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Abstract—WLANs are constantly undergoing extensive re-
search and development, and scientists keep coming up with
new methods to improve existing protocols and amend standards.
Experimental assessment has been an important part of 802.11
research, however measuring the detailed behaviour of the
medium and hardware has been challenging. In this paper we
design a diagnostic tool, WiFo, for IEEE 802.11-based WLANs.
This tool helps developers and researchers monitor and analyze
the wireless signals and details such as backoff distribution in
a user-friendly environment. Our solution is much cheaper and
easier to use than existing tools, and provides more flexibility
by allowing users to add functionality. We then use WiFo to
study several aspects of some off-the-shelf hardware and their
corresponding software drivers, and show some interesting results
regarding how they apply standard specifications.

I. INTRODUCTION

With ever increasing interest in WLANs, researchers have
been trying to improve current protocols in terms of per-
formance [1], [2], [3], security [4], [5], and scalability [6].
Mathematical analysis and simulations are common ways of
evaluating new methods [7], [8]. The final step in evaluating
a new method is putting it into practice on a real network.
In order to implement and test on a wireless medium, we
also need to understand the behaviour on the medium itself.
Although standard specifications are available in detail [9],
[10], in many cases what happens in practice can be different
to expectations based on standards. Sometimes this is due to
the implementation flexibility provided by the standard, and
other times there are clear deviations from the standard [11].
Even if we assume all wireless hardware behaves exactly as
the standards suggest, other factors, such as interference or
competing traffic, may alter expected results of an experiment.

Thus, in order to have controlled experiments, we need to
understand the hardware we use and also channel conditions.
For example, if a wireless device has an unexpectedly high
saturation throughput, we can infer that it is not following the
standard. However, without better diagnostics we cannot know
which part of the standard is not being followed: it could be
an abuse of TXOP, use of a small contention window (CW)
or some other issue. For unexpectedly low throughput, other
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factors, such as hardware failure, protocol errors, channel in-
terference, etc., are possible. In order to identify the underlying
problem, we need more information.

One device that is designed for detailed analysis of the
wireless medium is a spectrum analyzer. A spectrum ana-
lyzer measures the magnitude of an input signal at a par-
ticular frequency within a range. By analyzing the spectra
of electrical signals, dominant frequency, power, distortion,
harmonics, bandwidth, . . . details can be observed that are
not easily detectable otherwise. Spectrum analyzers are par-
ticularly useful for understanding the physical (PHY) layer of
a transmitter or receiver, such as power levels, distortion and
interference. Some spectrum analyzers even come with add-
ons that characterize PHY symbols or packets. We can use
a spectrum analyzer to observe the IEEE 802.11 medium by
simply adjusting the frequency range to that of the specific
channel we would like to study. In Fig. 1a we have done
this for WiFi channel 14 while one station transmits saturated
traffic to an access point (AP) in this channel. The first plot
shows the maximum, minimum and current power observed,
and the WiFi channel is clearly visible within the bump in the
blue line that shows peak power per frequency. The spectrum
analyzer can also give us the changes in power over a period
of time using “zero span” mode. By switching to this mode,
the x-axis will then show time instead of frequency, with the
y-axis still showing power. With zero span, we can actually
understand temporal aspects of the channel. Fig. 1b and 1c
are snapshots from a spectrum analyzer screen on zero span
mode while WiFi traffic is ongoing on channel 14.

While we can observe traffic using a spectrum analyzer,
and it provides a number of ways to process the observed data,
there are some downsides, including financial cost. A spectrum
analyzer is a versatile but relatively expensive device, and thus
the expense may not be justified for a group developing WiFi
drivers or analyzing some performance anomaly. In addition,
because it is a general-purpose device, many 802.11 properties
are not recognized by a typical spectrum analyzer, or are
only understood by specialist add-on packages. When we
study 802.11, we are often interested in things like backoff
period, throughput and transmission time. We often need to
have numerous samples in order to understand the stochastic
behaviour of the WiFi MAC and PHY. Although there are
ways to export spectrum data using a spectrum analyzer and
process it later on a computer, the whole process is often not
easily automated or tailored to those studying WiFi, and so
experiments can be difficult without human interaction.

