
The design of a generalised approach to the
programming of systems of systems

Geoff Coulson, Gordon Blair, Yehia Elkhatib, Andreas Mauthe
School of Computing and Communications

Lancaster University
Lancaster, UK

geoff@comp.lancs.ac.uk

Abstract—The world’s computing infrastructure is
increasingly differentiating into autonomous systems (e.g.
Internet of Things installations, clouds, VANETs, …), which are
then post-hoc composed to generate value-added functionality
(“systems of systems”). Today, however, such system-of-systems
composition is typically carried out in an ad-hoc and system-
dependent manner, with obvious associated disadvantages. In
this paper, we propose a generalised system-of-systems-oriented
programming approach that enables systems to be composed by
application experts without the need for systems-level knowledge,
and also facilitates dynamic and spontaneous system
composition, as systems discover each other opportunistic in their
environment.

Keywords—systems of systems; IoT programming model

I. INTRODUCTION
The world’s distributed computing environment is

becoming increasingly diverse and differentiated in nature, to
the extent that it is now far removed from the traditional picture
of PCs/mobiles + IP networks. The picture today includes:
Internet of Things installations like smart cities and buildings,
environmental sensor and actuator networks (WSNs) using
non-IP protocols, cluster-based cloud systems, ad-hoc networks
such as MANETs and VANETs, and virtualised systems
supported by network overlays. At the same time, these various
“systems” are often interconnected, so they can interact with
and respond to each other. For example, VANETs talk to smart
cities, WSNs send data to back-end clouds for processing, and
overlay-based systems need to maintain their resilience
properties when their underlying IP environment changes.

This is all leading to a world-view in which we are
increasingly concerned with composing systems to build
systems of systems [1]. Although this fact is becoming
recognised in many research communities, surprisingly little
work has yet been done on programming models/environments
to facilitate system-of-systems composition. Instead, system
composition is typically carried out in an ad-hoc manner,
reliant on detailed knowledge of the internals of the systems
being composed. We argue that a generalised and principled
programming approach is urgently needed to support the full
fruition of the emerging system-of-systems world.

We are currently developing such a system-of-systems-
oriented programming approach. A key aspect of our approach
is to assume that systems interact and compose
opportunistically. In this way, we see systems-of-systems
arising as a result of spontaneously-arising, mutually-
benefitting, time-bounded, alliances between autonomous
systems that dynamically discover potential partner systems in
their environment. Here are some familiar examples of such
opportunistic interactions/compositions: i) on arrival, a
networked team of rescue workers dynamically interfaces with
a local hospital’s systems; ii) passing vehicles exchange traffic
information; iii) isolated islands of connectivity in a sparsely-
populated area discover a delay-tolerant overlay network
through which they can interact; and iv) layers on distinct
systems (e.g. a phone and a laptop) compose opportunistically
when they happen to come in range of each other. The general
pattern is one of loosely-coupled interaction between self-
contained systems, triggered opportunistically by relevant
“contact” events (e.g. discovery of physical proximity).

Our programming approach, discussed in this paper, is
based on a first-class programmatic abstraction of a “system”,
which we call a tecton1. A tecton is a distributed representation
of a potentially-opportunistically-interacting distributed
system. Tectons exhibit the following properties:

• Generality: tectons uniformly represent the full range of
distributed “systems”, whether infrastructure-level/user-
level, network-core/network-periphery, wired/wireless,
fixed/mobile, large/small, static/dynamic. Examples are:
user groups, MANETs, clusters, clouds, overlays, VPNs,
SDN domains, WSNs, or even (on a more ‘micro’ scale)
individual devices that can plug-and-play with other
devices (like a generalisation of Bluetooth). Tectons are
also intended to model virtual systems that are defined
dynamically using predicates – e.g. we might define a
tecton in a WSN environment that includes all nodes with
>90% reliability.

• Opportunistic interaction: tectons have the ability to
interact when they make potentially-mutually-beneficial
“contact” (e.g. through node mobility). This applies in
both a horizontal and a vertical sense, involving

1 The term “tecton” is derived from the geophysical notion of tectonic plates:
the implication is that systems come into spontaneous horizontal contact, and
may also ‘slide’ vertically over each other.

We acknowledge the support of the EU’s CHIST-ERA framework which
has funded the “DIONASYS: Declarative and Interoperable Overlay
Networks, Applications to Systems of Systems” project (grant
EP/M015734/1) under which this research has been carried out.

