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Abstract—LoRa is a popular wireless technology that enables
low-throughput (bytes) long-range communication (km) at low
energy consumption (mW). Its transmission, though, is on one
side prone to interference during long on-air times, and on
the other side subject to duty cycle restrictions. LoRaWAN
defines a MAC and a vertical stack on top of LoRa. LoRaWAN
circumvents the above limitations by imposing a centralized
network architecture, which heavily reduces downlink capacity
and prevents peer-to-peer communication. This makes it unusable
for many deployments. The Deterministic and Synchronous
Multichannel Extension (DSME) of IEEE 802.15.4e benefits of
time-slotted communication and peer-to-peer communication and
has the potential to overcome LoRaWAN limitations. In this
work, we implement DSME on top of LoRa in the open source
IoT OS RIOT and open the field for first evaluation experiments
on real hardware. Initial results indicate that DSME-LoRa not
only enables reliable peer-to-peer communication for constrained
IoT devices, but also scales with an increasing number of nodes.

Index Terms—Wireless, 802.15.4e, IoT networking

I. INTRODUCTION

LoRa is a popular wireless technology for the Internet of
Things (IoT) that achieves long range transmissions (km) at
minimal power consumption (mW). The narrowband chirp
spread spectrum modulation is robust against interference
and doppler effect. LoRa operates in unlicensed subGHz
spectrums, which are subject to regional band regulations.
LoRaWAN is a cloud-based network architecture for LoRa that
organizes all communication between constrained Endnodes
(ENs) and user applications. LoRaWAN consists of three
components: Application Servers (ASs) provide an interface
for business logic implementation; A centralized Network
Server (NS) coordinates communication including the PHY
configuration, media access, and routes between ASs and
ENs; Gateways (GWs) act as a LoRaWAN backbone and
mediate packets between ENs and the NS. Three constrains are
worth stressing: First, downlink packets are heavily regulated.
Regional band restrictions limit the number of downlink
packets per GW. Hence, high downlink loads lead to un-
predictable and long latencies as well as packet loss. This
makes LoRaWAN impractical for many applications. Second,
the centralized architecture of LoRaWAN challenges data
sharing between users, between ENs, and complicates the
development of distributed applications across the Internet.
Higher-layer protocols (IP, CoAP) run inefficiently on top of
LoRaWAN networks. Third, LoRaWAN requires a permanent

infrastructure backhaul. Intermittent GW connectivity prevents
data forwarding between the LoRaWAN network and ENs.
Since peer to peer communication is impossible between ENs,
unreachable GWs prevent communication.

We argue for replacing the LoRa MAC to overcome Lo-
RaWAN limitations. Zorbas et al. [1] summarize the potentials
of time-slotted MAC layers for LoRa and provide a literature
survey. They propose TS-LoRa [2] as a LoRaWAN alternative.
It adds a time-slot extension to LoRaWAN and introduces
group ACKs to save downlink, but the solution still requires
a permanent infrastructure backhaul. Haubro et al. [3] present
an approach for IEEE 802.15.4e TSCH mode (Time Slotted
Channel Hopping) over LoRa which suggests performance
potentials. We argue that IEEE 802.15.4e DSME (Deter-
ministic and Synchronous Multichannel Extension) is better
suitable for LoRa radios. In contrast to TSCH, DSME provides
both contention-access transmission (using CSMA-CA) and
contention-free transmission (time- and frequency multiplex).
Three built-in features of DSME make it an appealing candi-
date for LoRa. First, DSME creates slot schedules natively in
a decentralized manner, which reduces management overhead
and enables mesh and multi-hop topologies out of the box.
Second, the multisuperframe structure of DSME outperforms
TSCH in throughput and delay for high transmission duty
cycles and large networks [4]. Third, DSME supports native
group ACKs, which reduces downlink load. In our previous
work [5], we proposed a DSME-LoRa mapping scheme as
well as an information centric networking adaption [6] that
base on simulation results for time-slotted transmissions. In
this paper, we go a step further with the implementation of
DSME-LoRa on real hardware.

The contributions of this paper are the following. We intro-
duce the necessary background. (§ II). We present our DSME-
LoRa integration into the RIOT [7] network stack (§ III)
and perform first real-world measurements on constrained
IoT nodes in the open access FIT IoT-LAB testbed. Next,
we compare our practical measurements to simulation results
(§ IV) that we conduct on our previous work [5] and draw a
first conclusion about the practicability of DSME-LoRa (§ V).

