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Abstract—LoRa-based transmissions suffer from extensive col-
lisions even for low node numbers due to unregulated access
to the medium. In order to tackle this problem, we propose a
collision-free time-slotted scheduling approach where each node
autonomously decides when to transmit a packet based on its
unique identifier which is converted to a slot number using
a modulo operation. We report through simulations and real
experiments that this approach can provide very high reliability
when the nodes are synchronized. Moreover, it does not require
any additional communication overhead apart from a broadcast
packet emitted by the gateway. Our comparison with the native
LoRa, as well as to a slotted-LoRa version, shows significant
performance gains in terms of packet delivery ratio, especially
in the case of low node populations.

I. INTRODUCTION & BACKGROUND

LoRa is a proprietary physical layer communication pro-
tocol operating in the sub-GHz license-free band and it is
designed for low-power, long range, and low bandwidth IoT
applications. LoRa trades data rate with signal sensitivity. To
achieve this, it uses a spread spectrum modulation to select
the amount of spread used for a fixed bandwidth. This spread
is controlled using a radio parameter, called Spreading Factor
(SF). In practice, this means that long range transmissions are
performed with a lower data rate (higher SF) than in short
range transmissions (lower SF).

The LoRa Alliance has proposed an open upper layer stack
to manage communications between LoRa gateways and end-
node devices, called LoRaWAN. LoRaWAN is responsible for
managing a secure joining procedure by exchanging network
keys. It is also responsible for managing communication
parameters like the data rate and the transmission power of end
devices, through the Adaptive Data Rate (ADR) mechanism
[1].

The main issue of a LoRaWAN network is its scalability.
The transmissions are treated as ALOHA transmissions, which
leads to a high probability of collisions and, thus, to a poor
performance even for low node numbers [2], [3]. Moreover,
the frequency of LoRa transmissions is regulated by either an
upper duty cycle limit (i.e., 1% for uplink transmissions in the
EU868 band) or by a maximum transmission time per channel
(US regulations for sub-GHz bands) [4] which can decrease
the performance, especially in presence of confirmable appli-
cations [5]. Finally, it has been shown that the capture effect
and the inter-SF interference can further decrease the network
capacity [6], [7].

A number of solution have been presented in the literature in
order to tackle the burst of collisions of LoRa(WAN), mainly
through the scheduling of the node activities. A lightweight
scheduling approach is proposed by Reynders et al. [8]. The
nodes are divided into groups with similar transmission powers
in order to reduce the capture effect. The schedule moves
some nodes to higher SFs in order to allow collision-free
simultaneous transmissions. However, this solution requires
significant communication overhead and also increased energy
consumption for some of the nodes. An on-demand time
division protocol to assign slots to the nodes has been pro-
posed by Haxhibeqiri et al. [9]. The solution improves the
network performance but does not completely eliminate col-
lisions. Abdelfadeel et al. [10] present a two-phase collision-
free method for fast bulk data delivery using the mobile
gateway concept [11]. The work schedules spreading factors
and assigns transmission powers, frequency channels, and
timeslots to LoRa(WAN) end-devices. Significant performance
improvements are reported but with additional and significant
overhead. Finally, a slotted ALOHA overlay on LoRaWAN is
proposed by Polonelli et al. [12], where the nodes are synchro-
nized according to the gateway’s clock. Similarly to slotted-
ALOHA, this approach alleviates the number of collisions but
does not eliminate them.

Unlike the current works in the literature, in this paper,
we propose a collision-free time-slotted scheduling approach
which exhibits an almost negligible overhead. We take advan-
tage of the unique – already registered – device IDs, and we
convert the corresponding MAC addressees to unique integers
and, then, to slot numbers using a modulo operation. This
approach does not guarantee optimal schedules in terms of
length, since it leaves empty slots in between transmissions.
The number of empty slots tends to increase with the number
of nodes in the network, resulting in long frame lengths.
However, even in this case, we show through simulations and
experiments that it exhibits an almost 100% packet delivery
ratio and faster data collection compared to the native LoRa
and a random slotted-LoRa approach.

II. LORA-BASED AUTONOMOUS SCHEDULING

In this section, we describe how a specific number of LoRa
end-devices can autonomously compute the number of their
transmitting slot given their unique identifier and a broadcast
packet they get from the gateway. The described process
works for devices from the same manufacturer, however, as



Algorithm 1: Gateway: MAC to int conversion
require: MAC (64bits MAC address in hex format)
MAC = substr(MAC, 9) ; // subtract the first
9 characters

mac int = int(MAC, 16) ; // convert hex to int
return mac int;

we explain later in the text, it can be easily converted to a
global solution.

