
Toward an Automated HPC Pipeline for Processing Large Scale Electron
Microscopy Data

Rafael Vescovi1*, Hanyu Li2*, Jeffery Kinnison3, Murat Keçeli4,
Misha Salim1, Narayanan Kasthuri2, Thomas D. Uram1 and Nicola Ferrier5

1Leadership Computing Facility, Argonne National Laboratory, Lemont, IL, USA
ravescovi,msalim,turam@anl.gov

2Department of Neurobiology, University of Chicago, Chicago, IL, USA
hanyuli,bobbykasthuri@uchicago.edu

3Dept. of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
jkinniso@nd.edu

4Computational Science Division, Argonne National Laboratory, Lemont, IL, USA
keceli@anl.gov

5Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
nferrier@anl.gov

* Abstract—We present a fully modular and scalable soft-
ware pipeline for processing electron microscope (EM) images
of brain slices into 3D visualization of individual neurons
and demonstrate an end-to-end segmentation of a large EM
volume using a supercomputer. Our pipeline scales multiple
packages used by the EM community with minimal changes
to the original source codes. We tested each step of the pipeline
individually, on a workstation, a cluster, and a supercomputer.
Furthermore, we can compose workflows from these operations
using a Balsam database that can be triggered during the
data acquisition or with the use of different front ends and
control the granularity of the pipeline execution. We describe
the implementation of our pipeline and modifications required
to integrate and scale up existing codes. The modular nature of
our environment enables diverse research groups to contribute
to the pipeline without disrupting the workflow, i.e. new
individual codes can be easily integrated for each step on the
pipeline.

Index Terms—Connectome, Workflow, Automation, Supercom-
puting

1. Introduction
Microscopy images are a significant source of insight

and raw information for neuroscience. Modern techniques
in electron microscopy (EM) allow scientists the ability to
image at such high resolution that every single synaptic
connection can be distinguished [1], [2], [3]. Furthermore,
acquisition automation has enabled us to acquire large vol-
umes of microscopy data spanning several resolutions with
minimal human involvement in the acquisition.

The popularization of these automated imaging systems
has made acquiring large amounts of data the standard

*These authors contributed equally to this work.

operation for many laboratories [4] [5], and although most
of them are able to physically handle the amount of data,
there is an increasing need for streamlining the pipeline.
This necessity arises because of the growing acquisition
speed of microscopes, leading to an exponential growth in
data throughput [6]. While different techniques are emerging
to solve each step of the upstream process, they still have
their own independent development communities [7], [8],
[9] and there are very few laboratories with the capability of
carrying out the entire process by themselves. Individually
these algorithms contribute to the study of neuroscience
image data; it is, however, non-trivial to chain these modules
together and deploy them in one coherent environment for
end-to-end connectomics projects.

The continuous use of electron microscopes can produce
single datasets that reach multiple petabytes of data, which
cannot be processed on local workstations or small clusters
and therefore require High Performance Computing (HPC)
facilities. We propose to deploy and chain these different
processing libraries into a single microscope to HPC work-
flow and provide a way for the user to interact with the data
and its processing in real time. Our package is implemented
in Python and is called HAPPYNeurons (HPC Automated
Pipeline for Processing Yotta Neurons) [10].

An alternative solution is the use of cloud-based services
(e.g. AWS, Google Cloud etc.), but the data size and com-
putation time make the cost infeasible for most laboratories.
On the other hand, HPC facilities at national labs have vast
storage and computing capabilities that have not been tapped
in the field of connectomics due to accessibility or differ-
ences from established technology stacks. Our pipeline aims
to address this limitation by incorporating state-of-the-art
open source connectomics tools into an HPC environment
and building an end-to-end pipeline for EM segmentation,
while increasing accessibility to users and labs.

ar
X

iv
:2

01
1.

03
20

4v
1 

 [
cs

.D
C

] 
 6

 N
ov

 2
02

0



On a technical level, we propose to use MPI [11] as
a parallelization layer for each step in order to keep the
internal mechanics of the original software mostly intact,
while achieving compatibility with most HPC infrastructure.
This allows for rapid deployment of new tools on the
pipeline. It is not the goal of our work to improve the sample
preparation or acquisition, but instead to enable the user to
take advantage of large scale computing facilities in order
to process the data. This processing is currently done in
several parts that will be described in greater detail in the
next chapter. Our contributions to the field of neuroscience
and HPC are: 1) deployment on HPC of EM tools necessary
to go from raw images to final reconstruction; 2) wrapping
the tools in an operation database that can be used to
create custom pipelines, 3) deployment of an computational
environment that permits the user to interact with, annotate,
and visualize the data without the need to transfer outside
of the HPC facility.