II. PROBLEM STATEMENT AND CHALLENGES

DSME defines a deterministic and synchronous multichan-
nel that allows for coordinated communication. Coordination
is based on superframes, which consist of three parts: Beacon
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Fig. 1: Example of a DSME multisuperframe structure con-
sisting of two superframes per multisuperframe and a beacon
interval of two multisuperframes.

slot (BS), contention access period (CAP), and contention free
period (CFP). A series of superframes compose a multisu-
perframe, see Figure 1. Data transmission occurs during the
CAP using CSMA-CA on a single common channel, or during
the CFP using a guaranteed time slot (GTS). DSME devices
synchronize to their neighbours through (enhanced) beacons
received during the beacon slots.

The integration of DSME on top of LoRa on real hardware
imposes a series of challenges that are not present on a sim-
ulation environment. (i) Longer on-air times of LoRa require
a longer superframe duration, which increments the beacon
interval time. Thereby, devices are prone to de-synchronization
due to clock drift between neighbours. (ii) LoRa transceivers
do not add RX timestamps to received frames, which DSME
requires to calculate the time difference to a neighbour and
perform synchronization. (iii) In case of time critical opera-
tions, DSME accesses a transceiver based on Interrupt Service
Routine (ISR). On the one hand, this limits the responsiveness
of real time operating systems, and, on the other hand, faces
concurrent access to the hardware bus (SPI). (iv) Common IoT
LoRa hardware is constrained in terms of memory, typically
around 100 kB of ROM and 10 kB of RAM, which is enough
for a LoRaWAN stack. In contrast to LoRaWAN, DSME
requires more memory due to the complexity of the MAC.

III. IMPLEMENTATION

We integrate the openDSME [8] MAC implementation to
the networking subsystem of RIOT (namely GNRC). GNRC
provides a generic inter-module messaging interface (GNRC
NetAPI), a packet dispatch registry (GNRC Netreg) and a
centralized packet buffer (GNRC Pktbuf). RIOT provides a
hardware abstraction layer for standard 802.15.4 radios, as
well as a timer abstraction layer.

A. DSME-LoRa Integration

Figure 2 presents an overview of the software modules and
exposes existing RIOT modules and APIs (white), openDSME
modules and APIs (purple), and our contributions (orange).

GNRC Netif DSME implements the DSME network inter-
face. This enables applications or an IP stack to communicate
via the GNRC messaging interface NetAPI and the packet
dispatcher registry GNRC Netreg. Our network interface im-
plementation utilizes the DSME Adaption Layer internally,
which is a convenience API provided by openDSME, to access
the DSME Layer that implements the MAC logic.

DSME Message implements the openDSME packet inter-
face (IDSMEMessage) that allocates memory in the GNRC
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Fig. 2: DSME-LoRa integration into the networking subsystem
of RIOT.

Pktbuf, which facilitates a transparent integration of DSME-
LoRa with the networking subsystem. GNRC Pktbuf provides
three promising features: (i) centralized storage that prevents
data duplication. (ii) A scattered packet representation which
allows to append chunks of bytes in a packet, without memory
reallocation. (iii) It supports allocation with malloc instead
of static memory allocation, to operate on the same memory
pool as openDSME which bases on heap.

DSME Platform implements the DSME platform interface
(IDSMEPlatform) which acts as a hardware abstraction layer.
It includes two parts. (i) The implementation of transceiver
access routines on top of the 802.15.4 Radio HAL in RIOT.
We reconfigure openDSME to adjust to LoRa symbol times,
based on our proposed PHY configuration [5]. We use the
ValidHeader IRQ of the transceiver to tag the LoRa PHY
header and calculate the RX timestamp of the LoRa frame.
(ii) The access to timer functionalities of the operating system.
Thereby, we configure the high-level timer to use a precision
real-time timer peripheral, to reduce de-synchronization due
to clock drifts. We leverage the processing of radio and timer
events to the RIOT scheduler, to ensure DSME does not access
the transceiver during ISR.

LoRa Driver implements a 802.15.4-type device driver for
the LoRa transceiver. We map the LoRa PHY configuration
proposed in [5] to 16 LoRa channels, and CCA to the channel
activity detection feature (CAD) of the radio.

