
Blockchain-Enabled End-to-End Encryption for
Instant Messaging Applications

Raman Singh
School of Comp Sci & Stats

Trinity College Dublin
Dublin, Ireland

Thapar Institute of Engineering & Technology
Patiala, India

raman.singh@thapar.edu

Ark Nandan Singh Chauhan
School of Comp Sci & Stats

Trinity College Dublin
Dublin, Ireland
chauhaar@tcd.ie

Hitesh Tewari
School of Comp Sci & Stats

Trinity College Dublin
Dublin, Ireland
htewari@tcd.ie

Abstract—In this era of ubiquitous social media and messaging
applications, users are becoming increasingly aware of the data
privacy issues associated with such apps. Major messaging
applications are moving towards end-to-end encryption (E2EE)
to give their users the privacy they are demanding. However
the current security mechanisms employed by different service
providers are not unfeigned E2EE implementations, and are
blended with many vulnerabilities. At present, the major part
of the E2EE mechanism is controlled by the service provider’s
servers, and the decryption keys are also stored by them in
case of backup restoration. These shortcomings diminish user
confidence in the privacy of their data when using these apps. A
public key infrastructure (PKI) can be used to circumvent some
of these issues, but it comes with high monetary costs, which
makes it impossible to roll out on a global scale. This paper
proposes a blockchain-based E2EE framework that can mitigate
many of the contemporary vulnerabilities in today’s messaging
applications. A user’s device generates the public/private key
pair during application installation, and asks its mobile network
operator (MNO) to issue a digital certificate and store it on a
public blockchain. Any user can fetch a certificate for another
user from the application server, and communicate securely with
them using a ratchet forward encryption mechanism.

I. INTRODUCTION

“Data is the new oil” and big technology companies are
using every tool at their disposal to store and utilize user data
for commercial gain, as the personal and behavioral data of
their users is worth millions of dollars to them if mined to its
maximum potential. For example, a simple message exchange
with a loved one or a friend about a visit to a cafe or a review
of a local fashion store can generate significant insights for big
technology companies, and can be sold to third parties, given
the large number of users on their platforms. However, users
are slowly becoming aware of privacy issues associated with
these apps, and are increasingly wary of being listened to or of
their actions being monitored by these technology companies.
The majority of service providers do not charge an upfront fee
for the services provided by them, but openly make use of user
data for generating more profit than the underlying service
costs. The saying “if you are not paying for the product,
then you are the product” signifies these free services, where
companies make revenue by advertising products to you. Many
users willingly share personal information or documents like

photos, driver licenses, passports, bank account details, etc.
through these messaging apps, that make them vulnerable to
identity theft or other cybersecurity attacks. There is also
a chance of leakage of sensitive information like business
dealings, intellectual property, non-disclosure agreements, etc.
For all of the above reasons, the fundamental right of privacy is
prime and should be provided for all online communications.

The latest update of user policies by WhatsApp [1] once
again highlights the awareness of privacy issues in online
communications. Despite WhatsApp’s claim of end-to-end
encryption (E2EE), users fear the misuse of the data collected
by the company and its associated organizations. To protect
their privacy, many users have started migrating to the more
secure Signal App [2]. Both these apps make use of Sig-
nal’s security mechanism, but the open-source nature of the
Signal App provides more confidence to its users, whereas
WhatsApp’s implementation is proprietary and not open to
scrutiny by independent third parties. Similarly, the roll out
of 5G networks around the world is slowing because of the
backlash faced by Huawei [3], due to doubts circulated about
privacy violations by its 5G equipment. It has been alleged
by intelligence agencies around the world that Huawei’s 5G
equipment can capture plaintext data while en-route to a
destination, which violates the requirement of E2EE for data
communications. Whether these claims are true or not still
remains to be proven. However the one thing these rumours
have done is to dent user confidence in these technologies.

