
Crowdsourced Smartphone Sensing for Localization

in Metro Trains

Haibo Ye

State Key Laboratory for Novel

Software Technology

Nanjing University, Nanjing, China

yhb@smail.nju.edu.cn

Tao Gu

School of Computer Science and IT

RMIT University

Melbourne, Australia

tao.gu@rmit.edu.au

Xianping Tao, Jian Lu

State Key Laboratory for Novel

Software Technology

Nanjing University, Nanjing, China

{txp, lj} @nju.edu.cn

Abstract—Traditional fingerprint based localization techniques
mainly rely on infrastructure support such as RFID, Wi-Fi or
GPS. They operate by war-driving the entire space which is both
time-consuming and labor-intensive. In this paper, we present M-
Loc, a novel infrastructure-free localization system to locate
mobile users in a metro line. It does not rely on any Wi-Fi
infrastructure, and does not need to war-drive the metro line.
Leveraging crowdsourcing, we collect accelerometer,
magnetometer and barometer readings on smartphones, and
analyze these sensor data to extract patterns. Through advanced
data manipulating techniques, we build the pattern map for the
entire metro line, which can then be used for localization. We
conduct field studies to demonstrate the accuracy, scalability, and
robustness of M-Loc. The results of our field studies in 3 metro
lines with 55 stations show that M-Loc achieves an accuracy of 93%
when travelling 3 stations, 98% when travelling 5 stations.

Keywords—Metro train; smartphone; localization; barometer;
magnetometer;

I. INTRODUCTION

With a growing number of mobile phones, Location Based
Services (LBS) have become more and more popular. Finding
mobile user’s location (i.e., localization) is one of the key
enabling technologies. An outdoor navigation service typically
use GPS-enabled mobile phones to find nearby places. There
has been an increasing demand for LBSs used in indoor
environments. The Google Maps [1] for mobile phones will
support indoor navigation [2] which shows where you are and
guide you to where you want to go in an indoor environment.
For example, in a shopping mall scenario, this service provides
mobile users with turn-by-turn navigation to where they want
to go. In such an indoor environment where GPS is not
available, many Wi-Fi based localization techniques [4-6] [8]
have been proposed and widely used. For example, RADAR [6]
uses Wi-Fi signal strength. The idea is to war-drive a building,
and then create a radio map linking physical locations and Wi-
Fi fingerprints.

While the main focus of indoor localization research has
been centered around in-building scenarios, no attention is
given in locating mobile users when they are taking metro

1

trains. Metro trains have been the most important means for
urban transport, and every large city in the world has metro
systems in operation. Localizing mobile users in metro lines
not only extends existing LBSs to this blind spot, but also

promotes and encourages the use of public transport in
achieving urban sustainability.

How to locate mobile users in a metro train is not a trivial
task. GPS does not work underground. A Wi-Fi fingerprint
based approach may be applied in this scenario provided Wi-Fi
access points can be deployed along each metro line. However,
Wi-Fi based solutions obviously not only incur high
installation and maintenance costs, but also increase the chance
of interfering with the metro control system. Today, only a few
metro lines provide Wi-Fi coverage, mostly in metro stations
only. Until 25 Apr 2013, in New York, there are only 36 metro
stations have Wi-Fi access (i.e., 13% of all metro stations [3]).
Hong Kong has just start providing Wi-Fi access from 8 July
2013 for a limited number of metro stations. Some metro
control systems (e.g., Siemens’ EMCS system [18]) use Wi-Fi
to keep metro trains in connection with the control center, but
they are not public accessible. In addition, when applying Wi-
Fi fingerprinting in metro lines, war driving is not an easy task
since it is difficult to obtain Wi-Fi fingerprints when trains are
running underground.

What if we don’t use Wi-Fi? An intuitive way is to use
RFID techniques like [19] to locate mobile users in a metro
line. This requires that every mobile user carry a tag, and RFID
readers are deployed in each metro cabin. When a user enters
into a train, the reader gets the tag ID, and the location of the
train can be obtained from the metro control system. This
approach needs infrastructure support which is costly, and it
leverages the train location system.

