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Abstract—The world’s computing infrastructure is 
increasingly differentiating into autonomous systems (e.g. 
Internet of Things installations, clouds, VANETs, …), which are 
then post-hoc composed to generate value-added functionality 
(“systems of systems”). Today, however, such system-of-systems 
composition is typically carried out in an ad-hoc and system-
dependent manner, with obvious associated disadvantages. In 
this paper, we propose a generalised system-of-systems-oriented 
programming approach that enables systems to be composed by 
application experts without the need for systems-level knowledge, 
and also facilitates dynamic and spontaneous system 
composition, as systems discover each other opportunistic in their 
environment. 
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I.  INTRODUCTION 
The world’s distributed computing environment is 

becoming increasingly diverse and differentiated in nature, to 
the extent that it is now far removed from the traditional picture 
of PCs/mobiles + IP networks. The picture today includes: 
Internet of Things installations like smart cities and buildings, 
environmental sensor and actuator networks (WSNs) using 
non-IP protocols, cluster-based cloud systems, ad-hoc networks 
such as MANETs and VANETs, and virtualised systems 
supported by network overlays. At the same time, these various 
“systems” are often interconnected, so they can interact with 
and respond to each other. For example, VANETs talk to smart 
cities, WSNs send data to back-end clouds for processing, and 
overlay-based systems need to maintain their resilience 
properties when their underlying IP environment changes. 

This is all leading to a world-view in which we are 
increasingly concerned with composing systems to build 
systems of systems [1]. Although this fact is becoming 
recognised in many research communities, surprisingly little 
work has yet been done on programming models/environments 
to facilitate system-of-systems composition. Instead, system 
composition is typically carried out in an ad-hoc manner, 
reliant on detailed knowledge of the internals of the systems 
being composed. We argue that a generalised and principled 
programming approach is urgently needed to support the full 
fruition of the emerging system-of-systems world.  

We are currently developing such a system-of-systems-
oriented programming approach. A key aspect of our approach 
is to assume that systems interact and compose 
opportunistically. In this way, we see systems-of-systems 
arising as a result of spontaneously-arising, mutually-
benefitting, time-bounded, alliances between autonomous 
systems that dynamically discover potential partner systems in 
their environment. Here are some familiar examples of such 
opportunistic interactions/compositions: i) on arrival, a 
networked team of rescue workers dynamically interfaces with 
a local hospital’s systems; ii) passing vehicles exchange traffic 
information; iii) isolated islands of connectivity in a sparsely-
populated area discover a delay-tolerant overlay network 
through which they can interact; and iv) layers on distinct 
systems (e.g. a phone and a laptop) compose opportunistically 
when they happen to come in range of each other. The general 
pattern is one of loosely-coupled interaction between self-
contained systems, triggered opportunistically by relevant 
“contact” events (e.g. discovery of physical proximity).  

Our programming approach, discussed in this paper, is 
based on a first-class programmatic abstraction of a “system”, 
which we call a tecton1. A tecton is a distributed representation 
of a potentially-opportunistically-interacting distributed 
system. Tectons exhibit the following properties: 

• Generality: tectons uniformly represent the full range of 
distributed “systems”, whether infrastructure-level/user-
level, network-core/network-periphery, wired/wireless, 
fixed/mobile, large/small, static/dynamic. Examples are: 
user groups, MANETs, clusters, clouds, overlays, VPNs, 
SDN domains, WSNs, or even (on a more ‘micro’ scale) 
individual devices that can plug-and-play with other 
devices (like a generalisation of Bluetooth). Tectons are 
also intended to model virtual systems that are defined 
dynamically using predicates – e.g. we might define a 
tecton in a WSN environment that includes all nodes with 
>90% reliability.  