We believe that a global public key infrastructure (PKI)
is the answer to these privacy issues. However the current
PKI model does not lend itself well to large-scale deploy-
ment, primarily because of the cost involved in issuing and
maintaining digital certificates for the many millions of users.
To resolve the PKI deployment issue, in this paper we pro-
pose a blockchain-enabled E2EE framework that can provide
real end-to-end encryption for online communications. The
blockchain makes it possible to implement the large-scale PKI
system virtually at “zero cost” [4]. Unlike WhatsApp, the
proposed framework never allows the server to store any keys,
or to participate in the encryption/decryption process. The
public/private keys are generated by users and they never share

ar
X

iv
:2

10
4.

08
49

4v
2 

 [
cs

.C
R

] 
 3

0 
Ju

l 2
02

1



Fig. 1. Sequence Diagram Illustrating Various Phases

the private key with anyone. The validity of digital certificates
is maintained by the blockchain mechanism, and no one else
other than the sender/receiver can read the message.

II. FRAGILITY OF SECURE MESSAGING APPS

Many popular messaging applications like WhatsApp now
provide E2EE channels for their users. The WhatsApp and
Signal apps use the same Signal protocol [5] for key exchange
and encryption, but use different messaging protocols. At
install time the application client creates a number of keys
and sends them to the WhatsApp server, where the server
stores the keys against a user identifier [6]. WhatsApp has the
option of verifying the public keys of users, but the mechanism
employed by it are not robust and have serious vulnerabilities
from session hijacking. Apart from that, there is no trusted
third-party involvement to verify the validity of keys stored
on the WhatsApp servers.

Users have no option but to trust that the public keys
provided by the WhatsApp server are in no way altered on
the WhatsApp databases or by a man-in-the-middle (MITM)
attack. The design of WhatsApp also makes it possible for
attackers to infiltrate a messaging group. Attackers then have
the liberty to modify the information of the group as it is not
encrypted, and hence chances of becoming a group member
exist. An attacker can also silently drop messages and send an
acknowledgment to the sender that gives the impression that
the receiver received the message [7]. In recent times What-
sApp has been keen to update its security policies. The new

security policies allow it to share user details like account in-
formation, user connections, transaction/payment-related data,
usage/log information, location information, cookies, etc. with
parent/sister companies such as Facebook [8]. The location of
a user can be accessed by governments and other organizations
easily because WhatsApp now stores this information on its
servers.

For a business customer who is using a WhatsApp Business
Account and Facebook’s secure hosting infrastructure, the
messaging protocol is different from the free user accounts.
When Facebook acts as a hosting provider to a business, it
will use the messages it processes on behalf of the business
and at the instruction of the business. Thus the messages
cannot be considered end-to-end encrypted as they can be
accessed by Facebook and other businesses for marketing
purposes/advertising on Facebook. This means that if a non-
business WhatsApp user interacts with a business account their
chats cannot be considered end-to-end encrypted.

The way WhatsApp handles the backup mechanism does not
provide true end-to-end encryption. The backup copy is stored
on the cloud of the user based on their operating system such
as Google Drive, OneDrive, iCloud, etc., but the decryption
key is stored on the WhatsApp servers. Whenever a user wants
to restore a backup, the WhatsApp server sends the user’s
decryption key to his/her device. This mechanism poses a
serious vulnerability to the confidentiality of the messages
stored in the backup. On the one hand, the WhatsApp server
will always have the liberty to decrypt messages, while on



the other hand hackers can copy the backup and trick the
WhatsApp server to send the decryption key to them.

Other popular messaging applications like Signal and
Threema [9] have a similar issues when it comes to end-
to-end encryption. Since every group member in Signal has
administrative privileges, hackers will have the liberty to
contribute to the group messaging which makes infiltrating
the group possible. The Signal protocol is designed to provide
a mechanism to detect which messages are not received by
the recipient, but this is not effective, and messages can still
be secretly dropped during the communication. It is also
possible for malicious users to re-order the received messages
by manipulating the server. Researchers have demonstrated
breaches in security in the Threema application. They found
that perfect forward secrecy, future secrecy, or traceable deliv-
ery is not achievable in the application. The researchers also
proved that the messaging application can be used to resend
the messages without detection of duplicate messages. The
application orders the received messages using receiving time
and the sending time is not protected on the end-to-end layer.
Therefore, it is possible for the malicious users to arbitrarily
reorder the messages during communication [7].