In this paper, we provide a solution that addresses these



(a) Saturated traffic on channel 14 (b) A single beacon (c) Successful frame transmission and ACK

Fig. 1: Spectrum analyzer: 44 MHz frequency span for (a), and zero span for (b) and (c).

problems. While a spectrum analyzer receives, digests and dis-
plays electronic signals, a cheap off-the-shelf wireless adapter
also receives all those signals, but it then uses them to provide
data transmission and reception over the medium. If we can
extract the carrier-sense data from the wireless adapter, we may
be able to provide and automate some of the features needed to
diagnose WiFi performance. Using the flexibility provided by
OpenFWWF [12], we will use a Broadcom BCM4318 wireless
adapter to create an inexpensive, easily usable, and extensible
tool for researchers and developers to study 802.11. What we
want to develop is a tool that can monitor WiFi traffic and
provide a visual representation of the received data, as well as
statistical studies on transmitted frames. The tool will sit just
above the PHY layer and focus on the interaction of PHY and
MAC layers. Additional functionality can also be introduced
to the system through extensions.

The rest of the paper is organized as follows. In Sec. II
we briefly review related work. In Sec. III we describe the
design and implementation details of WiFo. In Sec. IV we
gauge our system against expected results for some scenarios.
In Sec. V we use WiFo to study some popular 802.11 adapters
and drivers; although these tests use 802.11b for simplicity, the
tool itself could well be used for more recent protocols as it is
not protocol dependent. Finally, Sec. VI concludes this paper.

II. RELATED WORK

The use of off-the-shelf wireless adapters in research is
widespread, partly due to widely-available open-source device
drivers. Examples of existing work that detects misbehaving
802.11 devices include [13], where they evaluate previously
proposed schemes including DOMINO (see [14]) and SPRT-
based schemes (e.g. [15]) by using experimental results from
off-the-shelf devices to confirm the correctness of their theo-
retical analysis. There is a wide range of other experimental
work, from [16] and [17], which introduce and implement new
rate adaptation algorithms, to [18] where they introduce and
experimentally evaluate a new MAC protocol suitable for long-
distance multi-hop links.

Tools for testing and debugging have received relatively
less attention. In experimental work, such as those just men-
tioned, and in driver development, intensive testing is required

to make sure implementations work as desired. It is widely
understood in the research community that debugging an
implementation can take many hours. Most of the available
tools and approaches e.g. [19], [20] focus on protocol level
monitoring, and less on other interactions.

In our approach, we leverage the fact that all wireless
adapters have the means of sensing the medium to make a
test tool. This feature of the hardware has been used before,
for example to implement spectrum sensing for cognitive radio
[21] or to detect non-WiFi sources of interference [22].

We use carrier sensing of off-the-shelf wireless hardware
in a different way; rather than using data collected from the
medium for one particular purpose, we aim to export it to the
application layer, where it can be analyzed using high level
tools. Works such as [11], where the study of existing wireless
hardware or software is intended or required, emphasize the
need for the tool we present. We use Broadcom BCM43xx
chipsets and open-source firmware that has also been used to
allow visual reprograming the wireless layer [23], [24].

III. DESIGN AND ARCHITECTURE

This section covers the implementation details of our
diagnostic tool. As we mentioned, we use a commercial off-
the-shelf wireless adapter to monitor the medium. We use a
custom firmware and driver for the wireless adapter running on
a monitor host. To allow greater flexibility in the processing
and visualization, we transfer the data from the monitoring
host using a small TCP-based server to a front-end host. This
separation of monitoring and front-end hosts allows us to
install the monitor on a small device, such as a Soekris net4801
[25], while using a higher-powered device for storage and
visualization. Our front-end visualizes the data and allows the
user to analyze and study the data. Fig. 2 depicts the building
blocks of our system. We will discuss the different parts of
this diagram in this section. The full source code, along with
the modified b43 driver, as described below, is available in
[26].