(respectively) interactions between peer systems at the
same level, and cross-layer interactions.

• Declarative, rule-based, programmability: In both the
horizontal and the vertical cases, opportunistic interaction
is managed by providing tectons with programmatic
contact-action rules that specify the conditions under
which two tectons are deemed to have made mutually-
beneficial contact, and determine the form of the
consequent composition or interaction2. “Contact” is
defined using arbitrary predicates; actual physical contact
(e.g. through node mobility) is just a special case of this
more generalised notion of contact.

• Low overhead: tectons need to be supportable at run-time
with modest resource over-head: e.g. the runtime element
of the abstraction should run on resource-poor wireless
PDAs and sensor nodes.

Fig. 1 abstractly illustrates the notion of tectons. Four
tectons are represented as round-edged rectangles. The internal
dotted ovals are the underlying “real systems” that the
enclosing tectons are representing. Similarly, the “real” system
nodes are shown as black triangles, and the corresponding blue
ovals are their representatives in the tecton world. The red dots
represent the above-mentioned contact-action rules which
manage “contact” with other tectons. Potential contact is
illustrated in both vertical and horizontal planes. When
mutually-beneficial contact is detected and announced, an
“action” associated with that contact is initiated; this is
illustrated by the curved blue arrow.

Fig. 1. An abstract view of tectons.

Contact-action rules are central to the
dynamic/opportunistic nature of the model. For example, we
might program a tecton representing a MANET by (essentially)
saying “IF any of the nodes in this MANET come into contact
with a node of a tecton representing an 802.11 network, THEN
all the MANET’s nodes should reconnect to their email servers
via 802.11”. Extrapolating from this, it can be seen how
contact-action rules would enable the tecton programmer to
specify, in a very general way, the conditions under which two
systems should opportunistically interact, and what form that
interaction should take. More broadly, we envisage the whole
process of developing, deploying and managing systems of
systems as amounting to a process of defining horizontally-
and vertically-composable tectons along with their associated
contact-action rules.

In this paper, we first, in Section II, outline the architecture
of our proposed tecton-based programming system. Then, in

2

 This form of interaction management echoes interactions between single-
celled organisms and proteins: cell walls have sites which, when they come
into contact with ‘matching’ proteins (“contact”), interact with them according
to well-known physical and chemical laws (“action”).

Section III, we focus on one key foundational aspect of the
architecture: the tecton-machine runtime that must be
supported on each node that is able to participate within the
tecton world. Finally, we briefly survey related work in Section
IV, and offer conclusions in Section V.

II. TECTON ARCHITECTURE
As illustrated in Fig. 2, the architecture of our tecton-based

programming approach comprises two layers, separated by the
dotted line. Above the dotted line we have the “high-level”
aspects of the architecture, as follows:

• Domain-specific languages (DSLs): The desired generality
of the tecton approach, in both technology and application
domain terms, implies that a single set of programming
language constructs is unlikely to be sufficient. Instead, we
look to support multiple languages that capture concepts of
relevance in different contexts. For example, a systems
programmer working with SDN-based network-level
tectons might expect a DSL based on C or Java; whereas a
smart building manager working with tectons that
represent things like “all the window actuators on this
floor” or “the group of today’s visitors” might favour a
scripting or graphical approach.

• Ontologies: Similarly, the extreme variance in domains of
application dictates that the information concepts available
to the programmer will vary according to the domain of
application. Our approach here is to employ ontologies [2]
to structure these concepts. We only assume that is it
possible ultimately to map ontology statements to sets of
<name, value> pairs that can be processed by the low-level
aspects of our architecture, as discussed below.

Fig. 2. The architecture of the tecton programming system.

Please note that this paper does not discuss these high-level
aspects in any detail; instead it focuses on the low-level
foundations of the approach, below the dotted line:

• Tecton-machine runtime: This is the heart of the tecton
architecture; an instance of it is available on each device
able potentially to participate in the tecton world. The API
offered by the tecton-machine enables client code to carry
out basic operations such as creating/destroying tectons,
managing the membership of tectons (i.e. which nodes are
members of which tectons), setting the criteria for
“contact” when two tectons come into contact with each
other, and coordinating consequent action (e.g. interaction,
composition, etc.). The API provides low-level support for
whatever ontologies are operating at the higher-levels in

terms of <name, value> metadata annotations on tectons
and nodes. The semantics/ranges/values of these are
determined by the supervening ontology.