Motivated by the recent advance of smartphone sensing, in
this paper, we propose to use magnetometer and barometer
sensors on smartphones and build sensor fingerprints through
crowdsourcing which requires neither infrastructure nor war
driving. Our approach is based on the following observations.
When a train is running in the tunnel from station A to station
B, the magnetometer and barometer readings scanned from a
user’s smartphone show unique patterns due to a variety of
physical environments in different tunnels. Such patterns can
be exploited as fingerprints to locate the train by pattern
matching. To get the fingerprints of magnetic field and
barometric pressure in each tunnel, different from the
traditional approach which war drives the entire metro line, we
leverage on crowdsourcing. Each mobile user taking the metro
will contribute partial data which will be then combined for

1 Metro, also named subway or underground, in this paper, refers to the

trains run underground.

Fig. 1. The overview of M-Loc

extracting patterns by an algorithm. To achieve this, we first
design a scalable, noise-free event detection algorithm to detect
the event of train stopping or leaving a station based on
accelerometer and barometer readings. By knowing these
events, we can then obtain the barometer and magnetometer
readings when a metro train is running in a tunnel. Second, the
readings are collected and uploaded into a cloud server which
runs our DTW [16] based pattern matching algorithm to extract
and compare the patterns for different tunnels. We then merge
different user traces by a merging algorithm to generate a
pattern graph for the tunnels. By comparing the graph with the
metro line map, we are able to link each pattern in the graph to
a specific tunnel. A mobile user can then download the pattern
map from the cloud sever for localization by looking up the
map. In summary, we make the following contributions:

1) We propose a novel metro train localization approach,
named M-Loc, to identify the locations of mobile users in
metro trains. Compared to traditional Wi-Fi fingerprinting
based approaches, M-Loc requires neither infrastructure nor
war driving.

2) Using smartphone sensing and crowdsourcing, we
propose several algorithms to handle noisy sensor readings and
perform pattern matching, which make our solution more
practical and scalable.

3) We conduct a field study in a real metro system with 3
metro lines and 55 stations, and analyze the performance of M-
Loc. The results show that M-Loc achieves an accuracy of
above 90% when a passenger travels 3 stations and over 98%
when travels 5 stations.

The rest of this paper is organized as follows. Section 2
gives the overview. The detailed design is shown in Section 3.
Section 4 describes our evaluation. Section 5 discusses the
related work, and finally, Section 6 concludes the paper.

II. SYSTEM OVERVIEW

We give an overview of M-Loc in this section, as shown in
Fig. 1. The system operates in two phases. In the first phase,
we crowdsource both magnetometer and barometer readings
from passengers’ smartphones. We then analyze the patterns
from these readings to extract the unique pattern for each
tunnel (i.e., a tunnel between two adjacent stations), and
generate the pattern map. In the second phase, users download
the map for localization.

A. In the first phase
M-Loc builds the pattern map of a metro line by

crowdsourcing. In order to get patterns of all the tunnels in a
metro line, our idea is to first extract patterns from user traces,
and then discover the patterns which are linked to specific
tunnels. With crowdsourcing, each user contributes a complete
or partial trace of his entire trip when travelling in a metro line.
We detect the event of train stopping or leaving a station, and
collect both magnetometer and barometer readings when the
train is running in the tunnels. Each user trace contains only
partial patterns of a metro line. By merging the traces from
different users, we are able to obtain a complete graph which

contains all the patterns of the metro line. The structure of the
graph can then be mapped to the real metro line map, and links
each pattern to a specific tunnel.

In more details, when a user travels in a metro train, the
mobile client software collects acceleration, barometric
pressure and magnetic field data. To recognize the event of
train stopping at a station, we use acceleration and barometric
pressure data. The acceleration data show clear signatures
when the train decelerates to stop and accelerates to leave. In
addition, the barometric pressure in the train will show clear
jumps when the doors of the train open or close. Combining
these two signatures, we are able to accurately detect train
stopping at a station, and we name it a train stop event.
Meanwhile, we name the process when the train is running in
the tunnel between two adjacent stations a train running event.
By these train stop events, we divide a stream of barometer and
magnetometer readings arrived in time order into fractions, and
each fraction associated with either a train stop event or a train
running event. We call the sequence of stop and running events
as a user trace. When a user leaves the metro train, the trace
will be uploaded to the cloud server. In the cloud server, we
know each running event occurs in a tunnel, but which tunnel
is unknown. Since the train running events in each tunnel have
a common unique pattern, we design a DTW based pattern
matching algorithm to find all the running events of the same
tunnel. We then apply a merge algorithm to merge the traces
from different users. Finally, we generate a pattern graph which
covers the entire metro line. We can map the running event
patterns to the tunnels by comparing the pattern graph with the
metro line map, and get the patterns of all the tunnels.

