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Abstract—Distributed Renewable Energy Sources (DRES) are
considered as instrumental within modern smart grids and more
broadly to the various ancillary services contained within the
energy trading market. Thus, the adequate power production
profiling and forecasting of DRES deployments is of vital
importance such as to support various grid optimisation and
accounting processes. The variety of DRES installation companies
in conjunction with the diversity of ownership on DRES ma-
chinery, controller firmware and Supervisory Control and Data
Acquisition (SCADA) software leads to cases where centralised
SCADA measurements are not entirely available or are provided
under a subscription-based model. In this work, we consider this
pragmatic scenario and introduce a SCADA-agnostic approach
that utilises freely available weather measurements for explicitly
profiling and forecasting power generation as produced in real
wind turbine deployments. For this purpose, we leverage various
machine learning (ML) libraries to demonstrate the applicability
of our system and further compare it with forecasting outputs ob-
tained when using SCADA measurements. Through this study, we
demonstrate a viable and exogenous profiling solution achieving
similar accuracy with SCADA-based schemes under much lower
computational costs.

Index Terms—Distributed renewable energy sources, machine
learning, machine learning, SCADA, wind power.

I. INTRODUCTION

The use of fossil fuels for power generation has led to
the exponential growth of air pollution and in turn, climate
change and global warming. According to the International
energy agency, there was a 2.3% rise in energy consumption
just in 2018, which caused CO2 emissions to rise by 1.7%
leading to an alarming value of 33.1 Gt of CO2 in the air [1].
Hence, modern smart grid deployments adopt greener power
generation solutions based on distributed renewable energy
sources (DRES) including Photo Voltaic (PV) solar panels,
wind turbines and bio fuel.

Nonetheless, as the DRES generated power output depends
solely on intermittent environmental conditions (e.g., ample
solar radiation, wind speed), there is always a level of uncer-
tainty in terms of the power contribution that such deployments
offer back to the main power grid. Under the objectives of a
sustainable grid, it is therefore crucial to adequately profile and
further forecast DRES power production. Grid optimisation
routines rely on accurate DRES profiling, thus inaccurate and
unavailable DRES profiling is highly likely to trigger resilience
havoc with a number of severe consequences.

Power generation profiling for DRES has been the subject
of investigation in a number of studies (e.g., [2], [3]). The

majority of these studies engage with the assumption that
measurements from Supervisory Control and Data Acquisition
(SCADA) systems are always available and the various mod-
eling components are restricted on explicitly utilising power
generation values from such systems. However, the complex
business and operational processes within large-scale power
grids involve a diversity of ownership in terms of machinery
(e.g., wind turbines) as well as control and measurement
components (e.g., PLCs, SCADA) [4]. Thus, the acquisition
of SCADA-based measurements is not always available, par-
ticularly for DRES installation owners that are not operators
of either power transmission or distribution networks.

In this piece of work, we tackle the aforementioned scenario
and propose a generic SCADA-agnostic DRES power profiling
scheme. In general, the proposed DRES profiling system
enables automated feature selection and tuning of machine
learning (ML)-based regression models and can adapt to
diverse measurement feeds. Through a proof-of-concept study
explicitly on wind-turbine deployments, we demonstrate that
our system is capable to adequately operate with the use of
freely available third-party weather measurements. Thus, we
introduce a SCADA-agnostic approach that can sufficiently
aid or complement current profiling and forecasting practises.
Through this study, we firstly build a ground-truth and confirm
that under a SCADA-based approach and using real SCADA
measurements from a wind turbine farm, we obtain accurate
forecasting of power generation. Subsequently, we prove that
a SCADA-agnostic approach produces comparable forecasting
accuracy with lesser computational cost for the same DRES
deployment.

The main contributions of this work are two-fold and
summarised as follows:

• A generic DRES profiling system enabling adaptive fea-
ture selection as well as automated best-fit ML model
tuning under low computational costs.

• A SCADA-agnostic cost-efficient approach relying
strictly on freely available third-party weather measure-
ments to model DRES deployments with a proof-of-
concept evidence over real wind turbine deployment
profiling.