• Opportunistic interaction: tectons have the ability to 
interact when they make potentially-mutually-beneficial 
“contact” (e.g. through node mobility). This applies in 
both a horizontal and a vertical sense, involving 

                                                             
1 The term “tecton” is derived from the geophysical notion of tectonic plates: 
the implication is that systems come into spontaneous horizontal contact, and 
may also ‘slide’ vertically over each other. 
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(respectively) interactions between peer systems at the 
same level, and cross-layer interactions.  

• Declarative, rule-based, programmability: In both the 
horizontal and the vertical cases, opportunistic interaction 
is managed by providing tectons with programmatic 
contact-action rules that specify the conditions under 
which two tectons are deemed to have made mutually-
beneficial contact, and determine the form of the 
consequent composition or interaction2. “Contact” is 
defined using arbitrary predicates; actual physical contact 
(e.g. through node mobility) is just a special case of this 
more generalised notion of contact. 

• Low overhead: tectons need to be supportable at run-time 
with modest resource over-head: e.g. the runtime element 
of the abstraction should run on resource-poor wireless 
PDAs and sensor nodes. 

Fig. 1 abstractly illustrates the notion of tectons. Four 
tectons are represented as round-edged rectangles. The internal 
dotted ovals are the underlying “real systems” that the 
enclosing tectons are representing. Similarly, the “real” system 
nodes are shown as black triangles, and the corresponding blue 
ovals are their representatives in the tecton world. The red dots 
represent the above-mentioned contact-action rules which 
manage “contact” with other tectons. Potential contact is 
illustrated in both vertical and horizontal planes. When 
mutually-beneficial contact is detected and announced, an 
“action” associated with that contact is initiated; this is 
illustrated by the curved blue arrow. 

 

Fig. 1. An abstract view of tectons. 

Contact-action rules are central to the 
dynamic/opportunistic nature of the model. For example, we 
might program a tecton representing a MANET by (essentially) 
saying “IF any of the nodes in this MANET come into contact 
with a node of a tecton representing an 802.11 network, THEN 
all the MANET’s nodes should reconnect to their email servers 
via 802.11”. Extrapolating from this, it can be seen how 
contact-action rules would enable the tecton programmer to 
specify, in a very general way, the conditions under which two 
systems should opportunistically interact, and what form that 
interaction should take. More broadly, we envisage the whole 
process of developing, deploying and managing systems of 
systems as amounting to a process of defining horizontally- 
and vertically-composable tectons along with their associated 
contact-action rules.  

In this paper, we first, in Section II, outline the architecture 
of our proposed tecton-based programming system. Then, in 
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 This form of interaction management echoes interactions between single-
celled organisms and proteins: cell walls have sites which, when they come 
into contact with ‘matching’ proteins (“contact”), interact with them according 
to well-known physical and chemical laws (“action”). 

Section III, we focus on one key foundational aspect of the 
architecture: the tecton-machine runtime that must be 
supported on each node that is able to participate within the 
tecton world. Finally, we briefly survey related work in Section 
IV, and offer conclusions in Section V.  

II. TECTON ARCHITECTURE 
As illustrated in Fig. 2, the architecture of our tecton-based 

programming approach comprises two layers, separated by the 
dotted line. Above the dotted line we have the “high-level” 
aspects of the architecture, as follows: 

• Domain-specific languages (DSLs): The desired generality 
of the tecton approach, in both technology and application 
domain terms, implies that a single set of programming 
language constructs is unlikely to be sufficient. Instead, we 
look to support multiple languages that capture concepts of 
relevance in different contexts. For example, a systems 
programmer working with SDN-based network-level 
tectons might expect a DSL based on C or Java; whereas a 
smart building manager working with tectons that 
represent things like “all the window actuators on this 
floor” or “the group of today’s visitors” might favour a 
scripting or graphical approach. 

• Ontologies: Similarly, the extreme variance in domains of 
application dictates that the information concepts available 
to the programmer will vary according to the domain of 
application. Our approach here is to employ ontologies [2] 
to structure these concepts. We only assume that is it 
possible ultimately to map ontology statements to sets of 
<name, value> pairs that can be processed by the low-level 
aspects of our architecture, as discussed below. 