A. MAC to slot conversion

LoRa devices have a 64bit unique identifier (DevEUI) that
is assigned to the devices by the chip manufacturer. The first
36bits are reserved to identify the manufacturer and the last
28bits are dedicated to the devices. A LoRa gateway (or
the backbone network behind the gateway) is aware of the
nodes’ DevEUIs since they are used during the join request
process (for example during OTAA in LoRaWAN). Having
this information as well as the number of devices per SF, the
gateway can compute a minimum transmission period (frame
length) during which all the nodes with the same SF can
transmit one packet. The nodes can transmit multiple packets
by utilizing multiple frames. The structure of the frame is
depicted in Fig. 1. This example shows two frames, one for
the SF7 and one for the SF8, consisting of 4 and 2 slots
respectively. A guard time has been added in the end of each
slot to tolerate slight desynchronizations. We, also, assume that
the packet size is the same for all the SFs, thus, the higher the
SF, the longer the slot size.

The gateway computes the frame length in a two step
process. First, it converts all the MAC addresses to unique
28bits unsigned integers by initially subtracting the first 9
characters (36bits) of the corresponding hex identifiers as it
is depicted in Algorithm 1. After doing this for each available
MAC address, it generates a set A of n 28bits integers, where
n is the number of nodes having the same SF. The next step is
to compute the number of slots in the frame based on a modulo
operation for all the numbers in A. To do so, the following
optimization problem must be solved.

min k, (1)
s.t.

A = {α1, α2, ..., αn}, αi 6= αj ,∀ i, j ∈ [1, n], (2)
αi mod k 6= αj mod k, ∀ i, j ∈ [1, n]. (3)

The input of the problem is a set of n positive integers
A = {α1, α2, ..., αn}, where αi 6= αj , ∀ i, j ∈ [1, n]. A
minimum number of slots k, k ∈ Z , has to be computed
so that Constraint (3) is satisfied.

Once the aforementioned problem has been solved, the
number of slots k or the corresponding frame length is
communicated to the nodes. The number of slots can be
converted to a frame length (and vice versa) using Eq. (4),
where airtime(SF,BW,PL) is the transmission time for the
given SF, channel bandwidth (BW ), and payload size (PL)

Algorithm 2: Node: MAC to slot conversion
require: MAC (64bits MAC address in hex format), k
MAC = substr(MAC, 9) ; // subtract the first
9 characters

mac int = int(MAC, 16) ; // convert hex to int
slot = mac int mod k;
return slot;

[1]. The gateway can include the slot numbers of multiple SFs
decoded in a single packet using the highest SF in the system
so that all the nodes can receive it. If the gateway decides
to transmit multiple packets (one per SF), it has to deal with
duty cycle limitations (e.g., 1% or 10% in EU) that could
add additional delay in the initialization of the network. In
any case, the nodes need to be already synchronized when
they receive the frame length data. Even though the node
synchronization problem is not examined in this paper, it
can be easily tackled by periodically sending clock correction
information at specific timeslots [13].

frame length = k · (airtime(SF,BW,PL)+guard). (4)

Each individual node uses the information it gets from the
gateway as well as its MAC address to compute its transmitting
slot. To do so, it uses the MAC-to-slot conversion algorithm
as it is presented in Algorithm 2. This is the same algorithm
that the gateway uses to convert MACs to integers with an
additional modulo operation.

An example of the above procedure is given as follows.
Let us assume a set of 5 nodes using SF7 with the following
MAC addresses in HEX format: 70b3d5499d64b925,
70b3d54994053846, 70b3d549959660b3,
70b3d549943d50d1, 70b3d5499fae2761. The
first step of the gateway is to convert these MACs
to 28bit integers using Algorithm 1, so the set A =
{224704805, 67450950, 93741235, 71127249, 263071585}
is generated. In the next step, the optimization problem
described in Eq. (1) needs to be solved. In this particular
case, it is easy to find (by using a number of successive tries
starting from k = 5) that 9 slots is the optimum solution.
On the node side, Algorithm 2 will generate a unique slot
number for each individual node. The slot numbers that are
generated and allow collision-free transmissions are 5, 0, 7,
6, and 1. Apparently, this solution leaves some empty slots,
however, the purpose of this approach is to achieve simplicity
and reduced overhead rather than optimality. Moreover, the
empty slots can be considered as a positive feature, assuming
an application where extra nodes join the network and occupy
unused slots.