B. In the second phase
For localization, users download the pattern map from the

cloud server to their smartphones. When a user travels in a
metro train, both barometric pressure and magnetic field data
are logged, and the train stop and running events are detected
in real time. The pattern matching algorithm will be used to
match the train running event to the tunnel based on the pattern
map. Finally, the location of the train is known, so is the
location of the user.

III. SYSTEM DESIGN

We first give the details of the train stop event detection
and the pattern map generation, we then describe how to use
the map for localization.

A. Train Stop Event Detection
In order to detect a train stop event, we first analyze the

available sensors on smartphones, and justify our choice of
accelerometer and barometer. Later, we show the detailed
approach for detection.

1) Accelerometer signature
A metro train stops at a station follows a similar process −

decelerating to stop at a station, open the doors, close the doors
and accelerating to leave. It is clear that accelerometer can
capture these motion events. The readings of the accelerometer
will show a clear signature. As shown in Fig. 2(a), it appears as
a crest when decelerating and a trough when accelerating.
Actually in the real case, the acceleration signature may show
slightly different depending on the direction of the smartphone.
Fig. 2(a) shows the signature when the x-axis of the
smartphone is in the same direction of the train, while in Fig.
2(b) the x-axis is in the opposite direction of the train, where it
appears as a trough when decelerating and a crest when
accelerating. What appears most often is the situation where a
phone’s direction is random, as shown in Fig. 2(c), the
acceleration of the train when accelerating and decelerating
appears in the three axes of the accelerometer, each with a
smaller crest or trough.

2) Barometer signature
In addition to accelerometer, we observe that barometer of

smartphone also shows a clear signature in the process of a
train stop event. With air conditioning or ventilation equipment
used in every train, barometric pressure appears different
between the inside and outside of a train cabin. For this reason,
when the train stops and opens the doors, there exists a sharp
drop in barometric pressure. On the contrary, there exists a
sharp increase in barometric pressure when the doors close.
This change appears clearly in the readings from the barometer
sensor. We show this signature in Fig. 3(a) and it is an
important feature for detecting a train stop event.

3) Issues with acceleration
Each acceleration sample is a triple, including a reading of

x, y and z, respectively, each represents a direction of the
smartphone, as shown in Fig. 3(b)(1). It should be noted that
the acceleration caused by gravity is included in the triple.

When the train is accelerating or decelerating, the readings are
the combination of the acceleration of the train and the gravity;
this is shown in Fig. 3(b). We observe a sharp crest and trough
from Fig. 2(a) for only one axis, but a weak crest and trough
from Fig. 2(c) since it distributes among all the three axes.
These observations are due to various smartphone’s
orientations. To detect the train stop event, we need to find the
pair of crest and trough. Assume that we use only one axis data.
For the case in Fig. 2(a), the crest and though are clear and easy
to detect. For the case in Fig. 2(c), every crest or though is not
clear and is not easy to detect. We combine the readings from
all the three axes. Fig. 2(c) shows the result of combining three
axes. As we can see, both the crest and trough almost
disappeared. This may be due to gravity, and the direction of
accelerating/decelerating and the direction of gravity are
mutually perpendicular. A slight acceleration change in the
vertical direction of gravity will cause very small change to the
combination of the acceleration. For example, the gravity is
9.8m/s

2
, when the train accelerating is about 2 m/s

2
, the

combination is changed from 9.8 m/s
2
to 10 m/s

2
, only 0.2 m/s

2

change of accelerometer reading is not obvious enough for
detecting a train stop event.

4) Using variation of acceleration
To solve this issue, we use the variation of acceleration.

Since the gravity keeps unchanged, the variation of
acceleration is only affected by train acceleration. The
combined variation of the three axes is the variation of train
acceleration. The way to get the variation of each axis and the
combination are shown in Equations 1-7. The direction of the
combination is set as the direction of the axis with the max
mean variation. Fig. 3(c) shows the combination of the
variation of the three axes. In this figure, the deceleration
process is transformed to a curve ending with a sharp crest.
Similarly, the acceleration process starts with a sharp crest. By
this transformation, the variation will not be affected by the
phone orientation and the gravity.