 

Fig. 2. The architecture of the tecton programming system. 

Please note that this paper does not discuss these high-level 
aspects in any detail; instead it focuses on the low-level 
foundations of the approach, below the dotted line: 

• Tecton-machine runtime: This is the heart of the tecton 
architecture; an instance of it is available on each device 
able potentially to participate in the tecton world. The API 
offered by the tecton-machine enables client code to carry 
out basic operations such as creating/destroying tectons, 
managing the membership of tectons (i.e. which nodes are 
members of which tectons), setting the criteria for 
“contact” when two tectons come into contact with each 
other, and coordinating consequent action (e.g. interaction, 
composition, etc.). The API provides low-level support for 
whatever ontologies are operating at the higher-levels in 



terms of <name, value> metadata annotations on tectons 
and nodes. The semantics/ranges/values of these are 
determined by the supervening ontology.  

• Code (re)deployment technology: As suggested by its 
shaded colour, this is an “optional” aspect of the 
architecture. We view it as highly desirable for nodes to 
support dynamically-deployable software because the 
associated flexibility vastly increases the scope of the 
“action-consequent-to-contact” referred to above. For 
example, if two tectons representing network overlays 
come into contact and want to merge, this can be achieved 
by dynamically deploying mutual packet format converters 
into border nodes. However, we do not mandate code 
(re)deployment technology in our architecture, as this 
could unduly limit the applicability of our approach on 
primitive devices such as wireless sensors.  

• Plug-ins: These are the architectural elements coloured red 
in Fig. 2. Tecton-machines can be configured with 
alternative implementations of service discovery protocols 
(SDP uPnP, Bluetooth, etc.], election protocols [4], [16], 
gossip/epidemic protocols, and security protocols. The 
ability to dynamically configure a tecton-machine with 
alternative plug-ins is dependent on the availability of 
code (re)deployment technology as discussed above. More 
detail is given in Section III. 

III. THE TECTON-MACHINE RUNTIME  
We now define the basic concepts used by the tecton-machine 
runtime, present its API, and discuss how tecton-machine 
instances inter-work.  

A. Tecton-machines and tecton-spaces 
As mentioned, we assume that every device that can 

participate in the tecton world supports an instance of the 
tecton-machine runtime. In more detail, we assume an 
implementation substrate comprising sets of tecton-machines 
collected into tecton-spaces. Tecton-machines run on machines 
(either physical or virtual) that are assumed to support the 
“real” distributed systems being represented by tectons. 
Tecton-spaces are distributed environments that contain a 
number of tecton-machines, and provide them with 
connectivity. The expectation is that tecton-spaces correspond 
loosely to practical delineations in the real world: e.g., a 
university campus, an ISP, or a mountain rescue centre. As we 
will shortly see, there is no restriction that a given tecton needs 
to live within a single tecton-space: they can span multiple 
tecton-spaces as long as connectivity (even delay-tolerant 
connectivity) is available. In addition, tecton-spaces can be 
provided at different layers: for example a university campus 
might provide one tecton-space comprising all its routers and 
another containing all its end systems. 

Fig. 3 illustrates the concepts of tecton-machines and 
tecton-spaces. It shows two tecton-spaces, one above and one 
below. Each tecton-space contains four inter-connected tecton-
machines (blue trapezoids). The top tecton-space is supporting 
two tectons: the left one with four nodes, and the right one with 
two. Contact has apparently been announced between these 
two tectons, as the small curved blue arrow bridging them 

indicates action-consequent-to-contact. As indicated by the 
larger curved blue arrow, contact has also apparently been 
announced between tectons across tecton-space boundaries; 
this is discussed below. The straight arrows emanating from the 
rightmost tecton-machine in the top tecton-space represent 
probes from a service discovery plug-in. These probes seek 
tecton-machines in other tecton-spaces; and when one is 
discovered, the possibility is opened of contact between tectons 
in different tecton-spaces.  

