the acceleration process starts with a sharp crest. By 
this transformation, the variation will not be affected by the 
phone orientation and the gravity.  

                 (1) 

                   (2) 

                   (3) 

                                        (4) 

                                   (5) 

(a) The x-axis acceleration readings when the x-

axis of the phone is pointing to the front of the train 

(b) The x-axis acceleration readings when the x-

axis of the phone is pointing to the back of the train 

(c) The acceleration readings when the 

phone is randomly placed 

Fig. 2. The acceleration readings when a train stops and leaves a station 



                                                     (6) 

        (7) 

Where,  is the acceleration in x axis at time t. 
 is the combination variation of three axes at time t. 

To detect a train stop event, we use a state machine shown 
in Fig. 4. A stop event includes the start and end time, it is 
defined as  

, 

where  is the start time of the event,  is the end time of the 
event, and ID is the metro station where the event occurs. For 
the example in Fig. 3(c), the stop event is represented 
as . At this stage, when a train stop event is detected, 
we get  and , but ID is unknown. 

 

Crest and Trough: variance > 0.4, stable: variance < 0.1, stable time > 
10 seconds. 

Fig. 4. The state machine of detecting a stop event by acceleration. 

5) Enhancement with barometer 
The acceleration based approach may experience wrong 

detections and miss detections. We achieve an accuracy of 
about 85% based on our experiments. For example, when a 
train is running in a tunnel, the train driver may decelerate to 
control the speed for a short period and accelerate again. The 
acceleration readings show the same signature as a stop event 
in a station. This may happen especially during rush hours.  

In order to filter out these false detections, we make use of 
barometer to detect an event of door opening or closing. For all 
the train stop events detected using acceleration readings, we 
check whether a door open or close event has occurred using 
barometer readings. In Fig. 3(a), the readings experience a 
sudden drop for about 0.4 hPa when the door opens, keep 
stable for some seconds and experience a sudden increase for 
about 0.4 hPa when the door is closed. We also use a state 
machine to detect this signature, which is shown in Fig. 5.  We 
don’t use the barometer to detect train stop only because it is 
not reliable in the following situations. For example, when the 
door opens and closes more than once in a station and when the 

barometric pressure drop and raise but not caused by door open 
and close.  

 

Drop and Raise: pressure_change > 0.3, stable: variance < 0.15, time > 
10 seconds.  

Fig. 5. The state machine to check a stop event by barometer readings. 

6) Accuracy of train stop event detection 
To test the accuracy of our approach, we hired 4 students 

who commute by metro train every day for experiments. Fig. 
6(a) shows their routes. A data collection application runs in 
background on their Android smartphones to log sensor 
readings such as barometer, accelerometer, magnetometer and 
microphone. The experiment runs for a week. The audio 
recorded by microphone on smartphone will be used as the 
ground truth for which metro stations a user travels. We can 
easily obtain the ground truth such as the time of a train stops 
at a station by playing back the audio recorded. Comparing to 
result from our event detection algorithm, we obtain the 
accuracy as follows. Out of a total number of 427 train stops, 
410 of them are successfully detected. The accuracy is about 
96% with 3 wrong detections and 17 miss detections. If we 
only use acceleration readings, we get only 363 right detections. 
The comparison is shown in Fig. 7.   

After detecting all the train stop events, we get data of the 
train running events. A running event is defined as: 

 

where  is the start time of the running event (i.e., the time 
when the train leaves a station), is the end time of the 
running event (i.e., the time when the train arrives at the next 
station), and  is the barometer trace scanned between 
time  and . A barometer sample is represented as 

 and  is the magnetic 
field trace scanned between time  and . A magnetic field 
sample is , which is the magnetic field 
readings in the three axes of the smartphone at time t, and 

. , and  is in time 

order.  are the metro stations between which the 
train running event occurs,  also identify a tunnel.  

(a) The barometer readings signature 

when the train’s door open and close 

(c) The combination of the accelerometer 

readings variation in three axis  

Fig. 3. The sensor readings of the smartphone on the train 3 Th di f h h h i

(b) The relation of the acceleration of the train and 

gravity



 

Fig. 7. The result of detecting train stop events 

We have now obtained both barometric pressure and 
magnetic field patterns from a train running event, but we don’t 
know in which tunnel the running event occurred. In the 
following section, we describe how to map a train running 
event to a tunnel. 

 

Fig. 8. A user trace of passing 7 train stations and 6 tunnels 

B. Pattern map generation 
The pattern map contains all the patterns of the tunnels in a 

metro line, and each pattern is mapped to a specific tunnel. In 
each user’s trace, there exist one or more train stop and running 
events. We now present our approach to build the pattern map. 