 (1)

 (2)

 (3)

 (4)

 (5)

(a) The x-axis acceleration readings when the x-

axis of the phone is pointing to the front of the train

(b) The x-axis acceleration readings when the x-

axis of the phone is pointing to the back of the train

(c) The acceleration readings when the

phone is randomly placed

Fig. 2. The acceleration readings when a train stops and leaves a station

 (6)

 (7)

Where, is the acceleration in x axis at time t.
 is the combination variation of three axes at time t.

To detect a train stop event, we use a state machine shown
in Fig. 4. A stop event includes the start and end time, it is
defined as

,

where is the start time of the event, is the end time of the
event, and ID is the metro station where the event occurs. For
the example in Fig. 3(c), the stop event is represented
as . At this stage, when a train stop event is detected,
we get and , but ID is unknown.

Crest and Trough: variance > 0.4, stable: variance < 0.1, stable time >
10 seconds.

Fig. 4. The state machine of detecting a stop event by acceleration.

5) Enhancement with barometer
The acceleration based approach may experience wrong

detections and miss detections. We achieve an accuracy of
about 85% based on our experiments. For example, when a
train is running in a tunnel, the train driver may decelerate to
control the speed for a short period and accelerate again. The
acceleration readings show the same signature as a stop event
in a station. This may happen especially during rush hours.

In order to filter out these false detections, we make use of
barometer to detect an event of door opening or closing. For all
the train stop events detected using acceleration readings, we
check whether a door open or close event has occurred using
barometer readings. In Fig. 3(a), the readings experience a
sudden drop for about 0.4 hPa when the door opens, keep
stable for some seconds and experience a sudden increase for
about 0.4 hPa when the door is closed. We also use a state
machine to detect this signature, which is shown in Fig. 5. We
don’t use the barometer to detect train stop only because it is
not reliable in the following situations. For example, when the
door opens and closes more than once in a station and when the

barometric pressure drop and raise but not caused by door open
and close.

Drop and Raise: pressure_change > 0.3, stable: variance < 0.15, time >
10 seconds.

Fig. 5. The state machine to check a stop event by barometer readings.

6) Accuracy of train stop event detection
To test the accuracy of our approach, we hired 4 students

who commute by metro train every day for experiments. Fig.
6(a) shows their routes. A data collection application runs in
background on their Android smartphones to log sensor
readings such as barometer, accelerometer, magnetometer and
microphone. The experiment runs for a week. The audio
recorded by microphone on smartphone will be used as the
ground truth for which metro stations a user travels. We can
easily obtain the ground truth such as the time of a train stops
at a station by playing back the audio recorded. Comparing to
result from our event detection algorithm, we obtain the
accuracy as follows. Out of a total number of 427 train stops,
410 of them are successfully detected. The accuracy is about
96% with 3 wrong detections and 17 miss detections. If we
only use acceleration readings, we get only 363 right detections.
The comparison is shown in Fig. 7.

After detecting all the train stop events, we get data of the
train running events. A running event is defined as:

where is the start time of the running event (i.e., the time
when the train leaves a station), is the end time of the
running event (i.e., the time when the train arrives at the next
station), and is the barometer trace scanned between
time and . A barometer sample is represented as

 and is the magnetic
field trace scanned between time and . A magnetic field
sample is , which is the magnetic field
readings in the three axes of the smartphone at time t, and

. , and is in time

order. are the metro stations between which the
train running event occurs, also identify a tunnel.

(a) The barometer readings signature

when the train’s door open and close

(c) The combination of the accelerometer

readings variation in three axis

Fig. 3. The sensor readings of the smartphone on the train 3 Th di f h h h i

(b) The relation of the acceleration of the train and

gravity

Fig. 7. The result of detecting train stop events

We have now obtained both barometric pressure and
magnetic field patterns from a train running event, but we don’t
know in which tunnel the running event occurred. In the
following section, we describe how to map a train running
event to a tunnel.

Fig. 8. A user trace of passing 7 train stations and 6 tunnels

B. Pattern map generation
The pattern map contains all the patterns of the tunnels in a

metro line, and each pattern is mapped to a specific tunnel. In
each user’s trace, there exist one or more train stop and running
events. We now present our approach to build the pattern map.