A. Firmware

The firmware is the software running directly on the NIC
chipset and the first layer above the hardware. Signals from



Fig. 2: Architecture diagram of the WiFo diagnostic tool.

Bit Meaning

15 Flip to 1 when time reserved for receiving PLCP has passed

11 Flip to 1 when RX’ing or TX’ing (same time receiver flips on, and 1µs
after transmitter flips on)

10 Flip to 1 when RX’ing or TX’ing (same time receiver or transmitter flips

on)

9 Flip to 1 when receiver has started decoding

8 Flip to 1 when transmitter is working

7 Flip to 1 when backoff is zero

4 Flip to 1 when time reserved for receiving MPDU has passed

3 Flip to 1 when channel is sensed free (phy+nav) for more than two slots

2 Flip to 1 when channel is sensed free (phy+nav) for more than one slot

1 Flip to 1 when channel is sensed free (physically)

0 Flip to 1 when channel is sensed free (virtually through NAV)

TABLE I: Important bits of the “IFS Status” register.

the medium are translated into a digital representation and
digested by cores within the chip, and results are provided to
the firmware in an “IFS Status” register [27]. The most relevant
flags via the IFS Status register are listed in Table I. Using
these we can see when the card begins sending or receiving and
the state of the medium, and also capture important timeouts.

In order to track the state of the medium, we record the
value of the IFS Status register over time and base our analysis
on flips of the flags. The firmware has access to 4 KB of shared
memory, a large portion of which is unused by its normal
workflow. We use the available free memory in the form of a
ring buffer, and whenever at least one bit of IFS Status flips,
we save its value along with a timestamp from the chip’s TSF
register (which offers granularity of 1µs). We only save a new
record when there is a change as this saves space compared
to periodic recording.

Indeed, available memory is the main barrier to implemen-
tation. We use the 32 least significant bits of the card’s current
TSF timer as our timestamp. The IFS Status register itself is
16 bits, giving 48 bits (6 bytes) per record. Even if we could
use the chip’s whole shared memory, we could only store
667 records. But the shared memory is not completely free
and putting aside the memory used for the firmware’s normal
workflow we are left with space sufficient to accommodate
about 250 records. A single frame can trigger multiple bit flips
and bits such as 8 and 11 can be flipped 1µs apart from each
other, leading to a large possible number of flips per unit time.
In order to increase the number of relevant events captured,
we mask out redundant flags and thus reduce the number of
triggered events. We combine this with the greater resources

available to the driver running on the host to record events.

One might ask where this procedure is actually inserted
into the firmware. Event handling in the firmware architecture
is not interrupt-based and the firmware continuously polls for
events and handles them accordingly. Whenever there are no
events, the firmware calls a nap instruction to sleep for a short
period as a power saving measure, and then continues. This is
the best place to insert any repeated code. We simply replace
the nap instruction with our code. Other parts of the standard
OpenFWWF firmware are left unchanged, in order to maintain
initialization of the chip, the interface with the driver, etc.

B. Driver

The amount of memory available to the driver is typically
much larger than the firmware, as it runs on the host machine
which has more resources. Another useful feature of the b43
driver used with OpenFWWF is that it can do periodic work
at relatively small intervals. We use these to our advantage.
In our implementation, we allocate a large ring buffer in
the driver, which can hold 10 times as many records as the
firmware. We then read the shared memory periodically and
add new records to said ring buffer. The period is chosen so
that every record on the shared memory ring buffer can be
read before it is overwritten. In our experiments with saturated
traffic, this proves to be 25ms; anything less than this period
will frequently read redundant information, and longer periods
might lead to loss of information.

Exporting the information to user space is our next step.
For this, we use the Linux DebugFS module1, which allows the
kernel modules, such as drivers, to export data via a filesystem.
The filesystem can be set up using a simple Linux command2.
Files in this filesystem correspond to pieces of kernel memory,
and are used as interfaces between kernel code and user space.
We use DebugFS to create a DebugFS “blob” file that points to
the driver’s ring buffer array. This file can then be periodically
read from a normal Linux application.