B. Experiment Deployment

We run DSME-LoRa on the Saclay site of the FIT IoT-
LAB testbed which provides 20 x B-L072Z-LRWAN1 nodes
that base on an ARM Cortex-M0+ CPU and contain a SX1276
LoRa transceiver. The platform provides 192 kB of ROM and
20 kB of RAM. To meet these constrains with our implemen-
tation, we (i) limit the number of superframes per multisu-



ROM RAM

Component [kB] Prop. [%] [kB] Prop. [%]

Application 1.07 0.99 2.17 18.39
openDSME 64,59 59.77 7.67 65.13
OS (incl. GNRC) 39.17 36.24 1.94 16.48
LoRa Driver 3.25 3.00 0.00 0.00

Total 108.06 100.00 11.78 100.00

TABLE I: ROM and RAM requirements for DSME-LoRa inte-
gration in RIOT, measured on a B-L072z-LRWAN1 platform.
Prop. [%] depicts the proportion of the total image size.

perframe to one. This reduces the number of available GTS,
hence, decreases RAM requirements; (ii) configure GNRC
Netreg to use callbacks instead of IPC, which saves one
additional receive thread.

We deploy a sensor-actuator network that consists of one co-
ordinator node, 5/10/15 sensors that transmit 16 Byte payloads
to three actuator nodes, at an exponential packet rate. Hence,
our network incorporates 19 LoRa devices at max. Thereby,
we analyze data transmission in CAP and CFP, and we vary
the number of sensors as well as the average transmission rate.
For the CFP case, a static resource allocation scheme allocates
transmission cells during bootstrap, to prevent slot negotiation
during experiment run. The cell assignment adds one unique
cell to each sensor-actuator pair, in a multisuperframe.

We compare our real-world measurements to simulation
results that we conduct in OMNeT++ /INET, based on the
environment that was presented in [5].

IV. EVALUATION

A. Memory Requirements

Table I shows the firmware size, separated into ROM
(text + data segment) and RAM (bss + data segment), for
a DSME-LoRa firmware image that we compile for our test
platform. Thereby, we group the memory consumption into
four components: The application utilizes ≈ 2 kB of RAM
for thread stack allocation. We utilize default values here,
which gives enough space to operate standard IoT applications
using sensors and actuators. openDSME contains the core
MAC implementation, as well as the DSME Adaption Layer,
DSME Platform, and DSME Message (compare Figure 2).
This contributes the biggest proportion of 60–65% to the total
firmware size. It is noteworthy, however, that the implemen-
tation maintains a variety of data structures that enable a
direct use in the INET simulation framework. The embedded
integration would benefit from further optimization. Operating
system (OS) includes the kernel, scheduler, drivers, and OS
utilities (e.g., a shell), as well as the dependencies of the
networking subsystem GNRC. Hence, we account our GNRC
Netif DSME network interface to that group. In total, this
requires ≈ 40 kB of ROM, and ≈ 2 kB of RAM, which is
in line with former analyses [7]. Finally, the integration of
our LoRa transceiver driver below the 802.15.4 Radio HAL
operates frugal and only requires ≈ 3 kB of ROM.

The firmware requires a total of 108.06 kB in ROM and
11.78 kB in RAM which fits our target platform. The ‘unused’
RAM of 8.22 kB is utilized for dynamic runtime memory
allocation (heap). Three operations of openDSME make use
of the heap. (i) allocation of a packet (92 Bytes plus size of
the MAC data frame without frame checksum), (ii) allocation
of a GTS slot (44 Bytes), and (iii) allocation of a neighbour
queue entry (124 Bytes). A neighbour entry is instantiated
on every GTS association with a new neighbor node. As
an example, a device that allocates 6 GTS with 3 different
neighbours schedule 5 frames (each with a size 25 Bytes). This
requires 6 · 44+3 · 124 = 636Bytes of for slot allocation, and
5 · (92 + 25) = 585 Bytes for packet allocation, which are
allocated on the heap using malloc.

B. Data Transmission Performance

Fig. 3 shows the distribution of completion times and the
packet reception ratio (PRR) for relaxed (Fig. 3a&3b) and
stressed (Fig. 3c&3d) data transmissions. We separate CAP
and CFP transmissions and show real-world measurements
next so comparable simulation results for three network sizes
(5/10/15 nodes).
Transmission during CAP.Our results show that the time to
completion increases with an increase of network size (Fig. 3a)
and a decrease of the transmission interval (Fig. 3c). Both
cases increase the amount of on-air traffic. As a result, the
number of failed CCA attempts increases and a higher number
of frames delay until CCA reports a clear channel. Packets stay
in the MAC queue until a re-attempt succeeds and the MAC
receives a valid ACK. Hence, the average time to completion
increases. Frames that face a channel busy have a higher
chance of collision. Note that CCA is prone to inaccuracies,
hence, the MAC transmits a fraction of packets when the
channel is actually busy which leads to wireless interference.