2. Related work
The field of connectomics has been blooming with

different communities trying to understand the underlying
connectivity map of neural tissue. In the particular case of
electron microscopy there have been parallel contributions
into sample preparation, data acquisition and the diverse
steps on the complex data processing involved. The sheer
complexity of the problem means every step of it can still
be improved and ongoing efforts on different aspects of the
problem can be seen from various labs and groups in the
community [12], [13], [14].

For alignment, computer vision methods [7], [8], [9] are
still heavily used to assemble the raw data into 3D volumes,
but are slowly being surpassed by machine learning-driven
methods [15]. Segmentation has long been the rate-limiting
step and still requires a lot of human annotation. Originally
it could take weeks to trace a single neuron through a
stack of images. With the aid of deep learning algorithms,
segmentation can be vastly accelerated. Efforts on neural
networks such as U-Net [16] and Flood-Filling Network
(FFN) [17] have proven successful for the task of automatic
segmentation of neurons.

Human-intensive data annotation is crucial to establish
datasets for machine learning approaches. The web-based
package webKnossos [18] enables laboratories to deploy
an intuitive interface to annotate datasets, without requiring
annotators to transfer up to petascale datasets between their
institution and the hosting site. We leverage webKnossos
in our work to make the increasingly large connectomics
datasets available for annotation by distant annotators.

Upon completion of reconstruction, datasets are meshed
for visualization and made available via Neuroglancer [19],
a program developed by Google that visualizes flat, black-
and-white electron images, related labels, and reconstruc-
tions as a colourful 3D forest of neurons.

3. Computational Pipeline
Electron microscope image processing follows a certain

number of pre-defined steps from raw data to a final sci-

entific result. Given the data throughput of modern micro-
scopes, executing all those steps within the same facility
as the microscope is a challenge. Figure 1 describes the
connection between the electron microscope lab at Argonne
National Laboratory and the Argonne Leadership Comput-
ing Facility (ALCF), showing the services involved in our
pipeline environment. After the microscope finishes acquir-
ing an image (or set of images), it triggers an action that
is stored on an external database server. This database of
actions then controls the transfer and processing of data
through the storage and computing resources. On the front
end side the user can either manipulate the data or the
actions to make the pipeline unique to each sample.

Figure 1: Model of the flow of data between the electron mi-
croscope facility (top side) and the HPC facility (lower side).
The microscope acquisition populates the action database
which controls the storage and computing resources. The
user can visualize and manipulate the data and actions
through web-based front ends.

For simplicity we will describe the basic steps involved
in processing electron microscope images individually. Even
though these steps are described in a sequential fashion, in
practice the processing is conducted through an iterative pro-
cess involving automated computational steps and human-
intensive guidance.

3.1. Processing methods for EM data
In order to make the the interaction with the data as easy

as possible for the user, we encoded basic operations that
can eventually be described as sequential pipelines. Since
human validation is necessary at multiple steps, the user



can choose where and when to interact with the pipeline.
These operations are described below:
Montage is the process of positioning and merging overlap-
ping image tiles into a single larger image. Given sufficient
metadata about the arrangement of the tiles, this step can be
executed largely without user intervention. We implemented
a headless macro for TrakEM2 [8] and developed a Python
wrapper for MPI parallelization of this procedure. The mu-
tual independence of image sections makes it possible to
trigger the montage operation during acquisition, once the
full set of images for a tile have been acquired, and process
it on the fly.
Alignment is the process of ensuring that neighboring im-
ages in the stack are aligned according to their contained
features, and is a crucial step for serial electron microscopy.
In our pipeline, we use AlignTK [9] to perform elastic
alignment on the montaged image stack. We implemented
wrappers for AlignTK’s core functionality to better adapt to
parallel deployment on HPC, along with a set of utility tools
for image preprocessing, including contrast normalization,
scaling, and artifact thresholding. Figure 2 shows examples
of montage and alignment images.

(a) Montage
Example

(b) Alignment example

Figure 2: Example of the montage process (left) and align-
ment process (right).