• Code (re)deployment technology: As suggested by its
shaded colour, this is an “optional” aspect of the
architecture. We view it as highly desirable for nodes to
support dynamically-deployable software because the
associated flexibility vastly increases the scope of the
“action-consequent-to-contact” referred to above. For
example, if two tectons representing network overlays
come into contact and want to merge, this can be achieved
by dynamically deploying mutual packet format converters
into border nodes. However, we do not mandate code
(re)deployment technology in our architecture, as this
could unduly limit the applicability of our approach on
primitive devices such as wireless sensors.

• Plug-ins: These are the architectural elements coloured red
in Fig. 2. Tecton-machines can be configured with
alternative implementations of service discovery protocols
(SDP uPnP, Bluetooth, etc.], election protocols [4], [16],
gossip/epidemic protocols, and security protocols. The
ability to dynamically configure a tecton-machine with
alternative plug-ins is dependent on the availability of
code (re)deployment technology as discussed above. More
detail is given in Section III.

III. THE TECTON-MACHINE RUNTIME
We now define the basic concepts used by the tecton-machine
runtime, present its API, and discuss how tecton-machine
instances inter-work.

A. Tecton-machines and tecton-spaces
As mentioned, we assume that every device that can

participate in the tecton world supports an instance of the
tecton-machine runtime. In more detail, we assume an
implementation substrate comprising sets of tecton-machines
collected into tecton-spaces. Tecton-machines run on machines
(either physical or virtual) that are assumed to support the
“real” distributed systems being represented by tectons.
Tecton-spaces are distributed environments that contain a
number of tecton-machines, and provide them with
connectivity. The expectation is that tecton-spaces correspond
loosely to practical delineations in the real world: e.g., a
university campus, an ISP, or a mountain rescue centre. As we
will shortly see, there is no restriction that a given tecton needs
to live within a single tecton-space: they can span multiple
tecton-spaces as long as connectivity (even delay-tolerant
connectivity) is available. In addition, tecton-spaces can be
provided at different layers: for example a university campus
might provide one tecton-space comprising all its routers and
another containing all its end systems.

Fig. 3 illustrates the concepts of tecton-machines and
tecton-spaces. It shows two tecton-spaces, one above and one
below. Each tecton-space contains four inter-connected tecton-
machines (blue trapezoids). The top tecton-space is supporting
two tectons: the left one with four nodes, and the right one with
two. Contact has apparently been announced between these
two tectons, as the small curved blue arrow bridging them

indicates action-consequent-to-contact. As indicated by the
larger curved blue arrow, contact has also apparently been
announced between tectons across tecton-space boundaries;
this is discussed below. The straight arrows emanating from the
rightmost tecton-machine in the top tecton-space represent
probes from a service discovery plug-in. These probes seek
tecton-machines in other tecton-spaces; and when one is
discovered, the possibility is opened of contact between tectons
in different tecton-spaces.

The tecton-machine runtime comprehends the notion of a
“coordinator node” in each tecton that is responsible for
coordinating decision making and action-consequent-to-
contact. Coordinator nodes are illustrated in purple in the
figure. To protect against these being vulnerable single points
of failure, the tecton-machines in a tecton-space take collective
responsibility for monitoring each tecton’s coordinator node
and electing a new one (using an election protocol plug-in) if
the current one withdraws from the tecton, or its tecton-
machine crashes.

Fig. 3. Tecton-machines and tecton-spaces: 3 tectons in 2 tecton-spaces.

Finally, Fig. 3 illustrates the possibility of recursive
application of the architecture: the three nodes in the bottom
tecton are shown supporting an upper layer of tecton-machines
(shown in yellow) that comprise a “nested” or virtualised
tecton-space. This is useful in deployment environments that
incorporate code (re)deployment technology, to enable the
migration of tecton-spaces from one location to another.

B. Tecton-machine API
The API exported by each tecton-machine is divided into

the following three categories: tecton lifecycle management,
internal tecton management, and external tecton behaviour. We
now expand on these (note that upcalls are shown underlined).