III. BLOCKCHAIN-ENABLED E2EE FOR INSTANT
MESSAGING

Our proposed blockchain-backed E2EE mechanism aims
to provide real confidentiality without any fear of the sharing
secret keys with third parties like instant messaging (IM)
servers. The secure messaging mechanism spans across many
entities such as mobile network operator (MNO), blockchain
nodes, IM servers, sender and receiver devices. Fig. 1 details
the sequence diagram of the proposed security framework for
these phases. The figure also details the various cryptographic
key generation procedures required by our system. We make
use of a “permissioned” blockchain with entities such as the
MNOs and IM servers authorized to write to the blockchain
via their attached blockchain node.

Phase 1 - Certificate Generation and Registration: The
process starts with the registration of users with the IM server
as shown in Fig. 2. A user downloads the messaging app and
while installing it creates an asymmetric public and private
key pair. The public key is shared with associated MNO that
in turns verifies the public key and issue a digital certificate to
the user. The same certificate is also stored on the blockchain
node connected to the MNO. The MNOs in our system are a
trusted third-party (TTP). The IM server is also connected to
a blockchain node and has access to stored digital certificates
using a users’ unique identifier.

In the proposed framework, Alice needs to fetch Bob’s
certificate from the IM server before she sends messages to
him and vice versa. The IM server and MNO both have the
option to verify the authenticity of the certificates stored on
the blockchain node. MNOs also provide a mechanism for
users to access the blockchain node and verify the certificates
of receivers. The one problem with the present X.509 based

Fig. 2. Certificate Generation and Registration

PKI system is with efficient and time-bound revocation of
issued certificates. In order to revoke an issued certificate,
the system needs to enter it in Certificate Revocation List
(CRL) and the CRL should be propagated widely within the
system. The window between actual entry in CRL and its
subsequent update with each entity may invoke misuse of
the revoked certificate. This problem can be solved using
blockchain-backed PKI as the virtue of its functionality, only
the latest transaction will be fetched first. It means, if an
authenticated entity wants to revoke any certificate, it will just
add a dummy certificate on the blockchain and this “dummy”
certificate will be fetched first, telling the fetching entity that
the particular certificate is no longer valid. In this way, there
will be no need to prepare lengthy CRL [4].

Phase 2 - Sending a Secure Message: Alice’s messaging
app generates the shared master secret key using the secret key
of Alice and the public key of Bob. A chain key is then created
using a hash based key derivation function (HKDF), and a
message key is then derived from these keys. The chain key
is regularly updated using the ratchet forward method and the
sender encrypts messages using the dynamic message key. If
Bob does not reply to Alice’s messages, in this case, Alice
will generate a new chain key, encrypt the message using the
newly created message key and again update the chain key.

The ratchet forward mechanism [10] updates the chain key
for every new message thus providing forward secrecy to the
system architecture. This ensures that if any single session
key gets compromised, the rest of the data on the system
remains safe. Only the data protected by the compromised
key is vulnerable. Forward secrecy ensures that if the current
key is exposed to an attacker, the attacker cannot read the
messages of any previous sessions.

The Signal protocol also provides end-to-end encryption
using the ratchet protocol along with various cryptographic
elements like HKDF, symmetric key cryptography and
Elliptic-curve Diffie–Hellman (ECDH) key exchanges. ECDH
is a key agreement protocol which helps two different parties
to establish a shared secret over an insecure channel. These
two parties should have an elliptic curve public-private key



Fig. 3. Sequence Diagram Illustrating Backup and Restoration

pair, and the shared secret is used to compute a symmetric
key. To generate the same symmetric key, sender and receiver
both should agree on elliptical curve type and key size
beforehand. Compared to other public-key algorithms, ECDH
offers faster computational speeds and suitable smaller key
sizes for the same level of security [11].