The rest of this paper is organised as follows. Section II
presents some related work on DRES power generation pro-
filing. Section III describes the datasets and the methodology
of the proposed approach whereas Section IV discusses the



evaluation conducted. Finally, Section V concludes and sum-
marises this paper.

II. RELATED WORK

Measurement-based wind power profiling can be split into
two categories; (i) single- or multi-measurement SCADA sys-
tems placed at a local wind farm, distribution or transmission
operator, and, (ii) non-SCADA, sensor-based measurement
systems deployed on individual devices (e.g., single/multiple
wind turbines) or aggregation points of a given DRES deploy-
ment.

There has been a number of studies utilising single-
measurement SCADA systems where a single parameter is
utilised for profiling the generated wind power from a set of
wind turbines. For instance, both studies in [5] and [6] strictly
rely on wind speed timeseries and employ a spline regression
model and Support Vector Machines (SVMs) respectively to
model power generation of wind turbine deployments for
power forecasting purposes. The authors in [7] propose a
refined power curve modeling approach by utilising SCADA-
based wind speed timeseries. Moreover, the work in [8]
focuses on correlating wind speed with the output power of a
given wind turbine such as to improve the examined modeling
method [8]. Furthermore, the work in [3] models wind
power generation using Artificial Neural Networks (ANNs) in
synergy with six different parameters obtained from the local
SCADA system.

Examples of wind power modelling based on conventional
or customised non-SCADA sensor-based measurements are
evidenced in studies such as [2] and [9]. In fact, the authors
in [2] utilise statistical meta-features of raw measurements
used in [9] to highlight the use of non-parametric methods
(e.g., stochastic gradient boosted regression trees, randomized
forests) for univariate wind power modeling.

Nonetheless, all of the above studies assume either the
presence of locally (or regionally) deployed SCADA systems
or sensor-based measurement components. To the best of
our knowledge, none of the studies considered the pragmatic
assumption that SCADA measurements as well as sensor
components are not always present or available in all DRES
deployments. Hence, an alternative SCADA-agnostic approach
is required to confront such scenarios.

III. DATA DESCRIPTION & METHODOLOGY

A. Data description

The herein reported proof-of-concept study focuses explic-
itly on profiling wind turbine deployments using third-party,
freely available weather measurements under the assumption
that SCADA or locally placed sensor-based measurement data
is not available. However, in order to validate the performance
of our exogenous-based wind power modeling, we utilise
SCADA measurements gathered from a real deployment.

The used SCADA-based dataset was captured at the La
Haute Borne wind farm, located in Meuse, France 1 and

1Explore – ENGIE France Renewable Energy Open Data, Available: https:
//opendata-renewables.engie.com/pages/home/

represents daily measurements gathered for the whole year of
20172. The La Haute Borne wind farm consists of 4 Senvion
MM82 wind turbines where measurements are obtained on 10-
minute samples. Within each 10-minute sampling bin, there are
34 features related to various electro-mechanical (e.g., torque,
rotor speed), power (e.g., apparent power, grid voltage) and
environmental parameters (e.g., wind speed, outdoor temper-
ature) explicit to a given wind turbine.

As already mentioned, our SCADA-agnostic scheme de-
pends solely on third-party weather measurements that are
freely available. For this purpose, we have extracted envi-
ronmental measurements (e.g., wind direction) from the Dark
Sky API [10] and Weather Online API [11] over the same
observational period in which ground truth SCADA measure-
ments were obtained for the La Haute installation. Moreover,
we acquired wind and output temperature measurements from
Weathernews [12] as observed by the Nancy-Ochey weather
station which is geographically adjacent to the La Haute Borne
wind farm. Both the third-party measurements as well as
the SCADA-based measurements were processed within our
generic DRES profiling system that we explain next.

B. DRES profiling system

This study relies on a system built to efficiently pre- and
post-process DRES measurements such as to automatically
identify the most suitable features within a best-fit ML model.
The generic properties contained within our implemented
system can serve the basis for close-to-real-time profiling of
any type of DRES deployment (e.g., wind turbine/farm, solar
PV panels etc.)3.