Segmentation is the process to assign unique IDs to indi-
vidual neurite objects in a 3D volume and is one of the
key challenges in connectomics analysis. The current state
of the art, FFN, has achieved great success in accuracy and
scale [14], [17], [20] over the last few years. Although it
was originally designed for distributed computing platforms
and despite preliminary efforts on distributed training [21],
it has not previously been deployed on HPC infrastructure
for large scale segmentation. In this pipeline, we made
modifications to the open source release of Google’s FFN.
First, we added MPI-based parallelization for execution at
large-scale HPC facilities. Second, we added support for
reading precomputed volume [22] data as input, in addition
to HDF5 which reduces repetitive data usage and seamlessly
integrates with the visualization engine Neuroglancer. Third,
we implemented a reconciliation step that merges overlap-
ping subvolume inference results into a final segmentation
in precomputed format.
Mask Prediction: In practice, a prerequisite for FFN is
identifying tissue masks that would disrupt segmentation.
These masks are used to omit imaging artifacts or large
objects that can make the final segmentation less accurate,
like cell-bodies and blood vessels. For cell-bodies and blood
vessels, we implemented and ran a classic 2D U-Net [23].

We created manual annotations on every 100 images at 4x
resolution and used these to train a U-net model, which was
used for patch-wise inference over the full volume. Manual
seeds were placed at the center of each cell-body, and a 3D
watershed algorithm was run to provide initial segmentation
of cell bodies and blood vessels. Figure 3 shows the process
of creating the cell mask from the U-Net probabilities (on
the left) to the actual cell body masks (on the right).

(a) U-Net cell body probabilities (b) U-Net Watershed Overlay

Figure 3: Result of the U-Net segmentation of large body
sizes. These can be subsequently used to mask-out already
known objects in the final segmentation.

Mesh Generation produces a mesh-based representation to
support 3D visualization of the segmented objects. Currently
this step is achieved using the Python library Igneous [24].
Skeletonization creates a point graph for every object and
can also be processed by using the TEASAR [25] imple-
mentation inside Igneous.
Manual Annotation: We used WebKnossos [18] to provide
manual volumetric annotations as a training/validation set
for FFN. This step is human-intensive, and is typically
approached iteratively, with the biologist annotating an ini-
tial sample partially, rerunning training and inference with
FFN, and making further corrections. To accommodate data
format requirements of different packages and to streamline
this process, we implemented utilities for easy transforma-
tion of data formats between WebKnossos cube, which is
used by WebKnossos, stacks of tiff images, and HDF5 [26],
which are traditional data formats, and precomputed [22],
which is used by CloudVolume and Neuroglancer.

User inspection of intermediate results between pipeline
stages is currently essential. To this end, we have developed
a number of facilities to enable interaction with the datasets
that reside on ALCF systems. In the case of connectomics
datasets, the intermediate results can be very large, typi-
cally involving many images in the range of hundreds of
megapixels each; the ability to view these results quickly,
in-place on ALCF systems, is critical. For each intermediate
dataset, we have developed code to produce downsampled
versions of select output data, and a Jupyter notebook tem-
plate which can be copied into the target run directory to
view the downsampled data. The JupyterHub deployment at
ALCF has direct access to the Theta and Cooley filesystems,
creating a highly usable environment for viewing, which can



be customized with additional Python-driven analyses.
While segmentation results can be viewed using Jupyter

notebooks as above, these results are more typically vi-
sualized in 3D using the Neuroglancer application. We
have deployed Neuroglancer at ALCF to support viewing
segmentation results, which we demonstrate later in the
text. Whereas Jupyter notebooks access Theta-resident data
directly, Neuroglancer retrieves data using web protocols;
to support this, we transfer segmentation results to the 3PB
Petrel community storage system [27] at ALCF, and expose
the data to Neuroglancer using standard web protocols.

3.2. Workflow Management
We have designed a pipeline that encompasses the in-

dividual software packages described above, allowing them
to be executed independently or assembled into more auto-
mated workflows. These software packages are leveraged in
an iterative fashion, varying parameters to achieve desired
accuracy on each particular dataset, and software develop-
ment is ongoing. To account for this scenario, our pipeline
is modular, supports multiple interfaces, and aims to enable
the entire data life cycle from raw images to final results.
Figure 4 shows the electron microscope operations described
above with the I/O present on our package.