We define a sequence of train stop and running events as a 
user trace, denoted as , 
where SE is a stop event and RE is a running event. Fig. 8 
shows a typical trace of a user. We know that the running event 
occurs in a metro tunnel. With enough traces, the tunnels where 
the running events occur will cover all the tunnels in the metro 
line, on the condition that every metro station has been visited 
at least once. Furthermore, the traces from different users may 
have overlapped tunnels. An example is shown in Fig. 6(b), 5 
users contribute 5 traces which eventually cover the entire 
metro line. Overlapped tunnels exist in their traces. We will get 
five discrete traces, but the tunnels of the traces are unknown. 

As shown in Fig. 6(c), we use pattern matching to merge the 
traces with overlapped running events and build a graph of 
running and stop events. Using the real map of the metro line 
which is public accessible, we can map the running and stop 
events to the tunnels and stations, which are shown in Fig. 9.  

 

Fig. 9. Map the trace graph to the metro map 

1) Pattern matching based on DTW 
Fig. 10(a) and Fig. 10(b) show the barometer and 

magnetometer traces collected when the trains run in the same 
tunnel. We can see that the fluctuation of the waveforms show 
similar patterns. The data length is different and the waveforms 
are observed a shift. This is because the time cost for the trains 
to pass a tunnel may have little change based on the traffic. In 
the cloud server, we obtain the data of train running in a tunnel 
from the running events in user traces. Based on pattern 
matching, we can find the running events of the same tunnel 
from different users. This approach is shown as follows.  

a) Feature extraction  
 First, the raw barometer and magnetometer readings may 

contain noise. If a data point value has an apparent spark noise, 
it will be removed. After removing the noise, we smooth the 
readings with a window of 10. In order to compare the two 
traces, a simple approach is to use the absolute value as the 
feature and calculate the mean squared error (MSE) of the two 
waveforms. Since the users’ phones have not been calibrated 
(i.e., the readings of the two phones are different at the same 
place), there exists an unknown constant drift. This will cause 

(a)  The real travel trace of the four 

students

(b) Example travel traces of the users 

that cover the entire metro line
(c) User traces and the matching of 

running events that cover the entire metro line

Fig. 6. User traces and matching 



error when calculating the MSE value. More importantly, the 
two time series has different lengths, which cannot be handled 
by MSE. In our approach, we use the variance as a feature to 
capture the fluctuation change. For both barometer and 
magnetometer traces, we obtain the variances as follows.  

     (9) 

(10) 

For example, Fig. 10(c) shows the variance of the two 
magnetic field traces of Fig. 10(a). 

b) Mathing with DTW  
Since each tunnel may have a different length, and the 

traces we collect will have different lengths of data. We apply 
the Dynamic Time Warping Distance Measure (DTW) [16] 
which is less sensitive to the time shift. To calculate the DTW, 
we first align the two waveforms as shown in Fig. 11. For 
example, for two time series of magnetic field variance  
and , where 

 

 

the sequences  and  can be arranged to form a n-
by-m plane or grid, where each grid point  corresponds to 
an alignment between elements  and . A warping path, W, 

maps or aligns the elements of  and .   

 

The Dynamic Time Warping distance between two time 
series  is then:                                                          

                                

where First(x) is the first element of x, and Rest(x) is the 
remainder of the time series after the First(x) has been removed, 

and .  

From the DTW value, we get numeric measure of the 
similarity between train running events. For every two running 
events we can obtain the DTW distance of the magnetometer 
reading traces and barometer reading traces.  

 

Fig. 11. Dynamic Time Warping (from [15]) 

2) Merge the traces 
Traces from users often have overlaps. Given two user 

traces, we want to find their overlaps and merge them. Fig. 12 

shows some situations where the two traces match each other. 

Given two traces with lengths of m and n, respectively, there 

are  possible overlaps. In our approach, in order to 

find the overlap of the two traces, we compute the average 

DTW value for each overlapping situation, and find the case 

with minimum distance. Given two user traces  with 

lengths of m and n (m<n), respectively, we get the min 

distance by Equation 12, where,  is a running event of 

user trace .  

     (12) 

If the minimum is the threshold, that means the two traces 
have no overlapping. If not, we conclude an overlapping case 
for the two traces. Then, the two traces will be merged. For 
example, as shown in Fig. 6(c), user C and D are matched by 
two overlap running events. 

3) Map train running events to tunnels 
We merge the traces from users incrementally to construct 

a graph, as shown in Fig. 6(c). When the graph covers all he 
tunnels in a metro line, it should have a one-to-one matching to 
the real metro map as shown in Fig. 9. Finally, in the cloud 
server, we obtain the patterns of all the tunnels in a metro line, 
and they are stored as the pattern map.  

(11) 

(a) The magnetometer readings for two 

trips in the same tunnel 
(b) The barometer readings for two trips 

in the same tunnel.