As depicted in Fig 1, the first process within the imple-
mented system is to pre-process diverse DRES measurements
gathered either by conventional SCADA or sensor-based data
acquisition deployments. Hence, the pre-processing module
ensures that raw timeseries measurements of various features
(e.g., wind speed, humidity, output power, etc.) are refined in
terms of missing values, noisy timeseries and (re)sampling.
Subsequently, the system normalises the pre-processed time-
series and feeds them directly to a feature selection software
component that works in synergy with a ML component.
Ultimately, the combination of the best statistical features
alongside the best-fit model is chosen based on a repetitive
auto-tuning process. We describe the mechanics of each in-
dividual stage and component by focusing on the proof-of-
concept wind power modeling scenario as follows.

1) Data pre-processing: The quality of the aggregated
data is a substantial factor for wind power modelling as
missing or inconsistent data samples can affect the accuracy
of power measurement estimation. Essentially, noisy data are
inconsistent measurements caused by sensor reading errors
or SCADA controller faults. In general, we have witnessed

2The 2017 dataset is the most complete in comparison with all datasets for
other years provided by ENGIE.

3The complete DRES profiling system is available on Github at: https:
//github.com/Ahlam-Althobaiti/-DRES-Power-Modeling



Fig. 1: Measurement-based DRES profiling system

missing samples resulted by turbine unavailability or electri-
cal shut-down, icing events or out-of-range samples due to
weather API object pull failures. Therefore, prior to consid-
ering the absolute power measurements, the SCADA-based
measurement dataset is subjected to a filtering technique such
as to remove all possible inconsistent and missing data. For
instance, the generated power P avg

t in kW should be as:

Pmin
t ≤ P avg

t ≤ Pmax
t (1)

where t ∈ T is the coordinated time period, Pmin
t = 0 and

Pmax
t = the wind turbine nominal power. Otherwise, the

generated power P avg
t can be considered inconsistent data

and thus are filtered out. To be noted that these thresholds
depend on the explicit wind turbines’ specification and for
other turbine models, these could differ.

Moreover, during the pre-processing stage, analyses on
power measurements is performed through the utilisation of
the Autocorrelation Function (ACF) and Partial Autocorrela-
tion Function (PACF) in order to build an underlying statistical
ground-truth of the assessed timeseries. In simple terms, the
ACF represents the correlation between the P avg

t measurement
of the t ∈ T and the measurements at previous time lags.
However, PACF is the correlation between P avg

t and P avg
t+k

after removing the influence of the confounding variable:

P avg
t−1 , P

avg
t−2 , ..., P

avg
t−k+1 (2)

2) Data normalization: Our DRES profiling system em-
ploys a min-max normalisation scheme such as to reconstruct
the assessed timeseries in the range [0, 1] with n×m vectors
as given in Eq. (3). In this case, n is the number of the samples,
m is the number of feature vectors and t ∈ T is a time interval.

x̄t =
xt − xmin

xmax − xmin
(3)

where x̄t represents the normalized value of xt, xmin and
xmax are the minimum and maximum value in each feature

vector z ∈ m respectively. The normalization procedure is
only applicable to the numerical features. The dataset consists
of a mixture of numerical as well as categorical features. The
categorical features are transformed into numerical data as the
proposed system takes only numerical input. The categorical
data is encoded using the binary encoder function as follows:

1) An integer value is assigned to every unique category for
a given categorical feature.

2) A new binary feature is created for each integer-encoded
category.

3) New columns are created based on the majority of the bit
encoding.

Unlike numerical features, binary encoded features only take
binary values of 0 or 1, hence they do not need to be re-scaled
or normalized.

3) Feature selection: The proposed DRES profiling system
employs an automated feature selection process such as to
obtain an adequate and effective set of attributes. Hence, the
feature selection component is in charge of assessing the
importance of the raw SCADA or third-party weather measure-
ments. As evidenced in Fig. 1, the feature selection component
works in synergy with the ML library component such as
to identify the optimal set of features producing the best-fit
ML-based power regression model. In more detail, the current
prototype supports: i) Filter-based Univariate Feature Selection
(UFS), ii) Wrapper-based recursive feature elimination (RFE)
and iii) Ranking-based Feature Importance (FI).