The tecton-machine runtime comprehends the notion of a 
“coordinator node” in each tecton that is responsible for 
coordinating decision making and action-consequent-to-
contact. Coordinator nodes are illustrated in purple in the 
figure. To protect against these being vulnerable single points 
of failure, the tecton-machines in a tecton-space take collective 
responsibility for monitoring each tecton’s coordinator node 
and electing a new one (using an election protocol plug-in) if 
the current one withdraws from the tecton, or its tecton-
machine crashes.  

 

Fig. 3. Tecton-machines and tecton-spaces: 3 tectons in 2 tecton-spaces. 

Finally, Fig. 3 illustrates the possibility of recursive 
application of the architecture: the three nodes in the bottom 
tecton are shown supporting an upper layer of tecton-machines 
(shown in yellow) that comprise a “nested” or virtualised 
tecton-space. This is useful in deployment environments that 
incorporate code (re)deployment technology, to enable the 
migration of tecton-spaces from one location to another. 

B. Tecton-machine API 
The API exported by each tecton-machine is divided into 

the following three categories: tecton lifecycle management, 
internal tecton management, and external tecton behaviour. We 
now expand on these (note that upcalls are shown underlined). 

1) Tecton lifecycle management  

 tecton_id, node_id  
     Create(Metadata name_val_pairs,      
                 Predicate siteselectioncriteria, 
                 Handler code_ptr);  
      CreatedNotification(tecton_id tecton,  
                                        Metadata name_val_pairs); 
 Destroy(tecton_id tecton); 
      DestroyedNotification(tecton_id tecton);  

The Create() operation creates a new tecton and an initial 
coordinator node for the tecton. The metadata embodied in the 



name_val_pairs argument are attached to the new tecton; as 
explained above, these metadata are assumed to be given a 
semantic by a supervening ontology. The Predicate argument 
determines which tecton-machines in the hosting tecton-space 
should be informed of the creation of the new tecton via an 
upcall. A predicate is represented as a sum-of-products boolean 
expression, defined over <name, value> metadata attached to 
each tecton-machine in the tecton-space. Create() returns a 
tecton_id which uniquely identifies the new tecton. It also 
returns a node_id that is made to correspond to coordinator 
node functionality provided by the client (the code_ptr 
argument) and thus identifies the tecton’s coordinator node.  

CreatedNotification() is an upcall that is delivered to client 
code of the tecton-machines that were selected by the 
Predicate argument to Create(). The <name, value> metadata 
that were passed to Create() are delivered to this client code 
which, as a consequence, may choose to register itself as a 
node of the new tecton using AddNode() (see below). 

Destroy() and DestroyedNotification() work similarly to 
Create()/CreatedNotification(). Destroy() may only be called 
on the tecton-machine supporting the tecton’s coordinator 
node. DestroyedNotification() is upcalled on all tecton-
machines that had a node in the tecton. 

2) Internal tecton management 

 node_id  
 AddNode(tecton_id tecton,  
                      Metadata name_val_pairs, 
                      Handler code_ptr); 

SetTectonMetadata(node_id node,  
                                       Metadata name_val_pairs); 

SetNodeMetadata(node_id node,  
                                    Metadata name_val_pairs); 

RemoveNode(tecton_id tecton, node_id node); 
CoordNodeNotification(node_id new_coord); 

Typically, AddNode() is called on receipt of a 
CreatedNotification() upcall. It is used to register a piece of 
client code as a tecton node and to associate initial <name, 
value> metadata with the node. It is permissible to add a node 
to a tecton supported by an external tecton-space, and thus to 
enable tectons to span tecton-space boundaries. Note that it is 
not always necessary to represent every node in the real 
underlying “system”: only nodes involved in contact detection 
and/or action-consequent-to-contact need to be represented as 
tecton nodes. For example in some WSNs it may only be 
necessary to represent the cluster heads. 