C. Socket Server

The next building block of our tool is a socket server. While
we collect state information from the wireless adapter, we want
to let a potentially external client access this information. To
collect state information from the driver, we use the DebugFS
file. On the application side, we read the whole array from
this file at an interval slightly less than it takes the driver to
fill the ring buffer and begin overwriting. For instance, we use
200ms for the driver we described before, as it normally fills
the DebugFS blob in 10 iterations (i.e. 250ms). This is to avoid
missing data due to processing delays. Old items in the array
can be identified via each record’s TSF timestamp, allowing
us to remove items that are read twice.

When read at this rate, the driver’s array is large enough
to keep up with the overwriting speed, however it is not large
enough to keep a full history. To maintain a full history, the
data is exported from the application using a TCP socket. In
fact, the server application does not keep newly read items,
instead it listens on a TCP socket for incoming connections.

1Available in Linux kernel version 2.6.10-rc3 and higher.
2mount -t debugfs none /sys/kernel/debug



Fig. 3: Screenshots from the diagnostic tool’s front-end
(WiFo).

When a client connects, the server flushes the data to the client
after each DebugFS read. Note that the system we described
up to here, including the firmware, driver and server, can run
on a low-spec Linux box.

D. Front-end

1) Main Graphical Interface: In the previous subsection
we discussed how a small server relays a wireless card’s
internal state information to an external client. The client
that we use to receive this data is a graphical client named
WiFo [28], developed using the .NET framework. It connects
to the server and displays the data received from it. Fig. 3
shows screenshots from this application.

The most basic feature of the UI allows you to graph
arbitrary Boolean expressions of bits of the IFS Status register,
where you may also benefit from predefined macros instead of
remembering bit usages. This fascilitates easier understanding
of the flags. The following expression is used in all screenshots
in this paper (e.g. Fig. 8)

RX_BUSY, not FREE_PHY, TX_BUSY,

MPDU_TIMEOUT, PLCP_TIMEOUT

which declares the five plots you see in the figures (plot
definitions are separated by comma). Each plot can have
a complicated Boolean expression of bits, or a simple bit
query like above example. Live plots corresponding to selected
expression are displayed on a chart called the timeline. By

Fig. 4: Transmission of packets captured on WiFo. The bottom,
middle and top curves show busy status for the RX engine, the
medium (PHY) and the TX engine respectively.

choosing a suitable combination of bits we can identify frames,
ACKs and other events on the channel. Fig. 4 shows an
example timeline. The bits displayed are bit 9 (RX engine
busy status, bottom, black), the complement of bit 1 (which
corresponds to PHY busy status, middle, blue) and bit 8
(TX engine busy status, top, red). Therefore bumps on the
bottom line represent frame transmissions. In this example,
the monitoring code is running on the AP, and we see bit 8
is flipped on ACK or beacon transmissions. We see that after
each black period we have a short period where the red line
rises. The duration of this flip is the duration of an ACK, which
confirms an ACK transmission.

Another feature of the diagnostic tool’s front-end is the
measurement of the time between two events (see top image
of Fig. 3), which allows manual investigation of the duration
of those events. It also allows the selection of a timeframe
to perform automated studies. The application has access to
the full history of the data from the time it connects to the
server. Combined with zooming and panning functionality,
these automated studies allow various statistics to be calculated
over particular time periods. The amount of data processed
is only limited by the memory on the front-end host. Other
features include data export to persistent storage for later use.
This data can later be reloaded and analyzed either by WiFo
or using an external tool such as MATLAB.

From Fig. 4 we can observe a limitation of our current
implementation. Looking at the middle line, we see a short idle
SIFS period at the end of the first packet transmission. This is
only seen for the first frame, and is missing for other frames.
As we discussed in Section III-A, the firmware on the wireless
chipset also performs its normal 802.11 operation; monitoring
is an additional task. The card’s normal operation requires it
sometimes to halt until a certain even occurs, and in these cases
the monitoring code may miss an event. Scanning the firmware
code, we can identify relevant sections of code, and replace
them with copies of the monitoring code. We believe this
would alleviate the problem of short-duration missing events,
however we could still miss events that are closer together than
two reads of the IFS status register. For the studies we conduct
in this paper, we have found that the simple modification of
replacing the nap instruction is sufficient.