Given the complex nature of the acquired data, we
acknowledge that human intervention is required during the
process; our goal is to facilitate this while minimizing the
iteration time and making interaction with the data easier.
This is important given that any imperfection or artifact in
the sample and data acquisition can cause the steps of the
pipeline to fail and require human intervention.

The pipeline is implemented as a Python library, with
an API that exposes the individual applications to be run,
together with specifications of input data and configuration,
producing a collection of jobs that will be offloaded to
our HPC facilities. This functionality is generalized such
that choice of execution machine can be made at the time
of execution rather than being tightly integrated into the
job definitions, which permit users to encapsulate the jobs
on their own schedulers depending on the computational
infrastructure. On our HPC resources, we achieve further
flexibility by relying on the Balsam workflow toolkit [28].
Using Balsam’s Python programming interface, we populate
a database with the desired pipeline actions and, using the
specifics of the target computing resource, define a collec-
tion of jobs to be run. Balsam manages the execution of
these jobs on the target computing resource, optimizing for
concurrency and throughput, handling errors, and providing
monitoring and reporting details as the pipeline jobs are
executed. This level of control frees the user from labori-
ous management of the compute jobs and enables Balsam
to systematically manage execution and data management
ensuring that the compute resources are used efficiently.

Pipeline users interact with Balsam via two interfaces: a
Python API to define steps in the workflow and a command
line interface for allocating resources and launching appli-
cations at the appropriate scale. The mapping of parallel
tasks to MPI ranks varies across applications: rank/section

for montage with TraekEM2, rank/section-pair for alignment
with AlignTK, and rank/subvolume for segmentation using
FFN. This interface is mirrored in the Python/Balsam inter-
face. Input data and configuration details are provided via
Python calls, and passed to Balsam, which handles defining
jobs in the underlying job database.

Once the job database has been populated , one can use
the Balsam command-line interface to submit jobs to the
Theta queues for execution and to monitor the jobs as they
run.

4. Results
In our experiments we used two HPC resources: Theta,

an 11.69 PFLOPs supercomputer and Cooley, a GPU cluster
with Nvidia K80s, both at the ALCF. Theta is composed of
4392 compute nodes, each with a 64-core, 1.3-GHz Intel
Xeon Phi 7230 processor, 192GB DDR4 RAM and 16GB
high-bandwidth MCDRAM. When needed, we also used a
workstation with dual Xeon E5 2630v4, 256GB memory
and two Titan X Pascal GPUs. Our usage of FFN relied on
TensorFlow 1.14.

The microscope used on our experiments was the Zeiss
SEM Gemini 300 [29], which can provide images at up
to 6nm of spatial resolution. The acquisition automation is
done by the Atlas software from Zeiss.

The sample tissue was dissected from a 14 day old, post-
natal mouse brain in primary visual cortex layer 4, and was
prepared according to the protocol described by Hua et al.
[30]. The tissue was then cut into 40 nm slices on ATUM
[31] and scanned with the microscope at 6 nm resolution
and 3.5 µs pixel dwell time. For each of the 1312 slices,
two 10833 x 14000 pixel tiles were scanned in sequence
with 5% overlap.

4.1. Workflow Validation
As an initial validation step, two stages of the pipeline–

montage and alignment–were run on a subset of the data,
using the Balsam execution backend. For montage, 128
sections of data were selected, with a corresponding Balsam
job describing the input and configuration for TrakEM2.
These jobs ran on 32 Theta nodes, with Balsam managing
the distribution of work to compute nodes as they became
available. We demonstrate this approach in the current case
because this flexible approach to computing will become
essential in the context of larger image stacks in the future.
A similar approach was taken to run image alignment on this
128-image stack. For alignment, the database was populated
with jobs to run on 16 nodes of the Cooley visualization
cluster, with jobs distributed to compute nodes as they
became available.