1) Tecton lifecycle management

 tecton_id, node_id
 Create(Metadata name_val_pairs,
 Predicate siteselectioncriteria,
 Handler code_ptr);
 CreatedNotification(tecton_id tecton,
 Metadata name_val_pairs);
 Destroy(tecton_id tecton);
 DestroyedNotification(tecton_id tecton);

The Create() operation creates a new tecton and an initial
coordinator node for the tecton. The metadata embodied in the

name_val_pairs argument are attached to the new tecton; as
explained above, these metadata are assumed to be given a
semantic by a supervening ontology. The Predicate argument
determines which tecton-machines in the hosting tecton-space
should be informed of the creation of the new tecton via an
upcall. A predicate is represented as a sum-of-products boolean
expression, defined over <name, value> metadata attached to
each tecton-machine in the tecton-space. Create() returns a
tecton_id which uniquely identifies the new tecton. It also
returns a node_id that is made to correspond to coordinator
node functionality provided by the client (the code_ptr
argument) and thus identifies the tecton’s coordinator node.

CreatedNotification() is an upcall that is delivered to client
code of the tecton-machines that were selected by the
Predicate argument to Create(). The <name, value> metadata
that were passed to Create() are delivered to this client code
which, as a consequence, may choose to register itself as a
node of the new tecton using AddNode() (see below).

Destroy() and DestroyedNotification() work similarly to
Create()/CreatedNotification(). Destroy() may only be called
on the tecton-machine supporting the tecton’s coordinator
node. DestroyedNotification() is upcalled on all tecton-
machines that had a node in the tecton.

2) Internal tecton management

 node_id
 AddNode(tecton_id tecton,
 Metadata name_val_pairs,
 Handler code_ptr);

SetTectonMetadata(node_id node,
 Metadata name_val_pairs);

SetNodeMetadata(node_id node,
 Metadata name_val_pairs);

RemoveNode(tecton_id tecton, node_id node);
CoordNodeNotification(node_id new_coord);

Typically, AddNode() is called on receipt of a
CreatedNotification() upcall. It is used to register a piece of
client code as a tecton node and to associate initial <name,
value> metadata with the node. It is permissible to add a node
to a tecton supported by an external tecton-space, and thus to
enable tectons to span tecton-space boundaries. Note that it is
not always necessary to represent every node in the real
underlying “system”: only nodes involved in contact detection
and/or action-consequent-to-contact need to be represented as
tecton nodes. For example in some WSNs it may only be
necessary to represent the cluster heads.

 SetTectonMetadata() and SetNodeMetadata() associate new
<name, value> metadata with the specified tecton_id/node_id.
They are called by client code whenever aspects of the
underlying “real system’s” environment changes in ways likely
to be of relevance to SetContactCriteria() (see below).

 RemoveNode() is called to remove a node from a tecton. It
may be called only from the tecton-machine that hosts the
node. If the coordinator node gets removed, the tecton-
machines in this tecton-space elect a new coordinator node for
this tecton; and the “winning” tecton-machine uses
CoordNodeNotification() to inform the chosen node that it has
been elected.

3) External tecton behaviour

SetContactCriteria(tecton_id tecton,
 Predicate contactcriteria);

ContactNotification(
 tecton_id this_tecton, tecton_id other_tecton,
 node_id_list involved_nodes_in_this_tect,
 Metadata_list name_val_pairs_this_tect,
 node_id_list involved_nodes_in_other_tect,
 Metadata_list name_val_pairs_in_other_tect);

Action(tecton_id tecton,
 Metadata name_val_pairs,
 Predicate nodeselectioncriteria);

ActionNotification(tecton_id tecton,
 Metadata name_val_pairs);

 SetContactCriteria() is used to define the conditions under
which “contact” with another tecton should be announced. It
may only be called by the tecton’s coordinator node. The
syntax of the Predicate argument is the same as the
corresponding argument to Create(); but here the predicate
may range over <name, value> metadata attached to tecton-
spaces and/or tecton-machines and/or tectons and/or nodes.

 A ContactNotification() upcall is delivered to a tecton’s
coordinator node when the contactcriteria predicate passed to
SetContactCriteria() has evaluated to true. The upcall provides
all the information necessary to determine appropriate action-
consequent-to-contact: i.e. the tecton with which contact has
been announced, the nodes in both this and the other tecton that
were involved in the contact, and all the associated metadata.