B. Manufacturer-independent scheduling

The solution described above can be easily extended to a
manufacturer-independent solution by adding a few more steps
in Algorithms 1 and 2. For this reason, we present Algorithm
3 as a replacement of Algorithm 1. More specifically, each
MAC address is hashed with a function like the MD5. Since



Fig. 1. An example of the frame structure for SF7 and SF8.

Algorithm 3: Gateway: Hardware-independent MAC to
int conversion

require: MAC (64bits MAC address in hex format)
MAC = hash(MAC);
MAC = 32msb(MAC);
mac int = int(MAC, 16) ; // convert hex to int
return mac int;

the result of the function may be a number of 128 or more
bits, we first need to convert it to a 32bit number so it can be
practically used in most of the current embedded systems. A
solution to do this, is to keep the 32 most significant bits of
the hash digest. The integer representation of the number can,
then, be used in the modulo operation. We must note here, that
the conversion from 128 bits to 32 bits may produce duplicate
numbers (and thus slots), so this solution does not guarantee
collision-free transmissions. However, the probability of hav-
ing identical all the 32 first bits of two hashed numbers is
extremely small1. Moreover, the hash computation adds some
additional computation cost for the nodes, however, it can
be done fast in modern hardware platforms. We leave this
computational analysis as part of our future work.

C. Duty cycle restrictions

Due to the duty cycle restrictions, each particular node can
transmit again at least after 99 times the duration of the last
transmission (assuming a duty cycle of 1%). This restriction
sets a lower limit to the frame length which is related to
the packet size and the parameters of the transmission (SF,
bandwidth etc.). For example, a node transmitting in the first
slot of a frame, where each slot has a length of 30ms (including
a 5ms guard time), is allowed to transmit again after 99·25ms.
This implies a minimum frame length of d 99·25+25

30 e = 84
slots and, by extension, all node populations from 1 to 84
nodes will have to obey this minimum frame length. In general,
the minimum number of slots for a given transmission time
airtime(SF,BW,PL) is computed as follows:

slots = d 100 · airtime(SF,BW,PL)
airtime(SF,BW,PL) + guard

e. (5)

1It equals to 1
1632

assuming that all 16 symbols have the same probability
of appearance.

D. Performance improvements

In most of the cases, since the scheduler generates frames
with several empty slots, a simple approach to remove some
of these slots and, thus, reduce the frame length, is to shift
the occupied slots towards the first slot and eliminate some
of the empty ones. This can be done using a simple shift and
elimination approach as depicted in the example of Fig. 2.
In this example, we assume a network consisting of 4 nodes
and the scheduler has initially computed a frame length of 11
slots (k = 11). The slots with bold numbers are occupied slots
and the grey ones are empty slots. During the shift operation,
all the occupied slots are shifted towards the first slot (slot
0). The number of shifted slots depends on the “distance” of
the minimum occupied slot to slot 0. In this example, all the
occupied slots are left-shifted by 2 slots. We must note that if,
initially in the schedule, slot 0 is already occupied, then the
shift operation can be skipped since it has no effect. During
the elimination step, the minimum empty slots in-between
successive occupied slots is computed. In the example, this
number equals 1. Thus, all the occupied slots except slot 0
are further left-shifted by 1 slot, so the total number of freed
slots is 3. Thus, 3 empty slots in the end of the frame are
eliminated. This results to a shorter frame with less empty
slots, however it is not applicable in all the cases since it
depends on the sparseness of the occupied slots. For example,
the second shift operation would have no effect if at least two
nodes are assigned to successive slots.

Fig. 2. An example of the shift and elimination improvement.

In terms of communication overhead, the gateway has to
include the total number of shifted slots into the broadcast
packet apart from the initial frame length. This will require 4
extra bytes.