In the relaxed scenario (Fig. 3a), CSMA-CA leads to a
PRR of 100 %, regardless of the network size. In contrast,
in the stressed scenario (Fig. 3c) the PR decreases drastically
with the number of nodes (<50 % with 15 nodes). This is due
to exceeded CCA attempts which leads to discarded packets
already on the sender, and remaining packet collisions on-air.

Our experimental measurements converge to simulation re-
sults. Differing channel models in the simulation environment
and the physical channel upfront explain the small variations.
Transmission during CFP. In the relaxed scenario (Fig. 3b),
the time to completion does not vary with the network size, be-
cause transmissions occur during a dedicated GTS. Hence, all
transmissions are collision free and have the same throughput
(one packet per multisuperframe). When the queue is empty,
the MAC queue schedules packets in the next available slot.
As a result, the time to completion is upper bounded by the
duration of a multisuperframe.

Reducing the transmission interval reduces the chances of
transmission when the MAC queue is empty, due to stress
and queue saturation. The time to completion in the stressed
scenario (Fig. 3d) increases >10x, because the transmission
interval is shorter than the duration of a multisuperframe.
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Fig. 3: Distribution of time to completion and PRR for varying number of nodes.

This puts the MAC queue is an unstable condition in which
the MAC schedules packets when the queue is (nearly)
overflowed. In these cases, the MAC layer queueing delays
transmissions by multiples of a multisuperframe duration.
Naturally, the fraction of packets with a time to completion
upper bounded by one multisuperframe duration decreases.

The first transmissions in Fig. 3d (0–60 s) reflect an initial
transient phase that fills the MAC queue sequentially. These
packets have a short time to completion. Tqo represents the
completion time of the last packet in a saturated queue,
assuming the MAC transmits all queued packets without
retransmissions. Nonetheless, a small fraction of packets are
still retransmitted and the time to completion exceeds Tqo.

The PRR does not vary with the network size, as a result of
collision free transmissions. Hence, the cause of packet loss
is either (i) channel interference or (ii) MAC queue overflow.
In the relaxed scenario (Fig. 3b), (i) holds and reveals a high
reception ratio of 99.8 %, due to the robust LoRa modulation.
The stressed scenario (Fig. 3d), in contrast, shows the effect of
(ii) and reveals a low reception rate of ≈ 65 % due to discarded
packets by sender when the MAC queue is full. Note that the
PRR does not vary with the network size, even under stress.

Similarly to Fig. IV-B, differences between simulation re-
sults and real world experiments are small and explained by
a varying number of retransmissions. While our simulations
get along without retransmissions, the real world experiments
incorporate sporadic retransmissions that increase the comple-
tion time marginally.

V. CONCLUSION AND OUTLOOK

In this paper, we started from the observation that sound
protocol analysis needs complementary methods. To close the
gap for DSME over LoRa, a cutting-edge MAC proposal for
decentralized, long-range IoT communication, we contributed
the first implementation of DSME-LoRa running on real
hardware. In contrast to existing simulations, we implemented
DSME-LoRa based on RIOT, an open-source IoT operating
system. We evaluated the performance on resource constrained
hardware in an open-access testbed. Our measurement results
are on par with prior simulations.

Our experiments show that DSME-LoRa enables node-to-
node communication in long-range network scenarios. Data
transmission during the contention access period is subject
to packet collisions, which leads to degradation of time to
completion and packet reception ratio, when traffic increases.
Nevertheless, the CAP is typically only used to negotiate CFP
resources. Data transmission during CFP, however, enables
reliable packet delivery with deterministic latencies due to
exclusive time-frequency slots. The delivery ratio degrades
with stress in the MAC queue, however, the network size does
not affect the time to completion using CFP.

Our research agenda is twofold. First, we will explore low
power capabilities of DSME-LoRa on hardware. Second, we
will adopt concepts proposed by the IETF 6TiSCH group,
taking advantage of built-in scheduling features of DSME
to enable multi-hop communication. Thereby, we will enable
IPv6 connectivity through the network subsystem of RIOT.
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