Phase 3 - Receiving a Secure Message: At the receiver
side, the messaging app can generate the message key using
the same mechanism ad continue to decrypt the received
ciphertext. The message key is generated from the chain key
and the chain key will be updated after that. No shared secret
key is stored on the IM server or shared with the receiver
eliminating any vulnerability arising due to it. The similar
framework can be extended to a proper decentralized version
of a secure messaging application.

In this version, no intermediate IM server is required.
The sender can fetch the certificate of a receiver from
the blockchain associated with the MNO. The encrypted
messages are then forwarded to the receiver directly without
involving any IM server in-between. This kind of setup is
more suitable for organization-to-organization messaging
rather than individual users, because all users may not be
online at all times and hence may drop the intended messages.

Phase 4 - Backup and Restoration: This phase talks
about backup and restoration of user data. Unlike WhatsApp
where the backup decryption key is stored on the application
server, our proposed framework advises users to generate

their backup decryption key using a known secret (e.g. a
password). The backup data is stored on the user’s Google
Drive/iCloud/OneDrive etc. and encrypted by the backup key.
When the user changes their device, they can download their
backups from the cloud drive and decrypt them using their
backup key generated from a known secret. Fig. 3 depicts the
sequence diagram for the backup and restoration phases. Since
the backup key is generated using the known secret, the user
can re-generate it using the same process with the same known
secret. If the user loses his/her backup key and also forgets the
known secret there is no way to recreate the key.

IV. RESULTS ANALYSIS

The IM server in our proposed framework is implemented
using Google Firebase [12], whereas the messaging app with
features like login, registration, one-to-one IM, group IM,
backup, and certificate verification is developed using an An-
droid application. To implement the blockchain functionality,
the Ethereum [13] blockchain is implemented on the Docker
[14] platform. Our analysis tries to determine the performance
of the AES256 in CBC mode for encryption and decryption,
HMAC with SHA256 for message verification code, and
the total time taken for the E2EE process on the Android
emulators. Based on the string input of varying lengths, the
time for various processes within the application has been
measured. The experiments were conducted using the Google
Pixel 4 XL emulator using Google APIs Intel Atom(x86)
system image with 1536Mb of RAM and 384Mb heap size.



Fig. 4. Encryption Time Analysis

Fig. 5. Decryption Time Analysis

Fig. 4 shows the graph for three processes: AES encryption
time, MAC calculation time, and the Total encryption time
in seconds against string inputs of up to 10,000 characters.
Using the data gathered from the graph, the average AES
encryption time was found out to be 576.508µs, the average
MAC calculation time was 778.1958µs, and the average Total
encryption time was 1354.859µs. The graph reveals a gen-
erally linear relationship between the amount of time taken
for AES encryption in CBC mode with increasing character
lengths. The results show that a total encryption time of
3995.663µs is taken when the character length is increased
to 10,000. The results also show that AES encryption time
is almost stable with increasing character length, but MAC
calculation time varies with different character lengths.

Fig. 5, shows the graph for decryption time analysis for
calculating the AES-CBC decryption time, MAC verification
time, and the Total decryption time. The average AES decryp-
tion time was found out to be 1699.179µs, the average MAC
verification time was 1370.069µs, total average decryption
time was 3069.248 micro-seconds. The results show that total
decryption time is stable to a large extent with increasing
character lengths.

V. CONCLUSIONS AND FUTURE WORK

With the lack of worldwide implementation of a public key
infrastructure, existing messaging applications are providing
end-to-end encryption using their own servers as a trusted
entities. Backup decryption keys are also stored on the IM
server and the end-to-end encryption/decryption mechanism

is controlled by service providers themselves. The encryption
keys are stored on the organization’s server if users are using
business messaging services. The current messaging services
are also vulnerable to being accessed in a group by unautho-
rized users. The primary reason for these vulnerabilities is the
absence of trusted third-party authentication of users and IM
servers.