 SetTectonMetadata() and SetNodeMetadata() associate new 
<name, value> metadata with the specified tecton_id/node_id. 
They are called by client code whenever aspects of the 
underlying “real system’s” environment changes in ways likely 
to be of relevance to SetContactCriteria() (see below).  

   RemoveNode() is called to remove a node from a tecton. It 
may be called only from the tecton-machine that hosts the 
node. If the coordinator node gets removed, the tecton-
machines in this tecton-space elect a new coordinator node for 
this tecton; and the “winning” tecton-machine uses 
CoordNodeNotification() to inform the chosen node that it has 
been elected. 

3) External tecton behaviour 

SetContactCriteria(tecton_id tecton,  
                                      Predicate contactcriteria); 

ContactNotification( 
                   tecton_id this_tecton, tecton_id other_tecton,  
                   node_id_list involved_nodes_in_this_tect, 
                  Metadata_list name_val_pairs_this_tect,  
                   node_id_list involved_nodes_in_other_tect, 
                  Metadata_list name_val_pairs_in_other_tect); 

Action(tecton_id tecton,  
                  Metadata name_val_pairs,  
                  Predicate nodeselectioncriteria); 

ActionNotification(tecton_id tecton,  
                                      Metadata name_val_pairs); 

 SetContactCriteria() is used to define the conditions under 
which “contact” with another tecton should be announced. It 
may only be called by the tecton’s coordinator node. The 
syntax of the Predicate argument is the same as the 
corresponding argument to Create(); but here the predicate 
may range over <name, value> metadata attached to tecton-
spaces and/or tecton-machines and/or tectons and/or nodes.  

   A ContactNotification() upcall is delivered to a tecton’s 
coordinator node when the contactcriteria predicate passed to 
SetContactCriteria() has evaluated to true. The upcall provides 
all the information necessary to determine appropriate action-
consequent-to-contact: i.e. the tecton with which contact has 
been announced, the nodes in both this and the other tecton that 
were involved in the contact, and all the associated metadata. 

 The Action()/ActionNotification() APIs are used to transfer 
<name, value> metadata representing a “request for action” 
from the coordinator node to any nodes that it determines 
should be involved in carrying out the action. Action() may be 
called only by the coordinator node, and is usually called as a 
consequence of the receipt of a ContactNotification(). A call of 
Action() results in ActionNotification() upcalls being delivered 
to all nodes in the tecton for which the nodeselectioncriteria 
predicate is true.  

4) Example of use 

 To illustrate the use of (some of) these APIs, recall the 
example contact-action rule in Section I: “IF any of the nodes 
in this MANET tecton come into contact with a node of a tecton 
representing an 802.11 network, THEN all the MANET’s 
nodes should reconnect to their email servers via 802.11”.  

 First, let us assume a supervening ontology that 
comprehends the concepts of “net type”, “net cost”, and “node 
capability”. Assuming this, the MANET tecton’s coordinator 
node might perform the “IF” part of the rule by calling: 
SetContactCriteria(t, “net_type=802.11 and net_cost=0”) 
(assuming the MANET tecton is identified as t). The 
coordinator then performs the “THEN” part of the rule when it 
receives a corresponding ContactNotification() upcall 
(arguments omitted here for space reasons). It might proceed 
by first searching for “high capability” nodes in the newly-
discovered 802.11 tecton (i.e., it would scan the upcall’s 
involved_nodes_in_other_tect argument for node for which 
“high_capability = true”). Then, it would pick one of these 



nodes, say n, and call: Action(t, “<change_proxy, n>”, 
“node_id = ANY”). This will result in all the MANET tecton’s 
nodes receiving an ActionNotification(t, “<change_proxy, 
n>”) upcall, which they interpret as a command (to be 
implemented outside the tecton framework) to reconnect to 
their email servers via an address to be found in metadata 
attached to node n from the 802.11 tecton. 