The UFS technique is used to assign the importance scoring
of each feature. Thus, each feature is linearly regressed and
produces an estimated value that is scored against the original
value under the F-score metric. Essentially, the F-score denotes
how the regressed value of a given input behaves in terms of
the averaged accuracy precision. Our current prototype sup-
ports both the univariate linear regression filtering of features
as well as filtering through the ranking of correlations based on
the Pearson correlation metric. Both filtering mechanisms are
used interchangeably. By contrast with UFS, the RFE method
recursively selects features by removing the less important
features from the feature set using importance-based rankings.
Our current prototype utilizes the Random Forest (RF) esti-
mator for importance-based rankings and it has proven to be
beneficial in occurrences of highly correlated features (e.g.,
wind speed and output power) [13]. Within the FI approach,
a similar RF-based feature reduction is performed such as to
isolate the most significant attributes. It is to be noted that both
RFE and FI use RF to remove the least significant features;
however the FI in contrast with the RFE is less robust as it is
just based on a given threshold value and a single iteration.

4) ML-libraries component: The implemented DRES pro-
filing system depends heavily on the collaborative functioning
between the feature selection component and the ML-libraries
component. The ML-libraries component is implemented un-
der a pluggable fashion in which off-the-shelf or customised
ML algorithms can inter-operate with the algorithms residing
within the feature selection process. The synergy between the
aforementioned components is orchestrated under a repetitive



feedback mechanism such as to identify the most optimal
combination of features with an identified ML-based profil-
ing model. Moreover, optimal hyper-parameters for the ML-
based techniques employed are found by using a grid search
technique with a k-fold cross-validation method [14]. In order
to address aspects of non-linearity in the examined features
as well as properties of non-stationary DRES measurements,
we have implemented both supervised as well as unsupervised
ML-based regression algorithms. In particular, the current pro-
totype supports: i) K-nearest Neighbours Regression (KNR),
ii) Support Vector Regressor (SVR), iii) Gradient Boosting
Regressor (XGBoostR) and, iv) Multi-layer Perceptron Neural
Network (MLPNN). We next describe the basic properties of
each implemented algorithm.
KNR: The KNR model utilises feature vector similarity (or
neighborhood) and predicts the value of new input samples.
Thus, the value assigned to new input samples is based on
the resemblance with training samples. In summary, KNR is
decomposed into three main stages;

1) Calculation of the Euclidean distance between the new
input data instance with each training samples given by:

Dt =
√∑

| xtraint − xnewt |2 (4)

where xtraint and xnewt represent the values of training
sample and the new input data respectively.

2) k nearest samples are selected based on the closest
Euclidean distance values.

3) Inserting the average of the k-nearest points as the
predicted value of the new input instance.

SVR: The SVR model is a supervised scheme enabling the
estimation of a fit function based on pre-computed training
samples such as to map high-dimensional model inputs to the
target output. Unlike other regression algorithms focusing on
prediction error rate reduction, SVR fits any prediction errors
within a a tolerable error (ε). Hence, describing the highest
deviation from the targets, while keeping the fit function as
flat as possible.
XGBoostR: The XGBoostR algorithm relies on the boosting
idea is aiming to improve the regression stability of a weak
learner that promote weak statistical hypotheses related to their
input data instances. In general, a weak learner represents
models holding slightly better performance than a random
chance with respect to prediction error rates. XGBoostR
depends on three components performing: i) loss function
optimisation with respect to regression errors, ii) weak learner
prediction for one decision at a time and, iii) weak learner
additive model minimising the total loss function.
MLPNN: The MLPNN algorithm belongs in the category
of supervised feed-forward artificial neural network (ANN)
formulations and consists of more than one perceptrons. The
input layer in MLPNN is used to receive input data, whereas
the output layer is responsible for predicting the output value
of a given input. Internally, the composition of the training
model within MLPNN is performed by a back-propagation
scheme. As within a traditional artificial neural network,

hidden layers reside between input and output layers which
work as computational engines. In particular, MPLNN exploits
the correlation or dependencies between the variables used in
the computed training to model the output value by tuning
weight parameters such as to reduce prediction errors.