2) Additional Functionality: Additional functionality can
be added to WiFo through a plugin system with APIs for
both .NET Framework and Python. Placing a .NET class
library or a Python script in WiFo’s extensions directory will
automatically activate it on start-up. Extension developers do



not need to worry about collection of data, as it is passed in
an accessible data structure to an extension; this is a special-
purpose enumerable list in .NET, and a list in Python. Each
extension can have its own settings and output formats, which
can be integrated into the user interface through the API.

There are currently two types of extensions. Studies are
extensions that take a subset of the data identified by a time
range and produce results. These results can be of any type
and the API provides a flexible format to display results. The
bottom image in Fig. 3 shows an example of results produced
by a study. Results in the form of a plot can easily be displayed
through the API. Timeline view extensions are replacements for
the original timeline view. They have access to the graphics
canvas of the timeline and the state information, and they
can offer a different representation of the existing data, or
combine it with external data sources to give more insight. For
performance reasons the API for timeline views is currently
only available for .NET Framework.

WiFo provides some default extensions, including packet
recognition and an inter-frame space (IFS) distribution calcu-
lator. The former simply uses the state information to count
packets in a given timeframe and provides statistics (e.g.,
bottom image in Fig. 3). The latter generates a bar plot for
the distribution of the inter-frame space (e.g. Fig. 9). We will
discuss these plots in detail in Section V. For example, recog-
nizing successfully-received packets is performed by scanning
through all records and looking for the following pattern:

1) RX engine becomes busy for longer than 192µs
2) RX engine becomes idle
3) TX engine becomes busy after 10µs
4) TX engine becomes idle (after an ACK duration)

This pattern represents the transmission and acknowledgement
of a single frame if WiFo’s back-end runs on the receiving
access point. For other receive cases, the final two steps
examine the RX bit. In practice, WiFo checks both cases. Note
also that these two steps will also be absent if the frame is
not acknowledged. The inter-frame space can be calculated
as the time difference from one match of this pattern to the
next. Starting from the first two, the time differences between
the above steps correspond to frame duration, SIFS and ACK
duration respectively.

E. Linking to PCAP Data

A useful complement to the PHY/MAC layer data provided
by our monitoring system is the data provided by tools such as
tcpdump. These tools monitor the medium through a network
adapter and capture frames as they are observed. The type and
a range of bytes from every frame are recorded and can be
filtered and studied. Additional information made available by
a NIC, such as PHY rate and power, can also be recorded via
the Radiotap[29] extensions.

PCAP information and WiFo’s raw data are complementary
to each other. For example, our core system also falls short in
studying packets as it backend only sees state changes. While
this information is enough to determine the timing of packets,
it cannot tell us the content of a packet, including source and
destination addresses. tcpdump gives us this extra information.
On the other hand, tcpdump only captures frames that are either

transmitted successfully or at least key parts of which can be
decoded. Our system does not have this limitation; it captures
every activity on the channel, whether or not it is a successful
frame. Even the noise from a microwave oven can be seen
using our tool (see Section IV-C).

To benefit from both, we can integrate data from our mon-
itoring system and tcpdump by reading data in the common
PCAP format. Using PCAP API for .NET Framework3, we
develop a PCAP extension for the system. This extension
displays PCAP information on the timeline, by aligning TSF
and timestamp values. 4 This helps verify frame transmissions
and have extra information to perform further analysis. Note
that PCAP data used in our tool can come from any source
and so a second wireless adapter, potentially with different
capabilities, can be used. This could also be on the the
monitoring host or on some other device.

IV. VALIDATION

In this section we present a number of tests to demonstrate
that our monitoring system and analysis tools are robust. In
these basic tests we have one transmitting station, a Soekris
net4801 with Broadcom BCM4318 NIC with the OpenFWWF
firmware. The receiving station is the AP, a PC equipped with
a BCM4318 adapter running the monitoring system described
in Section III-A. The WiFo front-end runs on a separate PC.
We send saturated traffic using MGEN [30] in all the following
tests.