 The Action()/ActionNotification() APIs are used to transfer
<name, value> metadata representing a “request for action”
from the coordinator node to any nodes that it determines
should be involved in carrying out the action. Action() may be
called only by the coordinator node, and is usually called as a
consequence of the receipt of a ContactNotification(). A call of
Action() results in ActionNotification() upcalls being delivered
to all nodes in the tecton for which the nodeselectioncriteria
predicate is true.

4) Example of use

 To illustrate the use of (some of) these APIs, recall the
example contact-action rule in Section I: “IF any of the nodes
in this MANET tecton come into contact with a node of a tecton
representing an 802.11 network, THEN all the MANET’s
nodes should reconnect to their email servers via 802.11”.

 First, let us assume a supervening ontology that
comprehends the concepts of “net type”, “net cost”, and “node
capability”. Assuming this, the MANET tecton’s coordinator
node might perform the “IF” part of the rule by calling:
SetContactCriteria(t, “net_type=802.11 and net_cost=0”)
(assuming the MANET tecton is identified as t). The
coordinator then performs the “THEN” part of the rule when it
receives a corresponding ContactNotification() upcall
(arguments omitted here for space reasons). It might proceed
by first searching for “high capability” nodes in the newly-
discovered 802.11 tecton (i.e., it would scan the upcall’s
involved_nodes_in_other_tect argument for node for which
“high_capability = true”). Then, it would pick one of these

nodes, say n, and call: Action(t, “<change_proxy, n>”,
“node_id = ANY”). This will result in all the MANET tecton’s
nodes receiving an ActionNotification(t, “<change_proxy,
n>”) upcall, which they interpret as a command (to be
implemented outside the tecton framework) to reconnect to
their email servers via an address to be found in metadata
attached to node n from the 802.11 tecton.

C. Inter-tecton-machine communication
 We now discuss the underlying communication patterns
implied by the tecton-machine’s API calls, considering both
intra-tecton-space and inter-tecton-space cases.

1) Intra-tecton-space communication
 At the intra-tecton-space level, the communication implied
by the API calls is mainly realised by one or more gossip plug-
ins. In particular, information on all the tectons hosted within a
tecton-space, including their member nodes and contactcriteria
information, is disseminated to all tecton-machines in the
tecton-space. Because tecton-spaces are assumed to be limited
in extent, the overheads of this are deemed acceptable.

 In addition, tecton-machines collectively monitor each
other to detect crashes of tecton-machines that are supporting
coordinator nodes. If such a crash is detected, the remaining
tecton-machines use an election protocol plug-in to elect new
coordinator nodes [16]. Finally, ongoing changes to <name,
value> metadata are gossiped to all tecton-machines, and
contactcriteria predicates are evaluated lazily—i.e., when
changes are received.

2) Inter-tecton-space communication
 Some of the tecton-machines in each tecton-space
periodically emit service discovery probes using a service
discovery plug-in; correspondingly, tecton-machines listen for
probes from external tecton-spaces. Whenever this results in a
potential inter-tecton-space handshake, the tecton-machines
involved (subject to mutual validation via a security plug-in)
exchange locally-hosted tecton_ids and associated metadata.
Updates to these are also sent on occurrence, so that timely
information is available when evaluating contact predicates.

 In addition, where a tecton-machine hosts a node that is a
member of a “remote” tecton (i.e. a tecton whose coordinator
node resides outside this tecton-machine’s tecton-space), it
pushes metadata updates associated with this node to the
remote tecton-space. This enables contactcriteria predicates to
be properly evaluated across all nodes regardless of where they
are hosted. All these patterns of inter-tecton-space data
exchange remain scalable because only “pairwise” information
exchanges are involved—i.e. they don’t involve transitive
closures over tecton-spaces.

D. Discussion
 With the “generality” property of tectons firmly in mind,
the tecton-machine’s runtime API is purposely minimal, so that
it is capable of implementation in a range of environments,
including tiny embedded devices. The API therefore eschews
many issues of apparent significance, leaving these to the
“high-levels” of the architecture (see Section II). In particular:

• System behaviour: The API knows nothing of the behaviour
of the “real system” being represented by a tecton. For
example, it has no notion of a “service interface” offered
by the system. It knows only that the system spans a
number of tecton-machines.

• Node behaviour: Similarly, the API knows nothing of the
behaviour of “real-system nodes”. As far as a tecton-
machine is concerned, a node is simply a piece of client
code registered with it in association with a node_id. The
purpose and behaviour of any corresponding “real system
node” (e.g. packet forwarding, controlling a mobile device,
representing a sensor, …) is of no interest.