C. Evaluation Methodology

We conduct a thorough evaluation in order to assess the
performance of the exogenous SCADA-agnostic wind power
modeling in comparison with modeling performed using
SCADA-based measurements. Our evaluation methodology is
diagrammatically depicted in Fig. 2.

Fig. 2: Evaluation methodology.

Both SCADA and SCADA-agnostic data streams are passed
through our DRES profiling system prototype to obtain the
most optimal features with the best-fit regression models.
Prior to the modeling as well as the feature selection phase,
the correlation of individual generated power with its past
measurements is extracted and integrated to the input mea-
surements of the designed system. Subsequently, we perform
a seasonality grouping for every type of measurements for
better classification. Hence, we split our datasets in the four
seasons of the year (i.e. spring, summer, autumn, and winter)
for each wind turbine and re-sample the measurements to
behave under hourly bins. The DRES profiling system assigns
70% of the feature samples to be used for training for any of
the algorithms within the ML-libraries component and 30%
for testing. Subsequently, the repetitive process between the
feature selection component and the ML-library component
takes places such as to identify the most optimal features for
the best-fit model. The resulted models are assessed based
on two error and one computational cost metric. The indices
considered in this work in terms of prediction error are
the mean absolute error (MAE) and the mean squared error
(MSE), whereas for computation, we account the time taken to
obtain a prediction. We briefly describe each metric as follows.



1) MAE: It depicts the mean of all absolute values of the
difference between the actual and predicted power values
defined as:

MAE = m−1
m∑
t=1

| xt − x̂t | (5)

where t ∈ T , m is the test set length, xt, x̂t represent
the actual power measurements and the estimated power
measurements, respectively.

2) MSE: It depicts the mean of the squares of all differences
between the actual and predicted powers defined as:

MSE = m−1
m∑
t=1

(xt − x̂t)2 (6)

3) Computational complexity: The time taken by the ML-
based model within the DRES profiling system to produce
prediction for the output power of a given wind turbine.

IV. EVALUATION

A. ACF and PACF analysis

As a part of our pre-processing software component pre-
sented in Section III-B1, we utilize ACF and PACF analysis
to test the correlation structure of the generated power mea-
surements. Fig. 3 presents the result of ACF analysis. It can
be observed that there is a high positive correlation with the
lags outside of the 95% confidence interval.

Fig. 3: Auto-correlation function (ACF) of the generated
power.

We observe from ACF plot a high inter-correlation among
the historical components of the generated power measure-
ments. This can give rise to unreliable statistical inferences
due to multi-collinearity. Therefore, we use the PACF plots, to
only retain the relevant lags, in contrast to the complete ACF
plot, and remove those which yield indirect correlations. In
Fig. 4, the PACF plot shows that lag1 has the highest positive
correlation before it first intersects the confidence interval.
Therefore, we utilize the lag1 values of the generated power
as a feature feed to the learning techniques in this study and
it can be written as:

Lag1(P avg
t ) = P avg

t−1 (7)

Fig. 4: Partial autocorrelation function (PACF) of the generated
power.

B. SCADA-based wind power modelling

As discussed in Section III-C, our evaluation methodology
firstly targets to compose a ground truth profiling model using
SCADA-based measurements from the La Haute Borne wind
farm. Hence, a total of 28 year-wide SCADA-based features
were initially scrutinised by the feature selection component
within the DRES profiling system presented in Section III-B.
The iterative feature selection process within the DRES profil-
ing system has demonstrated that the RFE technique produced
the best set with a total of 13 SCADA-based features for
SVR. The filtered set of features is composed by a range of
mechanical (e.g., pitch angle and generator converter speed),
power (i.e., apparent power and the lag1 feature) and weather
(i.e., wind speed) features. Whereas, FI for KNNR, XGBoostR
and MLPNN with a total of 3 features including a the converter
torque, apparent power and the lag1 measurements. Hence,
these ML techniques covered all exogenous as well as intrinsic
factors related to the wind-turbines behaviour in terms of
power generation.