A. TX Duration

One of the fundamental aspects of the system is the timing
of flag changes, the correctness of which is crucial to any
application of the diagnostic tool. To this end, we verify the
effect of varying frame sizes on the observed duration of their
transmission. We run a series of tests with different payload
sizes, from 100 bytes to 1400 bytes (with granularity of 100
bytes). The diagnostic tool measures the duration of frames by
using the pattern described in Section III-D and measuring the
time the RX engine remains busy for that frame.

We use saturated UDP traffic at 11Mb/s for all tests, and
for each payload size we average transmission duration over
2500 frames. We use long preamble in these tests (192µs
PLCP). We also calculate the expected duration D(l) for each
payload size l as

D(l) = dPLCP + df (l). (1)

where dPLCP = 192µs is the duration of the preamble and
the PLCP header and df (l) is the time required to transmit the
payload and protocol headers associated with different layers,
which is calculated as

df (l) =
8(l + lH,LLC + lH,IP + lH,UDP + lH,802.11 + lFCS)

r
.

3SharpPCAP/PacketDotNet
4BCM43xx chipset internally uses a TSF timer that is never synchronized

with the network. Instead, a register keeps the difference between the internal
and network TSF, the value of which is updated each time a beacon is received.
We use this value to align signal records, which hold the internal TSF, with
TSF values from PCAP data.
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Fig. 5: Duration with increasing payload size.

Here lH,x is the length of the header associated with layer x,
lFCS is the length of the FCS, all in bytes, and r is the data
rate used to transmit the frame. For example, for a payload
size of 1000 and with our experiment settings, df (1000) =
8(1000+4+20+8+30+4)

11×106 ≈ 7.75× 10−4s. Further, this translates

to the following for D(l) in microseconds:

D(l) = 240 + 0.727l. (2)

Fig. 5 shows average durations as observed by the AP
as well as the calculated expected duration for each payload
size. In fact, the measured packet lengths are tightly clustered
around the mean, with variations of only a single microsecond.
As shown in the figure, the expected and observed values
closely match. Fitting a straight line through measured data
gives us the following for D(l):

238.055 + 0.725l.

which is very close to (2). Slight changes are expected given
firmware delays. This verifies the system’s pattern matching
capabilities and the timeliness of flag changes.

B. Throughput

Throughput is an important metric for 802.11 networks,
as it can be an indicator of different network aspects such as
performance and fairness. For this reason, it is important for
our diagnostic tool to identify all transmitted frames and to
measure network throughput correctly.

To validate the diagnostic tool’s throughput calculation, we
run a fresh test on the same network as previously described,
but this time we do not use saturated traffic. Instead, we run a
single UDP flow with PHY data rate of 11Mb/s with payload
size of 1400 bytes for each frame for 30 seconds, and have
the tool calculate the throughput. We use a arrival rate of 100
packets/s for the first test, and for each subsequent test we
increase the arrival rate, up to 800 packets/s.

The expected throughput is calculated simply by multi-
plying the transmission rate by the payload size. However,
rate should not exceed the saturation throughput. We calculate
saturation throughput S as

S =
l

D(l) +DSIFS +DACK +DDIFS +Dbo

=
l

Dt

, (3)
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Fig. 6: Throughput with increasing packet-arrival rate.

where D(l) comes from (1), DACK is the duration of the ACK,
Dbo is the average backoff duration, and DDIFS is the duration
of DIFS (50µs). Dt is used to denote the total duration of a
successful frame transmission, including its ACK and average
backoff. We will be using this notation later. Also, note that in
our experiments we use a fixed packet size l and hence D(l)
is a constant.

Fig. 6 depicts the observed and expected throughput values.
As you can see, the two values match closely; and the small
difference after saturation may be explained by the backoff
behavior of the chipset as we will discuss in Section V. The
reason this difference does not exist before saturation is that
packet inter-arrival times are usually larger than the maximum
backoff, eliminating the effect of the backoff mechanism.