C. Inter-tecton-machine communication 
 We now discuss the underlying communication patterns 
implied by the tecton-machine’s API calls, considering both 
intra-tecton-space and inter-tecton-space cases. 

1) Intra-tecton-space communication 
 At the intra-tecton-space level, the communication implied 
by the API calls is mainly realised by one or more gossip plug-
ins. In particular, information on all the tectons hosted within a 
tecton-space, including their member nodes and contactcriteria 
information, is disseminated to all tecton-machines in the 
tecton-space. Because tecton-spaces are assumed to be limited 
in extent, the overheads of this are deemed acceptable.  

 In addition, tecton-machines collectively monitor each 
other to detect crashes of tecton-machines that are supporting 
coordinator nodes. If such a crash is detected, the remaining 
tecton-machines use an election protocol plug-in to elect new 
coordinator nodes [16]. Finally, ongoing changes to <name, 
value> metadata are gossiped to all tecton-machines, and 
contactcriteria predicates are evaluated lazily—i.e., when 
changes are received. 

2) Inter-tecton-space communication  
 Some of the tecton-machines in each tecton-space 
periodically emit service discovery probes using a service 
discovery plug-in; correspondingly, tecton-machines listen for 
probes from external tecton-spaces. Whenever this results in a 
potential inter-tecton-space handshake, the tecton-machines 
involved (subject to mutual validation via a security plug-in) 
exchange locally-hosted tecton_ids and associated metadata. 
Updates to these are also sent on occurrence, so that timely 
information is available when evaluating contact predicates.  

 In addition, where a tecton-machine hosts a node that is a 
member of a “remote” tecton (i.e. a tecton whose coordinator 
node resides outside this tecton-machine’s tecton-space), it 
pushes metadata updates associated with this node to the 
remote tecton-space. This enables contactcriteria predicates to 
be properly evaluated across all nodes regardless of where they 
are hosted. All these patterns of inter-tecton-space data 
exchange remain scalable because only “pairwise” information 
exchanges are involved—i.e. they don’t involve transitive 
closures over tecton-spaces.  

D. Discussion 
 With the “generality” property of tectons firmly in mind, 
the tecton-machine’s runtime API is purposely minimal, so that 
it is capable of implementation in a range of environments, 
including tiny embedded devices. The API therefore eschews 
many issues of apparent significance, leaving these to the 
“high-levels” of the architecture (see Section II). In particular: 

• System behaviour: The API knows nothing of the behaviour 
of the “real system” being represented by a tecton. For 
example, it has no notion of a “service interface” offered 
by the system. It knows only that the system spans a 
number of tecton-machines. 

• Node behaviour: Similarly, the API knows nothing of the 
behaviour of “real-system nodes”. As far as a tecton-
machine is concerned, a node is simply a piece of client 
code registered with it in association with a node_id. The 
purpose and behaviour of any corresponding “real system 
node” (e.g. packet forwarding, controlling a mobile device, 
representing a sensor, …) is of no interest.  

• Contact: The detection of contact is semantically empty for 
the tecton-machine (see example in Section III.B.4). A 
tecton-machine is only responsible for the distributed 
evaluation of predicates defined over metadata attached to 
the tecton-related abstractions (i.e., tecton-spaces, tecton-
machines, tectons and nodes). 

• Action-consequent-to-contact: Similarly, a tecton has no 
notion of what action (e.g. composition etc.) to take when 
contact is announced (again, see the example in Section 
III.B.4). Rather, it simply serves as a “signaling protocol” 
that delivers <name, value> metadata to the nodes deemed 
responsible for performing the desired action. 

• Horizontality/verticality: The API does not even understand 
the concept of vertical or horizontal contact/interaction 
that was discussed in Section I. 

 The “missing behaviour” in all cases is provided by the 
high levels of Fig. 2. In particular, the role of ontologies is 
central in imposing semantics on the foundational functionality 
provided by the tecton-machine. We believe that the separation 
of concerns implicit here is crucial in the design of a 
programming model for distributed systems of systems.  