To highlight user interactivity with the pipeline, we
provide a Jupyter notebook example where, given a raw
dataset, the pipeline stages described above are submitted
to a Balsam database with standard (or user-provided) con-
figurations for execution on Theta. This approach permits
the user to run collections of jobs multiple times, such as
to perform parameter sweeps. We created Balsam jobs for
the TrakEM2 montage step with multiple configurations,



Figure 4: Schematic of the pipeline. The green box represents the data acquisition. Orange boxes and arrows represent
human interactions in the pipeline. The white boxes represent HPC submitted jobs. Blue boxes represent the data storage
and visualization server. Green arrows represent I/O from the computing resources.

varying the maximum and minimum octave used in the
search for the correct overlap between two images, which
also affects the run time, and calculated the error rate of
those configurations on a given dataset (as shown on Table
1). An initial analysis of the resulting images was conducted
to identify montage failures, using the image size as a proxy.
The accumulated error was calculated by the number of
images that were corrected by changing the parameters.
The final accumulated error shows the fraction of images
that could not achieve a correct montage with any of the
tested parameter sets; these, therefore, must be corrected
through direct user intervention. We continue to develop
metrics for identifying montage errors, in the interest of
further automating this process.

TrakEM2 - Min TrakEM2 - Max RunTime Error Rate Accumulated Error

400 2000 100min 35% 35%
400 3000 260min 15% 10%
400 3500 450min 9% 6%
1000 3500 520min 6% 1%

TABLE 1: Execution times of TrakEM2 headless montage
macro on a test dataset (6x2 tiles of 15000x15000 pixels
and 1128 slices divided into 8 different folders that represent
the acquisition sessions). Each line shows the results of 8
Balsam jobs with 32 nodes, 4 ranks per node and the values
for the TrakEM2 parameters for the minimum and maximum
octaves used by the montage macro script.

Lastly, we simulated online processing of images from
the electron microscope by triggering a transfer of images
on a schedule that approximates typical operation. For the
dataset described in this work, each section was imaged as
two separate tiles, each 8-bit tile having image dimensions

10833x14000 and occupying 151MB. The imaging time for
each tile is on the order of 10 seconds, so a full section is
imaged every 20 seconds. In this simulation, we transferred
a full section from the microscope-connected machine to
Theta every 20 seconds and added a montage job to the
Balsam database, continuously, over a period of three hours.
In the current paradigm, at this rate, a wafer of 200 sections
would be imaged in about one hour, producing 30GB; this
equates to a daily rate of 720GB. It is clear from this exper-
iment that Theta is able to keep pace with the incoming jobs
at this rate (each TrakEM2 job was run on a single Theta
node, using 64 cores per node, and 2 threads per core, as we
determined this to be the optimal configuration, with runtime
averaging 440 seconds). To achieve this, we began with an
initial allocation of Theta nodes, with the Balsam executor
configured to grow and shrink the pool of nodes as needed,
corresponding with the flow and ebb of incoming jobs. This
demonstration is, in itself, not a compelling demonstration
of the full extent of the current capability; it does, however,
show that we have the technology in place to trigger image
transfer and job injection when a section has been imaged,
which will become a necessity in the future, where we
anticipate transfer of images from multiple microscopes
simultaneously to process on ALCF supercomputers. We are
currently undertaking a scaling study to examine bounds on
throughput in this scenario, which will be the focus of a
future publication.

4.2. Complete Pipeline

We demonstrate the pipeline being executed from raw
tiles to the final reconstruction on a 90 x 125 x 52 µm
volume of neural tissue. Each part of the pipeline was



Figure 5: Final visualization using Neuroglancer. On the left, an example of a raw image (black and white) overlapped with
the inference labels(colors). On the right, 3D rendering of the same cells.

executed as a standalone call from a bash script using our
Python wrappers or, where appropriate, by calling applica-
tions directly.

After montage and alignment, the data size was
15000x20800x1312 voxels at 6x6x40 nm3 resolution, in 8
bit grayscale, with a total size of 324 GB. Segmentation was
carried out at 2x lower resolution to reduce merge errors
and to increase speed. To perform training, we acquired
an FFN model trained on the Kasthuri11 [3] dataset from
the authors of [17] as an initial checkpoint. Using manual
annotations of a 256x256x128 voxel volume from our own
dataset, we incrementally trained the base model until ac-
curacy saturated at 0.91; this training was run on a separate
workstation with dual Titan X GPUs for 12 hours, as a
transfer learning job that didn’t require Theta-scale com-
puting. Before proceeding to inference, we first performed
cell-body and vessel masking with U-Net/watershed on the
workstation at 4x downsampled resolution, and used that
as an initial segmentation. We then split a total volume of
6700x9900x1312 voxels (at 12x12x40 nm3 resolution) into
3618 512x512x128 cubes with 32x32x16 overlap in each
dimension. Inference jobs with the trained model were run
on 32 nodes of the Cooley cluster each with 2 NVIDIA K80
GPUs, with one MPI rank per GPU, for a total of 72 hours;
afterwards the subvolumes were reconciliated (recombined
into a full volume) on a workstation for final visualization
and error checking. Figure 5 shows the visualization of the
reconstructed data in Neuroglancer. Our pipeline have been
tested on datasets as large as 1Tb and it can be scaled to
larger volumes as long as the resource allocation allows it.
The limitations come from data sharing between different

resources and the final user. Another limitation comes from
the increase in the error rate of individual algorithms in
larger volumes.