C. Microwave Interference

In this section we show that we can see microwave in-
terference using our tool. To demonstrate this, we test two
scenarios on a channel where only the AP transmits beacons
and there are no other stations or any interference from other
WiFi networks. In our first test we use a microwave oven
to introduce interference, and for the second test we turn it
off. Note, the interference generated by the oven is bursty.
The top image in Fig. 7 shows a single microwave oven
burst captured by a spectrum analyzer. The duration of this
pattern is approximately 8ms and it is repeated at intervals of
about 20ms (see bottom Fig. 7), which is related to the mains
frequency of 50Hz.

Fig. 8 shows what we observe using WiFo for both tests.
The bottom plot is of a free channel with only beacons, which
show as periodic spikes. Note that as the monitoring runs
on AP the TX engine remains busy during the transmission
of a beacon. The top plot is taken with running microwave
oven. There are periodic spikes on the RX engine’s activity,
the duration of which is around 140µs. We believe this is the
time required by the decoder to distinguish noise from WiFi
signal. The RX spikes are separated by two slightly different
distances which alternate. The shorter distance is 8ms, which
is the burst size. This suggests that the beginning and the end of
each burst triggers the chipset’s decoder, which soon identifies
it as noise and the decoder is deactivated. More generally, any
interference on the channel triggers the decoder temporarily.



Fig. 7: Waveform of a single microwave oven burst (top), and
a sequence of bursts (bottom).

Fig. 8: Channel activity observed by AP running WiFo’s
backend when a microwave oven is working (top) and when it
is not (bottom). Vertical lines are 10ms apart in both images.

CWmin χ2 p-value

32 26.3006 0.70680

16 16.2286 0.36702

8 5.6899 0.57639

TABLE II: Chi-squared test for results in Fig. 9. We use
CWmin − 1 degrees of freedom to obtain the p-value.

V. DEBUGGING EXAMPLES

In this section we introduce examples showing how our
diagnostic tool can help debug wireless hardware and drivers.
A motivation for the development of this tool was to help
examine wireless networks closely and to identify reasons for
unexpected behavior. This is especially useful for driver and
firmware developers, as it could help them verify the behaviour
of the wireless cards and debug their implementations. We
believe this can also be a practical research tool allowing
visualization of information that is otherwise hard to obtain.

A. Contention Window

The Distributed Coordination Function (DCF) is one of
the most important parts of the 802.11 standard, as it ensures
equal opportunities for all the stations to use the channel. The
contention window, used for backoff in DCF, is sometimes
misconfigured by wireless card vendors [11], and may also be
manually adjusted by users to gain an advantage. This makes
the ability to detect possible misconfiguration important. In
this section we manually adjust the contention windows of
the wireless adapters to standard and non-standard values and
then use our system to observe the differences. Using the IFS
distribution study, described in Section III-D, we may generate
a distribution graph and detect misconfigured stations.

In our next experiments, we use the same network setup
that we used in Section IV and we send saturated UDP traffic
using packets with 1000 bytes of payload, and we alter the
contention window for each experiment. The duration of each
experiment is again 30 seconds. Fig. 9 shows the resulting plots
for three different values of the minimum contention window,
namely 8, 16 and 32. We can see the number of times each
backoff value is selected and the range of values in use.

Note that, as we use 802.11 channel 14 for our experiments
and we have almost no contention or interference, the station
almost never moves on to the second backoff stage. Noting
that observed values for the same backoff value are spread
by 1µs apart as a result of firmware delays, so we bin the
results into 20µs bins to get backoff values. Plotting the raw
backoff times shows isolated spikes, rather than values spread
throughout the backoff interval.

Using these plots we can easily distinguish the CWmin

value in use. They can also help us see how evenly the
backoff is chosen. As this value should be chosen completely
at random, we expect, on average, a flat distribution graph.
Table II shows the chi-squared test values for these results,
comparing them to uniform distribution (the null hypothesis
is that the results are uniform). As the table shows, p-values
are too large, so it seems unlikely that the backoffs are truly
uniform. This may be due to the way the random number
generator works on the device.
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Fig. 9: Backoff distribution for (left) CWmin = 32 , (center) CWmin = 16, and (right) CWmin = 8 (BCM4318, b43).