We define a sequence of train stop and running events as a
user trace, denoted as ,
where SE is a stop event and RE is a running event. Fig. 8
shows a typical trace of a user. We know that the running event
occurs in a metro tunnel. With enough traces, the tunnels where
the running events occur will cover all the tunnels in the metro
line, on the condition that every metro station has been visited
at least once. Furthermore, the traces from different users may
have overlapped tunnels. An example is shown in Fig. 6(b), 5
users contribute 5 traces which eventually cover the entire
metro line. Overlapped tunnels exist in their traces. We will get
five discrete traces, but the tunnels of the traces are unknown.

As shown in Fig. 6(c), we use pattern matching to merge the
traces with overlapped running events and build a graph of
running and stop events. Using the real map of the metro line
which is public accessible, we can map the running and stop
events to the tunnels and stations, which are shown in Fig. 9.

Fig. 9. Map the trace graph to the metro map

1) Pattern matching based on DTW
Fig. 10(a) and Fig. 10(b) show the barometer and

magnetometer traces collected when the trains run in the same
tunnel. We can see that the fluctuation of the waveforms show
similar patterns. The data length is different and the waveforms
are observed a shift. This is because the time cost for the trains
to pass a tunnel may have little change based on the traffic. In
the cloud server, we obtain the data of train running in a tunnel
from the running events in user traces. Based on pattern
matching, we can find the running events of the same tunnel
from different users. This approach is shown as follows.

a) Feature extraction
 First, the raw barometer and magnetometer readings may

contain noise. If a data point value has an apparent spark noise,
it will be removed. After removing the noise, we smooth the
readings with a window of 10. In order to compare the two
traces, a simple approach is to use the absolute value as the
feature and calculate the mean squared error (MSE) of the two
waveforms. Since the users’ phones have not been calibrated
(i.e., the readings of the two phones are different at the same
place), there exists an unknown constant drift. This will cause

(a) The real travel trace of the four

students

(b) Example travel traces of the users

that cover the entire metro line
(c) User traces and the matching of

running events that cover the entire metro line

Fig. 6. User traces and matching

error when calculating the MSE value. More importantly, the
two time series has different lengths, which cannot be handled
by MSE. In our approach, we use the variance as a feature to
capture the fluctuation change. For both barometer and
magnetometer traces, we obtain the variances as follows.

 (9)

(10)

For example, Fig. 10(c) shows the variance of the two
magnetic field traces of Fig. 10(a).

b) Mathing with DTW
Since each tunnel may have a different length, and the

traces we collect will have different lengths of data. We apply
the Dynamic Time Warping Distance Measure (DTW) [16]
which is less sensitive to the time shift. To calculate the DTW,
we first align the two waveforms as shown in Fig. 11. For
example, for two time series of magnetic field variance
and , where

the sequences and can be arranged to form a n-
by-m plane or grid, where each grid point corresponds to
an alignment between elements and . A warping path, W,

maps or aligns the elements of and .

The Dynamic Time Warping distance between two time
series is then:

where First(x) is the first element of x, and Rest(x) is the
remainder of the time series after the First(x) has been removed,

and .

From the DTW value, we get numeric measure of the
similarity between train running events. For every two running
events we can obtain the DTW distance of the magnetometer
reading traces and barometer reading traces.

Fig. 11. Dynamic Time Warping (from [15])

2) Merge the traces
Traces from users often have overlaps. Given two user

traces, we want to find their overlaps and merge them. Fig. 12

shows some situations where the two traces match each other.

Given two traces with lengths of m and n, respectively, there

are possible overlaps. In our approach, in order to

find the overlap of the two traces, we compute the average

DTW value for each overlapping situation, and find the case

with minimum distance. Given two user traces with

lengths of m and n (m<n), respectively, we get the min

distance by Equation 12, where, is a running event of

user trace .

 (12)

If the minimum is the threshold, that means the two traces
have no overlapping. If not, we conclude an overlapping case
for the two traces. Then, the two traces will be merged. For
example, as shown in Fig. 6(c), user C and D are matched by
two overlap running events.

3) Map train running events to tunnels
We merge the traces from users incrementally to construct

a graph, as shown in Fig. 6(c). When the graph covers all he
tunnels in a metro line, it should have a one-to-one matching to
the real metro map as shown in Fig. 9. Finally, in the cloud
server, we obtain the patterns of all the tunnels in a metro line,
and they are stored as the pattern map.