5. Closing Remarks
In summary, HAPPYNeurons provides a software

pipeline to integrate electron microscopes with HPC facil-
ities. We demonstrate an end-to-end connectomics recon-
struction pipeline using HPC resources. This is achieved
by wrapping multiple libraries as a coherent set of op-
erations and providing the ability to chain them together
using Balsam to enable more optimized scheduling on su-
percomputers. Due to the modular design of the workflow,
the wrapped applications can be combined according to
the needs of the current application and dataset, and new
modules can be added with ease. HPC facilities can be
used in a seamless manner, enabling the processing of large
scale data without the monetary burdens of cloud computing.
This integration paves the way for using supercomputers for
connectomics reconstruction, in preparation for the deluge
of data anticipated from faster next-generation microscopes,
and to enable exascale computers to process it. This modular
design also allows for different processes of the pipeline
to target different accelerators on the HPC resources (i.e.
dedicated GPU’s). We are currently studying the execution
of our pipeline at larger scale on Argonne supercomputers;
these results will appear in a future publication.

Acknowledgements

We thank all members of the Kasthuri Laboratory at
University of Chicago for providing the insights into Elec-



tron Microscopy and biology. We thank Dr. Shuichi Shigeno
for data used in the preliminary tests. We also thank Michal
Januszewski for sharing a pre-trained FFN model and in-
sights into FFN’s hyper-parameters. This research is funded
in part by, and used resources of, the Argonne Leadership
Computing Facility which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357
and funded in part by NIH: 5R01MH110932-04.

References
[1] Kevin L Briggman and Winfried Denk. Towards neural circuit

reconstruction with volume electron microscopy techniques. Current
opinion in neurobiology, 16(5):562–570, 2006.

[2] Moritz Helmstaedter, Kevin L Briggman, and Winfried Denk. 3d
structural imaging of the brain with photons and electrons. Current
opinion in neurobiology, 18(6):633–641, 2008.

[3] Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund
Berger, Richard Lee Schalek, José Angel Conchello, Seymour
Knowles-Barley, Dongil Lee, Amelio Vázquez-Reina, Verena Kaynig,
Thouis Raymond Jones, et al. Saturated reconstruction of a volume
of neocortex. Cell, 162(3):648–661, 2015.

[4] Gerald M Rubin. Janelia farm: an experiment in scientific culture.
Cell, 125(2):209–212, 2006.

[5] Susan M Sunkin, Lydia Ng, Chris Lau, Tim Dolbeare, Terri L Gilbert,
Carol L Thompson, Michael Hawrylycz, and Chinh Dang. Allen brain
atlas: an integrated spatio-temporal portal for exploring the central
nervous system. Nucleic acids research, 41(D1):D996–D1008, 2012.

[6] Anna Lena Keller, Dirk Zeidler, and Thomas Kemen. High throughput
data acquisition with a multi-beam sem. In Scanning Microscopies
2014, volume 9236, page 92360B. International Society for Optics
and Photonics, 2014.

[7] Eileen O’Toole, Peter van der Heide, J Richard McIntosh, and David
Mastronarde. Large-scale electron tomography of cells using serialem
and imod. In Cellular Imaging, pages 95–116. Springer, 2018.

[8] Albert Cardona, Stephan Saalfeld, Johannes Schindelin, Ignacio
Arganda-Carreras, Stephan Preibisch, Mark Longair, Pavel Tomancak,
Volker Hartenstein, and Rodney J Douglas. Trakem2 software for
neural circuit reconstruction. PloS one, 7(6):e38011, 2012.

[9] Arthur W Wetzel, Greg Hood, and Markus Dittrich. High-
performance image registration: preparing for the acquisition of petas-
cale connectomics image stacks.