• Contact: The detection of contact is semantically empty for
the tecton-machine (see example in Section III.B.4). A
tecton-machine is only responsible for the distributed
evaluation of predicates defined over metadata attached to
the tecton-related abstractions (i.e., tecton-spaces, tecton-
machines, tectons and nodes).

• Action-consequent-to-contact: Similarly, a tecton has no
notion of what action (e.g. composition etc.) to take when
contact is announced (again, see the example in Section
III.B.4). Rather, it simply serves as a “signaling protocol”
that delivers <name, value> metadata to the nodes deemed
responsible for performing the desired action.

• Horizontality/verticality: The API does not even understand
the concept of vertical or horizontal contact/interaction
that was discussed in Section I.

 The “missing behaviour” in all cases is provided by the
high levels of Fig. 2. In particular, the role of ontologies is
central in imposing semantics on the foundational functionality
provided by the tecton-machine. We believe that the separation
of concerns implicit here is crucial in the design of a
programming model for distributed systems of systems.

 In summary, the high levels provide: i) domain-specific
programming concepts to specify tectons, and to formulate
rules that determine when tectons are deemed to have made
contact, and what should happen when they do; ii) associated
ontologies that capture domain-relevant information concepts;
iii) specification of the semantic of “contact” in terms of
DSL/ontology statements; iv) local, per-node, monitoring of
state relevant to contact establishment, and updating
corresponding metadata when this changes; and v) provision of
per-node code to respond to calls for action-consequent-to-
contact.

 In turn, the low levels provide: i) a generic distributed run-
time representation of “systems” and their associated “nodes”;
ii) detection and notification (to a coordinator node), of inter-
system “contact”, given that requisite metadata has been
provided by a high level compiler as <name, value> metadata;
iii) a guarantee that there will always be a live coordinator node
in charge of the tecton; and iv) signaling to aid the distributed
organisation of action consequent to contact.

IV. RELATED WORK
We are not aware of work that is taking a closely similar

approach to the programming of systems of systems.
However, there is work of relevance within the middleware
and the networking communities. In the middleware
community, there has been substantial work on using DSLs
for the specification of network overlays (e.g. [7], [8]), and
even predicate-based abstractions of multi-node systems [9],
[10]. However, this work tends to focus on the specification of
individual overlays rather than on their composition. Work in
[11] does consider one aspect of composition, but this is aimed
at sharing modules that may contribute to multiple overlays,
rather than opportunistic composition of whole systems.

Within the networking community, the ANA project [5]
defines the concept of a network compartment: an
encapsulated, composable, distributed entity, that
transparently forwards packets across a network. This shares
with tectons the notion of a distributed composable unit, but
lacks our notion of spontaneous, opportunistic, composition
via contact-action rules; and also lacks the generality we seek.
In addition, the delay tolerant networking community (e.g. [6],
[17]) has proposed numerous scenarios and solutions
involving loose coupling of separated “systems”, but tends to
focus on protocol issues and to lack generalisable
programmatic abstractions for opportunistic system
composition.

 Finally, there is work on programmatic system-of-systems
composition in the formal methods community (e.g. work at
Pisa [15]); but there remain numerous challenges in taking this
work through to viable implementation.

V. CONCLUSIONS
We have outlined the design of a programming approach to

the dynamic construction of systems of systems. We have
focused in this paper on the design of a low-level runtime (the
tecton-machine) that supports the wider programming system
architecture of Fig. 2. The essence of our approach is to wrap
individual “systems” (e.g. sensor networks, MANETs, network
overlays) in a unified manner, and to equip the wrapping with
declaratively-specified rules that capture the circumstances
under which the system would benefit from interacting or
composing with other systems, and the manner in which this
should be done. The intent is that this approach will form the
basis of an ecology of autonomous “systems” that
opportunistically interact depending on what they encounter in
their environment, so that fit-for-purpose systems of systems
can arise spontaneously in a bottom-up manner.

We are developing the tecton concept in the context of the
EU-funded “Dionasys” project, in collaboration with the
Universities of Neuchatel, Bordeaux and Cluj-Napoca. The
project is focusing on composable overlays both in the internet
and in WSNs. The target environment for our implementation
of the tecton-machine on WSN devices is our Lorien OS [12],
which supports “code (re)deployment technology”, as required
for the full realisation of the lower level of the tecton

architecture. We employ the SplayNet system [13] for the
bootstrapping of tecton-machines and tecton-spaces.