Under the combination of the selected features with the
various ML-based regression components of the DRES pro-
filing system, we have witnessed improved regression models
in all of the ML-based algorithms. As illustrated by Fig. 5,
the designed feature selection schemes positively impacts
the performance of KNNR, SVR, XGBoostR and MLPNN,
reducing MAE errors to around 0.000847, 0.00027, 0.000621
and 0.005623 kW respectively, where the MAE for these
(based on all features) are approximately 0.008232, 0.000302,
0.000975, 0.013537 kW . Similar trends are also observed for
the MSE. In parallel, the SVR model under the RFE-based
feature selection produced an extremely low MAE and MSE;
MAE0.00027 kW and MSE ≈ 0 kW 2, for almost all sampling
bins.

C. SCADA-agnostic wind power modelling

Following the same pre-processing, normalization and fea-
ture selection performed within the DRES profiling system (as
with the SCADA-based profiling), we have produced regres-
sion models using third-party weather features. Besides the
lag1 of the power measurements, there was the identification
of more two weather features within the core learning process.
Our process utilised measurements from the three third-party



Fig. 5: Prediction errors for wind power modelling based on
SCADA measurements.

data providers including measurements such as wind direction
and gust.

We observe that the prediction results for wind power
regression based on the freely available third-party weather
features varied slightly from the SCADA-based profiling.
Nonetheless, the conducted experiments indicate no major dif-
ference in the obvious pattern for the estimated power curves
as depicted in Fig. 6. Moreover, the performance analysis of
the resulted ML-based regression models in relation to the
MAE and MSE respectively shows that SVR outperforms the
rest of formulations.

As evident, the SVR technique has a minimum MAE and
MSE, where MAE is 0.003487 kW and MSE ≈ 0.0 kW 2.
Meanwhile, the MAE for KNNR, XGBoostR and MLPNN are
0.008863, 0.004184 and 0.003757 kW , and MSE are 0.00018,
0.000062 and 0.00004 kW 2 respectively. Hence, the error
performance shows a slightly higher error rate than SCADA-
based but arguably to be of minimal importance for large-
scale accounting and optimisation processes as required by
the main grid. In parallel, under the scenario of a windfarm
owner or third-party company with no access to SCADA mea-
surements, we highlight that the approximate generation and
potentially financial forecasting is not necessarily affected on
a macroscopic scale. In addition, the actual SCADA-agnostic
estimation is of minimal financial cost in comparison with
a subscription-based SCADA-based approach as it usually
happens.

As depicted in Fig. 7, the computational cost for producing
a reasonable regression model is far smaller using a SCADA-

Fig. 6: SCADA-based and SCADA-agnostic power curve.

agnostic approach in comparison to SCADA-based4 approach.
We also witness that the KNNR model can act as a good
approach for real-time use, however with some minimal trade-
off with respect to their error rate performance. For long-
term estimation processes, we observe that the MLPNN along-
side the SVR formulation promotes slightly more accurate
SCADA-agnostic wind power profiling.

In general, the simplicity of utilising just three freely
available features in comparison to expensive SCADA-based

4On a 64-bit Windows operating system with Intel Core i7 (7th Gen) CPU
with 2.70 GHz clock cycle and 12 GB RAM.



Fig. 7: Computational time comparison.

monitoring and measurement components could effectively
pave the path towards new directions on real-time and low-cost
DRES power profiling.

V. CONCLUSION

The increasing utilisation of DRES in the modern smart
grid engages a complex energy trading model with vague
policies in terms of hardware and software ownership in
DRES deployments. Hence, it is not uncommon for inde-
pendent DRES deployment owners to not have a complete
control or access of their installations through SCADA systems
managed by third-party providers or main grid operators. In
this work, we propose a SCADA-agnostic DRES profiling
system and exhibit its applicability on a proof-of-concept
study over a real wind turbine installation. We demonstrate
that by simply utilising freely available third-party weather
data with available regression models, we can reasonably
match up to a great scale the regression accuracy perfor-
mance of models utilising SCADA measurements. Moreover,
the proposed SCADA-agnostic profiling is achieved with a
minimal set of weather features in contrast to the SCADA-
based approach and under a lower computational cost. Thus,
paving the path towards independent and cost-efficient power
generation profiling serving a range of envisaged smart grid
applications such as Virtual Power Plants.
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