(11)

(a) The magnetometer readings for two

trips in the same tunnel
(b) The barometer readings for two trips

in the same tunnel.

(c) The variance feature of the magnetometer

readings

Fig. 10. The reading patterns of magnetometer and barometer in tunnels

Fig. 12. The situations that two traces match each other

C. Locating users
When the pattern map is generated, it can be downloaded to

smartphones. M-Loc client application keeps collecting sensor
data and detecting the train running events. Once detected, it
finds a minimum distance tunnel by calculating the DTW
distance with every tunnel in the pattern map using Equation
13. The train’s position is at the end of the tunnel.

 (13)

and is a running event of a tunnel in the pattern map,
 is the running event of a tunnel detected. If is the

DTW distance between and , the position of the
train now is at the end of the tunnel of .

 Locating uses based on one running event only may not be
accurate enough. As the train keeps running, the application
will detect running events in time series. Using pattern
matching based on DTW distance, we can easily map the trace
in the pattern map. The matching algorithm is the same to the
way we use when matching the traces in Equation 12. The
accuracy grows rapidly with more and more traces collected.
We get an accuracy of 97% when passenger travels 4 stations.
We will show the detailed result in the next section.

IV. EVALUATION

To evaluate M-Loc under real-world situations, we conduct
a field study which involves ten users for three days in the
metro lines in the city of Nanjing. The ten users are university
students, among them 2 are females and 8 are males, aged
between 20 and 30. Several smartphone models such as
Samsung, Google Nexus, and Xiaomi are used in the
experiment. Each smartphone is equipped with 3-axis
accelerometer and magnetometer. Seven of them have the
barometer sensor. Each smartphone is installed with M-Loc
data collection software. Once started, this client software
continuously collects acceleration readings and magnetic field
readings at a rate of 5 samples per second (if a barometer is
available, the rate is 3 samples per second). All the samples
will be logged in a data file. This client software runs in the
background so that the users are able to use their smartphones
as usual. We conduct the field study as follows. The
experiments are carried out in a Monday morning, a Thursday

afternoon and a Saturday night, each lasts for three hours. We
carefully choose these periods to represent different crowds
(i.e., rush/non-rush hours) and weather condition (i.e., day and
night). During the experiment, each user is instructed to
continually take metro trains in the metro lines. The starting
and ending stations are randomly chosen. To record the ground
truth, microphone on smartphone was turned on to record the
audio. After the experiment, we played back the audio clip to
find out in which stations the users traveled. Fig. 6(a) shows
part of the map of the metro line where our field study was
carried out. There are 3 metro lines with 55 metro stations, 3 of
them are cross-line stations.

After the experiment, we collect the logged data from each
user, including the ground truth and the sensor traces. From the
ground truth, we find out there are a total number of 162 one-
way trips. The distribution of each trip length is shown in Fig.
13(a). It shows that there are more short trips than long trips.
Using these sensor data, we run the train stop event detection
algorithm. We compare the output of the detection algorithm
with the ground truth. The number of stops of each trip is
detected and the accuracy is shown in Table 1. The result
shows that the miss detection of the train stop events rarely
occurs. For the 47 trips with stations less than 4, there are only
2 trips having one missed stop event.

After the train stop event detection, we get the user trace of
each user trip, including a sequence of stop and running events.
Based on the ground truth, we know the running events belong
to which tunnels. We randomly choose five tunnels, and use
only magnetometer readings for the experiment. Fig. 13(b)
shows the min, max and average DTW distance of the running
events of the five tunnels. It shows that the DTW distances of
running events from the same tunnel do not vary much. Fig. 14
shows the average DTW distance between the same and
different tunnels. The average DTW distance of running events
occurred in the same tunnel is much lower than the distance of
that in different tunnels. The threshold is set to 8 in our
experiment. This feature helps us to find out whether two
running events occur in the same tunnel. The comparison
between the DTW and MSE distance is shown in Fig. 13(c).
For the reason of time drift and different lengths of the data
traces, the MSE distance is much larger than the DTW distance.