(c)  The variance feature of the magnetometer 

readings  

Fig. 10. The reading patterns of magnetometer and barometer in tunnels 



 
Fig. 12. The situations that two traces match each other 

C. Locating users 
When the pattern map is generated, it can be downloaded to 

smartphones. M-Loc client application keeps collecting sensor 
data and detecting the train running events. Once detected, it 
finds a minimum distance tunnel by calculating the DTW 
distance with every tunnel in the pattern map using Equation 
13. The train’s position is at the end of the tunnel.    

                                  (13) 

and  is a running event of a tunnel in the pattern map, 
 is the running event of a tunnel detected. If  is the 

DTW distance between  and , the position of the 
train now is at the end of the tunnel of . 

 Locating uses based on one running event only may not be 
accurate enough. As the train keeps running, the application 
will detect running events in time series. Using pattern 
matching based on DTW distance, we can easily map the trace 
in the pattern map. The matching algorithm is the same to the 
way we use when matching the traces in Equation 12. The 
accuracy grows rapidly with more and more traces collected. 
We get an accuracy of 97% when passenger travels 4 stations. 
We will show the detailed result in the next section.  

IV. EVALUATION 

To evaluate M-Loc under real-world situations, we conduct 
a field study which involves ten users for three days in the 
metro lines in the city of Nanjing. The ten users are university 
students, among them 2 are females and 8 are males, aged 
between 20 and 30. Several smartphone models such as 
Samsung, Google Nexus, and Xiaomi are used in the 
experiment. Each smartphone is equipped with 3-axis 
accelerometer and magnetometer. Seven of them have the 
barometer sensor. Each smartphone is installed with M-Loc 
data collection software. Once started, this client software 
continuously collects acceleration readings and magnetic field 
readings at a rate of 5 samples per second (if a barometer is 
available, the rate is 3 samples per second). All the samples 
will be logged in a data file. This client software runs in the 
background so that the users are able to use their smartphones 
as usual. We conduct the field study as follows. The 
experiments are carried out in a Monday morning, a Thursday 

afternoon and a Saturday night, each lasts for three hours. We 
carefully choose these periods to represent different crowds 
(i.e., rush/non-rush hours) and weather condition (i.e., day and 
night). During the experiment, each user is instructed to 
continually take metro trains in the metro lines. The starting 
and ending stations are randomly chosen. To record the ground 
truth, microphone on smartphone was turned on to record the 
audio. After the experiment, we played back the audio clip to 
find out in which stations the users traveled. Fig. 6(a) shows 
part of the map of the metro line where our field study was 
carried out. There are 3 metro lines with 55 metro stations, 3 of 
them are cross-line stations. 

After the experiment, we collect the logged data from each 
user, including the ground truth and the sensor traces. From the 
ground truth, we find out there are a total number of 162 one-
way trips. The distribution of each trip length is shown in Fig. 
13(a). It shows that there are more short trips than long trips. 
Using these sensor data, we run the train stop event detection 
algorithm. We compare the output of the detection algorithm 
with the ground truth. The number of stops of each trip is 
detected and the accuracy is shown in Table 1. The result 
shows that the miss detection of the train stop events rarely 
occurs. For the 47 trips with stations less than 4, there are only 
2 trips having one missed stop event.  

After the train stop event detection, we get the user trace of 
each user trip, including a sequence of stop and running events. 
Based on the ground truth, we know the running events belong 
to which tunnels. We randomly choose five tunnels, and use 
only magnetometer readings for the experiment. Fig. 13(b) 
shows the min, max and average DTW distance of the running 
events of the five tunnels. It shows that the DTW distances of 
running events from the same tunnel do not vary much.  Fig. 14 
shows the average DTW distance between the same and 
different tunnels. The average DTW distance of running events 
occurred in the same tunnel is much lower than the distance of 
that in different tunnels. The threshold is set to 8 in our 
experiment. This feature helps us to find out whether two 
running events occur in the same tunnel. The comparison 
between the DTW and MSE distance is shown in Fig. 13(c). 
For the reason of time drift and different lengths of the data 
traces, the MSE distance is much larger than the DTW distance.  

Table 1 

Missed 
stops 

Missed/Total  stations of trips with different length 
<4 >4 and <12 >12 

1  2/47 3/90 4/21 

2  0/47 2/90 3/21 

3  0/47 0/90 1/21 

> 3 0/47 0/90 0/21 

 

For trace matching, the result of our algorithm is shown in 
Fig. 13(d). There are a total of 162 traces. The left vertical axis 
shows the distribution of the first 300 times of trace merging. 
The right vertical axis shows that the matching accuracy 
increases when the number of overlapped stations increases. 
The accuracy is more than 95% when the number of 
overlapped stations is larger than 3. Hence, our matching 
algorithm only merges traces when there are more than 4 
overlapped stations. 