TABLE I
EXPERIMENT PARAMETERS

Parameter Value
Nodes 10 + 1
Bandwidth (BW) - Coding Rate 500 KHz - 4/5
Spreading Factor (SF) 7
Region EU868
Preamble symbols 8
Guard time 5ms
Packet size 50 Bytes
Transmissions per node 40
Transmission power 2 dBm
Execution times 20

III. PERFORMANCE EVALUATION & DISCUSSION OF THE
RESULTS

In this section, we assess the performance of the proposed
approach using a set of simulations and experiments. The
purpose of the simulations is to test the slot generation process
using a high number of nodes and repeats, something that
could not be possible – at least in a reasonable amount of
time – using real experiments. Finally, we perform some
experiments to test our approach on real devices.

A. Setup

We compare our approach to the native LoRa, where nodes
choose a random time to send a packet, as well as to a
slotted-LoRa version, where the nodes are synchronized and
the transmissions are performed at random slots. A LoRa sim-
ulator using a proper capture effect and a path-loss model was
used to conduct the simulations2. We, also, optimally solve
the optimization problem of Eq. (1) using exhaustive search
starting from k = n with an increment of 1. We consider 40
packet transmissions per node for all the approaches. In order
to get results faster, we assume that all the nodes use SF7,
however, a higher SF would only change the length of the slot
and the total simulation or experiment time. Every instance
of the simulation is executed 50 times using random node
topologies and the average results are presented along with the
95% confidence intervals. For the needs of the experiments,
a testbed consisting of 10 nodes and a gateway is used, all
operating at the same frequency, channel bandwidth, and SF.
We conduct experiments considering high traffic scenarios
with a total of 400 (4x10) transmissions in a time window
of about 34 seconds (as a result of the optimal frame length).
The experiment parameters are summarized in Table I. We
must note that our network co-existed with other LoRa(WAN)
networks in the building. We have not taken into account the
improvement of Section II-D into the results.

B. Results

Fig. 3 presents the simulation results using different node
populations with up to 300 nodes. The results of figure (a)
reveal that when the number of nodes is low all the trans-
missions can be performed without collisions in a short time,
however, this time increases exponentially and may not scale

2https://github.com/deltazita/Bulk-LoRa

well with hundreds of nodes. This is because of the difficulty
of the solver to find modulo divisors that satisfy Constraint (3)
as n is getting higher. This is also explained by figure (b) as
the execution time increases with the number of nodes, even
though more time efficient solutions can be developed using,
for example, linear programming. Nevertheless, the results are
very positive for lower number of nodes (e.g., 10-50) since the
frame size is kept low, while the execution time is negligible.

Fig. 3c reports the packet collision rate when using the
Slotted-LoRa approach (Random slotted) and the native LoRa
(Default LoRa). We set the frame size equal to the one
computed by the MAC-based approach (as depicted in Fig.
3a). This actually affects the frequency of the transmissions for
the native LoRa since every node randomly uses a time within
the frame bounds to transmit a packet. The results reveal that
for the same amount of time the two compared approaches
achieve very high collision rates that vary from 9 to 48% for
native LoRa, and 4 to 35% for slotted-LoRa. Apparently, as
we move to higher node populations, the gap with the MAC-
based scheduling is decreasing. As expained in the previous
paragraph, this is because the number of empty slots increases
a lot, increasing the frame size as well.

Finally, we test the performance of the MAC-based ap-
proach using the 10-node testbed. Given the specific MAC
addresses, the optimal solution is 28 slots (or 840ms) for SF7.
This results to a total experiment time of 33.6 seconds for all
40 transmissions per node. The results are illustrated in Fig.
4 and confirm the simulation results. In particular, they show
a Packet Delivery Ratio (PDR) close to 1, while the default
LoRa PDR barely exceeds 0.6 within the same data collection
window. We repeated the experiment multiple times with
different software-generated MAC addresses and the results
were similar. Finally, we experimentally tested different values
of guard time and we observed that it can be reduced to ¡1ms
if the nodes are perfectly synchronized. Shrinking the guard
time can considerably decrease the frame length, especially for
high node number deployments. However, we need to further
investigate this low guard time in long-range deployments.

IV. CONCLUSIONS & FUTURE WORK

In this paper, we proposed a collision-free scheduling ap-
proach for time-slotted LoRa transmissions. The novelty of the
approach is that it uses the MAC addresses of the nodes as
an autonomous way to compute the slot of the transmission,
while receiving minimal information from the gateway. We
showed through simulations and experiments that this solution
performs well, at least with a low number of nodes. In the
future, we are planning to evaluate the hardware-independent
solution in terms of reliability and energy consumption, and
also to assess its performance using multiple spreading factors
scenarios.
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