Table 1

Missed
stops

Missed/Total stations of trips with different length
<4 >4 and <12 >12

1 2/47 3/90 4/21

2 0/47 2/90 3/21

3 0/47 0/90 1/21

> 3 0/47 0/90 0/21

For trace matching, the result of our algorithm is shown in
Fig. 13(d). There are a total of 162 traces. The left vertical axis
shows the distribution of the first 300 times of trace merging.
The right vertical axis shows that the matching accuracy
increases when the number of overlapped stations increases.
The accuracy is more than 95% when the number of
overlapped stations is larger than 3. Hence, our matching
algorithm only merges traces when there are more than 4
overlapped stations.

Fig. 14. The average DTW distance between running events occurred in
the same and different tunnels

The merged traces form a graph. The graph grows larger
when more traces are merged until it has a one-to-one mapping
to the metro line map. The dotted curve in Fig. 13(e) shows the
map of the metro line is successfully built with different
sample size (i.e., number of user traces). The result shows that
90% of the map can be built quickly with a few user traces.
The curve grows slower because some stations are not visited
by passengers often, the starting and ending stations of a metro
line for example. For the 3 metro lines with 55 stations, M-Loc
requires only 80 user traces to build the map. The red solid line
shows the ground truth of the traces to build the map. In fact,
about 30 traces are required to construct the map. Our approach
needs more traces because we merge two traces when there are

at least 4 overlapped stations. Fig 13(f) shows the location

accuracy when the pattern map is built. When a passenger
travelled only one metro station, the location accuracy is about
75%. With more stations travelled, the accuracy increases
rapidly. We get an accuracy of 98% when travelling 5 stations.

In the end, we evaluate the energy consumption of M-Loc
using a Samsung Galaxy Nexus smartphone running Android
4.1 OS, and the result is shown in Fig. 15. The power
consumption is computed based on PowerTutor [17], a
diagnostic tool for analyzing system and application power
usage from the Android Market. The experiment ran for 12
hours continuously. The average power consumption of M-Loc
is 109 mW. For comparison, we also show the power
consumption of other localization techniques and some basic
mobile functions. It shows that M-Loc consumes much less
energy than the traditional localization techniques.

Fig. 15. The power consumption of M-Loc

V. RELATED WORK

Many fingerprint based techniques for indoor localization
have been proposed such as [6-10], which can be used to locate
the user in a metro line. Existing techniques for localization
rely on deployed radios (e.g., Wi-Fi access points, GSM base
stations, etc) and make different assumptions about
infrastructure and calibration. They mainly rely on Wi-Fi signal
strength, and they are capable of achieving good accuracy in an

(a) The distribution of trips with different lengths
(b) The DTW distance of the running

events from tunnels

(c) The comparison of the DTW and

MSE distance

 (d) The accuracy of trace mapping
(e) The percent of pattern map built with
different number of user traces.

(f) Accuracy of subway localization

Fig. 13. The evaluation results of M-Loc

indoor environment. Radar [6] operates on Wi-Fi fingerprints,
and is capable of achieving high accuracy in indoor
deployments. However, Radar needs to war-drive the entire
building in order to obtain the radio map. War-driving is very
time-consuming and labor-intensive. Hence, this solution is not
scalable over larger areas. Some recent approaches such as
LiFS [20] use crowdsourcing to reduce the training cost to
some extent, but it involves a complicated training process. In
reality, many mobile users may not turn on Wi-Fi all the time
for energy saving, limiting the effectiveness of crowdsourcing.
More importantly, deploy the Wi-Fi access points in the metro
line may have security problems, which need theoretical and
practice proof. The Wi-Fi infrastructure is still not widely used
in today’s metro lines. Different from these systems, our
approach does not require any pre-installed infrastructure. It
leverages on mobile phone sensing and crowdsourcing to
efficiently localizing users in metro trains.

Sensor-assisted localization methods [11-14, 21] have been
proposed with the popularity of smartphones, which make use
of embedded sensors available on smartphones. These systems
typically use accelerometer and electronic compass. However,
careful calibration is needed due to the limitations of the
sensing technology. Escort [11] leverages on fixed beacons for
calibration and CompAcc [12] makes use of possible walking
paths extracted from Google Maps [1]. We do not need war
driving or calibration, and we have no assumption about users’
walking patterns and the way they carry/use their smartphones.
With the map of a metro line, we crowdsource sensor data from
users and build the magnetic field and barometric pressure
pattern map for the metro line to achieve high accuracy.