     

Fig. 14. The average DTW distance between running events occurred in 
the same and different tunnels 

The merged traces form a graph. The graph grows larger 
when more traces are merged until it has a one-to-one mapping 
to the metro line map. The dotted curve in Fig. 13(e) shows the 
map of the metro line is successfully built with different 
sample size (i.e., number of user traces). The result shows that 
90% of the map can be built quickly with a few user traces. 
The curve grows slower because some stations are not visited 
by passengers often, the starting and ending stations of a metro 
line for example. For the 3 metro lines with 55 stations, M-Loc 
requires only 80 user traces to build the map. The red solid line 
shows the ground truth of the traces to build the map. In fact, 
about 30 traces are required to construct the map. Our approach 
needs more traces because we merge two traces when there are 

at least 4 overlapped stations. Fig  13(f) shows the location 

accuracy when the pattern map is built. When a passenger 
travelled only one metro station, the location accuracy is about 
75%. With more stations travelled, the accuracy increases 
rapidly. We get an accuracy of 98% when travelling 5 stations.  

In the end, we evaluate the energy consumption of M-Loc 
using a Samsung Galaxy Nexus smartphone running Android 
4.1 OS, and the result is shown in Fig. 15. The power 
consumption is computed based on PowerTutor [17], a 
diagnostic tool for analyzing system and application power 
usage from the Android Market. The experiment ran for 12 
hours continuously. The average power consumption of M-Loc 
is 109 mW. For comparison, we also show the power 
consumption of other localization techniques and some basic 
mobile functions. It shows that M-Loc consumes much less 
energy than the traditional localization techniques.  

 
Fig. 15. The power consumption of M-Loc 

V. RELATED WORK 

Many fingerprint based techniques for indoor localization 
have been proposed such as [6-10], which can be used to locate 
the user in a metro line. Existing techniques for localization 
rely on deployed radios (e.g., Wi-Fi access points, GSM base 
stations, etc) and make different assumptions about 
infrastructure and calibration. They mainly rely on Wi-Fi signal 
strength, and they are capable of achieving good accuracy in an 

(a) The distribution of trips with different lengths 
(b) The DTW distance of the running 

events from  tunnels 

(c) The comparison of the DTW and 

MSE distance 

 (d) The accuracy of trace mapping 
(e) The percent of pattern map built with 
different number of user traces. 

(f)  Accuracy of subway localization

Fig. 13. The evaluation results of M-Loc



indoor environment. Radar [6] operates on Wi-Fi fingerprints, 
and is capable of achieving high accuracy in indoor 
deployments. However, Radar needs to war-drive the entire 
building in order to obtain the radio map. War-driving is very 
time-consuming and labor-intensive. Hence, this solution is not 
scalable over larger areas. Some recent approaches such as 
LiFS [20] use crowdsourcing to reduce the training cost to 
some extent, but it involves a complicated training process. In 
reality, many mobile users may not turn on Wi-Fi all the time 
for energy saving, limiting the effectiveness of crowdsourcing. 
More importantly, deploy the Wi-Fi access points in the metro 
line may have security problems, which need theoretical and 
practice proof. The Wi-Fi infrastructure is still not widely used 
in today’s metro lines. Different from these systems, our 
approach does not require any pre-installed infrastructure. It 
leverages on mobile phone sensing and crowdsourcing to 
efficiently localizing users in metro trains. 

Sensor-assisted localization methods [11-14, 21] have been 
proposed with the popularity of smartphones, which make use 
of embedded sensors available on smartphones. These systems 
typically use accelerometer and electronic compass. However, 
careful calibration is needed due to the limitations of the 
sensing technology. Escort [11] leverages on fixed beacons for 
calibration and CompAcc [12] makes use of possible walking 
paths extracted from Google Maps [1]. We do not need war 
driving or calibration, and we have no assumption about users’ 
walking patterns and the way they carry/use their smartphones. 
With the map of a metro line, we crowdsource sensor data from 
users and build the magnetic field and barometric pressure 
pattern map for the metro line to achieve high accuracy.  

 

Fig. 16. Software architecture of M-Loc  

VI. CONCLUSION  

This paper presents a novel, scalable metro line user 
localization scheme M-Loc. The software architecture of M-
Loc is shown in Fig. 16. Leveraging on smartphone sensing 
and crowdsourcing, M-Loc requires neither any infrastructure 
nor war driving, making it more realistic for real-world 
deployment. Our field study demonstrates the performance, 
scalability, and robustness of M-Loc. For our future work, we 
will further improve M-Loc by enhancing the pattern matching 
algorithm. We also plan to offer a full version of M-Loc as a 

free service to Google's play store and the Apple store for 
public use, and test M-Loc under real-life situations. 
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