 In summary, the high levels provide: i) domain-specific 
programming concepts to specify tectons, and to formulate 
rules that determine when tectons are deemed to have made 
contact, and what should happen when they do; ii) associated 
ontologies that capture domain-relevant information concepts; 
iii) specification of the semantic of “contact” in terms of 
DSL/ontology statements; iv) local, per-node, monitoring of 
state relevant to contact establishment, and updating 
corresponding metadata when this changes; and v) provision of 
per-node code to respond to calls for action-consequent-to-
contact.  

 In turn, the low levels provide: i) a generic distributed run-
time representation of “systems” and their associated “nodes”; 
ii) detection and notification (to a coordinator node), of inter-
system “contact”, given that requisite metadata has been 
provided by a high level compiler as <name, value> metadata; 
iii) a guarantee that there will always be a live coordinator node 
in charge of the tecton; and iv) signaling to aid the distributed 
organisation of action consequent to contact.   



IV. RELATED WORK 
We are not aware of work that is taking a closely similar 

approach to the programming of systems of systems. 
However, there is work of relevance within the middleware 
and the networking communities. In the middleware 
community, there has been substantial work on using DSLs 
for the specification of network overlays (e.g. [7], [8]), and 
even predicate-based abstractions of multi-node systems [9], 
[10]. However, this work tends to focus on the specification of 
individual overlays rather than on their composition. Work in 
[11] does consider one aspect of composition, but this is aimed 
at sharing modules that may contribute to multiple overlays, 
rather than opportunistic composition of whole systems.  

Within the networking community, the ANA project [5] 
defines the concept of a network compartment: an 
encapsulated, composable, distributed entity, that 
transparently forwards packets across a network. This shares 
with tectons the notion of a distributed composable unit, but 
lacks our notion of spontaneous, opportunistic, composition 
via contact-action rules; and also lacks the generality we seek. 
In addition, the delay tolerant networking community (e.g. [6], 
[17]) has proposed numerous scenarios and solutions 
involving loose coupling of separated “systems”, but tends to 
focus on protocol issues and to lack generalisable 
programmatic abstractions for opportunistic system 
composition.  

 Finally, there is work on programmatic system-of-systems 
composition in the formal methods community (e.g. work at 
Pisa [15]); but there remain numerous challenges in taking this 
work through to viable implementation. 

V. CONCLUSIONS 
We have outlined the design of a programming approach to 

the dynamic construction of systems of systems. We have 
focused in this paper on the design of a low-level runtime (the 
tecton-machine) that supports the wider programming system 
architecture of Fig. 2. The essence of our approach is to wrap 
individual “systems” (e.g. sensor networks, MANETs, network 
overlays) in a unified manner, and to equip the wrapping with 
declaratively-specified rules that capture the circumstances 
under which the system would benefit from interacting or 
composing with other systems, and the manner in which this 
should be done. The intent is that this approach will form the 
basis of an ecology of autonomous “systems” that 
opportunistically interact depending on what they encounter in 
their environment, so that fit-for-purpose systems of systems 
can arise spontaneously in a bottom-up manner. 

We are developing the tecton concept in the context of the 
EU-funded “Dionasys” project, in collaboration with the 
Universities of Neuchatel, Bordeaux and Cluj-Napoca. The 
project is focusing on composable overlays both in the internet 
and in WSNs. The target environment for our implementation 
of the tecton-machine on WSN devices is our Lorien OS [12], 
which supports “code (re)deployment technology”, as required 
for the full realisation of the lower level of the tecton 

architecture. We employ the SplayNet system [13] for the 
bootstrapping of tecton-machines and tecton-spaces. 

 Our starting point for exploring the DSL/ontology layers is 
provided by [14], and by the Splay language [13] which aims 
to ease rapid prototyping of distributed systems. We are also 
currently defining ontologies in the domains of Software 
Defined Networking (SDN) and multi-cloud environments. 
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