Standard-compliance is not solely the role of hardware and
firmware, and differences could exist at the driver level. In
the next study, we use an Atheros AR5001X+ adapter for our
station and compare the backoff behavior when using different
drivers. One of these drivers is ath5k5, which is a reliable driver
for Atheros cards, and the other one is MadWiFi6.

Both drivers provide a similar average throughput, from
which one might guess they both present a similar back-
off distribution. However, our observations prove otherwise.
Fig. 11 shows the results obtained using the diagnostic tool.
As you can see in the figure, the ath5k driver hops between
the two ends of the contention window rather than a uniform
distribution over the whole window. According to [32], this
does not give the station any advantage in the long run,
as the average backoff is unchanged. Nevertheless, it is an
obvious deviation from the standard and it may affect certain
experiments by changing the collision probability, especially
when more than one station behaves this way.

B. TXOP Burst

TXOP is the time period during which a station may send
as many frames as fit in the TXOP duration [10]. Although the
duration can be advertised by the AP, there is no enforcement
of the value used. Once a station wins a contention, it could
send frames indefinitely, resulting in poor performance of other
contending stations. In this section we increase the TXOP
period used by a station and use WiFo to count the number
of packets that come in a burst. As before, the network has
one station connected to an AP equipped running the monitor
code. The station is equipped with an Atheros card with the
MadWiFi driver, and it transmits saturated traffic using frames
with payload 500 bytes for 5 seconds in each test.

Fig. 10 shows that, as long as the TXOP period is smaller
than the duration of a frame, the burst contains only one frame.
Each time a new frame can fit in the given period, the burst
size increases. In other words, we can calculate burst size as

n =

⌈

tTXOP

Dt

⌉

,

5Our ath5k driver is a slightly modified version of the one included
in compat-wireless[31] 2.6, to enable us to change contention parameters.
However, we do not use this feature for these tests.

6The MadWiFi version we use is 0.9.4-r4173, and the only modification
made to the driver is disabling QoS.

where tTXOP is the TXOP time, and Dt comes from (3).
The duration of a single frame transmission and ACK is the
distance between two steps in the graph, which we measure as
863µs. The expected duration is calculated as D(l)+DSIFS+
DACK . As our AP uses the basic rate of 2Mb/s, this adds up
to 862µs, closely matching our measured value.

C. ACK Skipping

Acknowledgements are normally used as a success signal
for the transmitter. However, deliberately skipping ACKs can
sometimes be desired, e.g. [33], [34], [35], [36]. In this section
we implement a simple scheme at the AP: we skip every other
ACK for received frames, forcing stations to always make
two attempts for each frame. We use WiFo to sanity check
our implementation. For the experiment, we use one station
connected to the AP, and send saturated traffic at 11Mb/s for
30 seconds using MGEN. Both the station and the AP use
Broadcom BCM4318 wireless adapters with OpenFWWF. The
station uses minimum CW of 32. By dropping the first ACK,
we force it to double this value, and use 64. Fig. 12 shows the
resulting backoff distribution graph calculated by WiFo. For
values in the range [0, 32), the numbers are almost twice as
much as [32, 64), which is exactly what we expect; remember
that, on the second backoff stage, the station uniformly selects
a backoff time within the range of [0, 64) slots. This not only
proves that the implementation works, but also demonstrates
another aspect of WiFo’s usefulness.

VI. CONCLUSION

In this paper we have designed and implemented an
extensible diagnostic tool for 802.11 wireless cards which
can be used to test aspects of the protocol and standards
compliance. The purpose of this tool is to give programmers
and researchers enough flexibility to test and debug wireless
cards and drivers. The diagnostic tool is made using only
commercial off-the-shelf devices and offers an alternative to
more expensive tools. With an API to add new features to
the application, the diagnostic tool can be programmed to do
sophisticated analyzes on the data. We gave PCAP integration
as an example of additional features that can be added as
plugins. We presented results to validate the system, and some
experimental results that highlighted use cases of this tool.
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