Fig. 16. Software architecture of M-Loc

VI. CONCLUSION

This paper presents a novel, scalable metro line user
localization scheme M-Loc. The software architecture of M-
Loc is shown in Fig. 16. Leveraging on smartphone sensing
and crowdsourcing, M-Loc requires neither any infrastructure
nor war driving, making it more realistic for real-world
deployment. Our field study demonstrates the performance,
scalability, and robustness of M-Loc. For our future work, we
will further improve M-Loc by enhancing the pattern matching
algorithm. We also plan to offer a full version of M-Loc as a

free service to Google's play store and the Apple store for
public use, and test M-Loc under real-life situations.

VII. ACKNOWLEDGMENT

This work was supported by the NSFC of China under

Grants 61373011, 91318301and 61321491.

REFERENCES

[1] Google maps. http://www.google.com/intl/en/mobile/maps/

[2] Google maps indoor. http://maps.google.com/help/maps/indoormaps/

[3] Transit Wireless . http://www.transitwireless.com/what-we-do/for-
transit-agencies/

[4] Nobuo Kawaguchi et al., "Underground Positioning: Subway
Information System Using WiFi Location Technology," mdm, pp.371-
372, 2009 Tenth International Conference on Mobile Data Management:
Systems, Services and Middleware, 2009

[5] Lee, I., Yoon, G., & Han, D. (2011, August). Nerimi: WiFi-based
subway navigation system. In Intelligent Radio for Future Personal
Terminals (IMWS-IRFPT), 2011 IEEE MTT-S International Microwave
Workshop Series on (pp. 1-2). IEEE.

[6] P. Bahl and V. Padmanabhan. Radar: an in-building rf-based user
location and tracking system. In INFOCOM 2000. Israel.

[7] A. Varshavsky, A. LaMarca, J. Hightower, and E. de Lara. The skyloc
floor localization system. in PerCom 2007.

[8] G. Zaruba, M. Huber, F. Kamangar, and I. Chlamtac. Indoor location
tracking using rssi readings from a single wi-fi access point. Wireless
networks, 13(2):221-235, 2007.

[9] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, et al. Place lab: device
positioning using radio beacons in the wild. Pervasive Computing, pages
301-306, 2005.

[10] V. Otsason, A. Varshavsky, A. LaMarca, and E. De Lara. Accurate gsm
indoor localization. UbiComp 2005, pages 141-158, 2005.

[11] I. Constandache, X. Bao, M. Azizyan, and R. Choudhury. Did you see
bob?: Human localization using smartphones. In Proceedings of the 16th
annual international conference on mobile computing and networking.
ACM, 2010.

[12] I. Constandache, R. Choudhury, and I. Rhee. Towards smartphone
localization without war-driving. In INFOCOM2010. IEEE.

[13] G. X. Z. e. Haibo, Y. Tao. Ftrack: Infrastructure-free floor localization
via smartphone sensing. Percom, 2012.

[14] A. Ofstad, E. Nicholas, R. Szcodronski, and R. Choudhury. Aampl:
Accelerometer augmented smartphone localization. In Proceedings of
the first ACM international workshop on mobile entity localization and
tracking in GPS-less environments, pages 13-18. ACM, 2008.

[15] Y. Zhu, D. Shasha, and X. Zhao. Query by humming: in action with its
technology revealed. Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, June 2003.

[16] D. Berndt and J. Cli_ord. Using dynamic time warping to find patterns
in time series. In Advances in Knowledge Discovery and Data Mining,
pages 229-248. AAAI/MIT, 1994.

[17] PowerTutor,Avilable: http://ziyang.eecs.umich.edu/projects/powertutor/

[18] EMCS - Engineering, Monitoring and Control System, Avilable:
http://www.industry.siemens.com

[19] Ni L M, Liu Y, Lau Y C, et al. LANDMARC: indoor location sensing
using active RFID[J]. Wireless networks, 2004, 10(6): 701-71

[20] Yang Z, Wu C, Liu Y. Locating in fingerprint space: wireless indoor
localization with little human intervention. Mobicom'12. ACM, 2012:
269-280.

[21] Zhou, Pengfei, Yuanqing Zheng, and Mo Li. "How long to wait?:
predicting bus arrival time with mobile phone based participatory
sensing." Mobisys’12. ACM, 2012.