 Our starting point for exploring the DSL/ontology layers is
provided by [14], and by the Splay language [13] which aims
to ease rapid prototyping of distributed systems. We are also
currently defining ontologies in the domains of Software
Defined Networking (SDN) and multi-cloud environments.

REFERENCES
[1] Maier, M., “Architecting Principles for System of Systems”, Systems

Engineering 1 (4): pp 267–284, 1998.
[2] Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M.,

Sycara, K., Mcguinness, D.L., Sirin, E., Srinivasan, N., “Bringing
semantics to web services with OWL-S”, World Wide Web Journal 10,
pp 243–277, 2007.

[3] Cortes, C., Blair G., Grace, P., “A Multi-protocol Framework for Ad-
hoc Service Discovery”. Proc. 4th Intl. Workshop on Middleware for
Pervasive and Ad-Hoc Computing (MPAC ‘06), Melbourne, Nov 2006.

[4] Singh, S., Kurose, J.F., “Electing “good” leaders”, J. of Parallel and
Distributed Comp. 21, pp 184–201, 1994.

[5] Schmid, S., Schuetz, S., Zimmermann, K., Nunzi, G., Brunner, M.,
“Autonomic and Decentralized Management of Wireless Access
Networks”, IEEE Transactions on Network and Service Management, 4
(2), pp 96-106, Sept 2007.

[6] Fall, K., “A Delay-Tolerant Network Architecture for Challenged
Internets”, Proc. SIGCOMM, Aug 2003.

[7] Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I. “Towards a
Common API for Structured P2P Overlays”. Proc. 2nd International
Workshop on Peer-to Peer Systems (IPTPS), pp 33-44, Berkeley, CA,
USA, Feb 2003.

[8] Li, B., Guo, G., Wan, M., “iOverlay: A Lightweight Middleware
Infrastructure for Overlay Application Implementations”, Proc.
ACM/IFIP/USENIX International Middleware Conference (Middleware
2004), pp 135-154, Toronto, Canada, Oct 2004.

[9] Picco, G.P., Mottola, L., “Logical Neighborhoods: A Programming
Abstraction for Wireless Sensor Networks”, Proc. 2nd International
Conference on Distributed Computing in Sensor Systems (DCOSS '06),
San Francisco (CA, USA), Springer Lecture Notes on Computer Science
vol. 4026, pp 150-167, June 2006.

[10] Pasquet, M., Maia, F., Rivière, E., Schiavoni, V.,
“Autonomous Multi-Dimensional Slicing for Large-Scale Distributed
Systems”, Proc. DAIS'14, Berlin, Germany, June 2014.

[11] Rivière, E., Baldoni, R., Li, H., Pereira, J., “Compositional gossip: a
conceptual architecture for designing gossip-based applications”, ACM
SIGOPS Operating Systems Review, Special Issue on Gossip-Based
Networking, Oct 2007.

[12] Porter, B., Coulson, G., “Lorien: A pure dynamic component-based
Operating System for Wireless Sensor Networks”, Proc. ACM MidSens,
pp 7-12, Nov 2009.

[13] Schiavoni, V., Rivière, E., Felber, P., “SplayNet: Distributed User-Space
Topology Emulation”, Proc. Middleware, 14th ACM/IFIP/USENIX
Middleware Conference, Beijing, Dec 2013.

[14] Blair, G., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V.,
Nundloll-Ramdhany, V., Paolucci, M., “The Role of Ontologies in
Emergent Middleware: Supporting Interoperability in Complex
Distributed Systems”, Proc. ACM/IFIP/USENIX Middleware
Conference, Lisbon, pp 410-430, Springer Verlag, Dec 2011.

[15] Börger, E., Schewe, K.-D., “Concurrent abstract state machines”,
University of Pisa, 2014.

[16] Taïani, F, Porter, B, Coulson, G., Raynal, M., “Cliff-edge consensus:
agreeing on the precipice'”, Springer Lecture Notes in
Computer Science, vol. 7979, pp 51-64, 2013.

[17] IEEE WoWMoM workshop series on Autonomic and Opportunistic
Computing, http://aoc2014.conference.nicta.com.au.

	