Blockchain technology can be used to overcome these is-
sues, and it can provide a real end-to-end encrypted messaging
service. A mobile user creates public/private key pair on their
device during the application installation phase, and a digital
certificate is created by the mobile network operator (a trusted
third-party) for that user, based on information provided by
them. The public-key digital certificate is then stored on the
blockchain and the mobile user sends this to the IM server.
The same process is followed by each user and the IM server
can verify any user’s certificate from the blockchain network.
A sender can fetch the receiver‘s digital certificate from the
blockchain before she encrypts a message.

Our proposed framework does not rely on an IM server
for encryption/decryption and hence can be treated as a real
end-to-end encryption mechanism. Currently we are working
on two other important aspects of the proposed framework,
the first is for providing secure “group messaging” while the
second is for testing the “scalability” of the framework in a
blockchain-based environment. The group messaging protocol
makes use of one-to-one encrypted channels for key exchange
between users. Once a group is created, the administrator of
the group generates a group key on their device, and shares the
group key with each new member over a one-to-one encrypted
channel. Messages sent by a group member are broadcast
by the IM server in a fan-out fashion. Group messages
can be encrypted using the message key derived from the
group key with AES256 in CBC mode and HMAC-SHA256
for authentication. We will also test the proposed framework
against the scalability of a blockchain with a large number of
transactions and blocks, in terms of certificate fetching time,
certificate verification time, new certificate issuance time and
the overall efficiency of the system.

REFERENCES

[1] Simple. Secure, Reliable messaging,
https://www.whatsapp.com/?lang=en, Accessed on 08-03-2021.

[2] Signal Private Messenger, https://signal.org/en/, Accessed on 08-03-
2021.

[3] Huawei, https://www.huawei.com/en/, Accessed on 08-03-2021.
[4] H. Tewari, A. Hughes, S. Weber and T. Barry, “X509Cloud — Frame-

work for a ubiquitous PKI” MILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM), Baltimore, MD, USA, 2017,
pp. 225-230.

[5] Signal Technical Specification, https://signal.org/docs/, Accessed on 12-
04-2021.

[6] Technical White Paper: WhatsApp Encryption Overview,
http://www.cdn.whatsapp.net/security/WhatsApp-Security-
Whitepaper.pd, Accessed on 23-02-2021.

[7] P. Rösler, C. Mainka and J. Schwenk, “More is less: On the end-to-
end security of group chats in Signal, WhatsApp, and Threema”, IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 415-429.

[8] https://faq.whatsapp.com/general/security-and-privacy/were-updating-
our-terms-and-privacy-policy/, Accessed on 09-03-2021.

http://www.cdn.whatsapp.net/security/WhatsApp-Security-Whitepaper.pd
http://www.cdn.whatsapp.net/security/WhatsApp-Security-Whitepaper.pd


[9] The messenger that puts security and privacy first, https://threema.ch/en,
Accessed on 08-03-2021.

[10] https://nfil.dev/coding/encryption/python/double-ratchet-example/,
Accessed on 11-03-2021.

[11] A.H. Karbasi and S. Shahpasand, ”SINGLETON: A lightweight and
secure end-to-end encryption protocol for the sensor networks in the
Internet of Things based on cryptographic ratchets” The Journal of
Supercomputing, 77(4), pp.3516-3554.

[12] Firebase helps you build and run successful apps,
https://firebase.google.com/, Accessed on 13-07-2021.

[13] Ethereum, https://ethereum.org/en, Accessed on 20-07-2021.
[14] Docker Container, https://www.docker.com, Accessed on 20-07-2021.


	I Introduction
	II Fragility of Secure Messaging Apps
	III Blockchain-Enabled E2EE for Instant Messaging
	IV Results Analysis
	V Conclusions and Future Work
	References