[10] Rafael Vescovi and Hanyu Li. Happyneurons,
https://www.github.com/ravescovi/HappyNeuron.

[11] William Gropp, Rajeev Thakur, and Ewing Lusk. Using MPI-2:
Advanced features of the message passing interface. MIT press, 1999.

[12] Casey M Schneider-Mizell, Agnes L Bodor, Forrest Collman, Derrick
Brittain, Adam A Bleckert, Sven Dorkenwald, Nicholas L Turner,
Thomas Macrina, Kisuk Lee, Ran Lu, et al. Chandelier cell anatomy
and function reveal a variably distributed but common signal. bioRxiv,
2020.

[13] Alessandro Motta, Manuel Berning, Kevin M Boergens, Benedikt
Staffler, Marcel Beining, Sahil Loomba, Philipp Hennig, Heiko
Wissler, and Moritz Helmstaedter. Dense connectomic reconstruction
in layer 4 of the somatosensory cortex. Science, 366(6469), 2019.

[14] Jorgen Kornfeld, Michał Januszewski, P Schubert, Viren Jain, Win-
fried Denk, and Michale S Fee. An anatomical substrate of credit
assignment in reinforcement learning. BioRxiv, 2020.

[15] Eric Mitchell, Stefan Keselj, Sergiy Popovych, Davit Buniatyan, and
H Sebastian Seung. Siamese encoding and alignment by multiscale
learning with self-supervision. arXiv preprint arXiv:1904.02643,
2019.

[16] Jingpeng Wu, William M Silversmith, and H Sebastian Seung.
Chunkflow: Distributed hybrid cloud processing of large 3d images
by convolutional nets. arXiv preprint arXiv:1904.10489, 2019.

[17] Michał Januszewski, Jörgen Kornfeld, Peter H Li, Art Pope, Tim
Blakely, Larry Lindsey, Jeremy Maitin-Shepard, Mike Tyka, Winfried
Denk, and Viren Jain. High-precision automated reconstruction of
neurons with flood-filling networks. Nature methods, 15(8):605–610,
2018.

[18] Kevin M Boergens, Manuel Berning, Tom Bocklisch, Dominic
Bräunlein, Florian Drawitsch, Johannes Frohnhofen, Tom Herold,
Philipp Otto, Norman Rzepka, Thomas Werkmeister, et al. web-
knossos: efficient online 3d data annotation for connectomics. nature
methods, 14(7):691–694, 2017.

[19] Jeremy Maitin-Shepard. Neuroglancer,
https://www.github.com/google/neuroglancer.

[20] Zhihao Zheng, J Scott Lauritzen, Eric Perlman, Camenzind G Robin-
son, Matthew Nichols, Daniel Milkie, Omar Torrens, John Price,
Corey B Fisher, Nadiya Sharifi, et al. A complete electron mi-
croscopy volume of the brain of adult drosophila melanogaster. Cell,
174(3):730–743, 2018.

[21] Wushi Dong, Murat Keceli, Rafael Vescovi, Hanyu Li, Corey Adams,
Elise Jennings, Samuel Flender, Thomas Uram, Venkatram Vish-
wanath, Nicola Ferrier, et al. Scaling distributed training of flood-
filling networks on hpc infrastructure for brain mapping. In 2019
IEEE/ACM Third Workshop on Deep Learning on Supercomputers
(DLS), pages 52–61. IEEE, 2019.

[22] W Silversmith. “cloudvolume: client for reading and writing to
neuroglancer precomputed volumes oncloud services, 2018.

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. In Inter-
national Conference on Medical image computing and computer-
assisted intervention, pages 234–241. Springer, 2015.

[24] William Silversmith. Igneous, https://github.com/seung-lab/igneous.

[25] Mie Sato, Ingmar Bitter, Michael A Bender, Arie E Kaufman, and
Masayuki Nakajima. Teasar: Tree-structure extraction algorithm for
accurate and robust skeletons. In Proceedings the Eighth Pacific
Conference on Computer Graphics and Applications, pages 281–449.
IEEE, 2000.

[26] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana
Robinson. An overview of the hdf5 technology suite and its applica-
tions. In Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pages 36–47, 2011.

[27] William E Allcock, Benjamin S Allen, Rachana Ananthakrishnan,
Ben Blaiszik, Kyle Chard, Ryan Chard, Ian Foster, Lukasz Lacinski,
Michael E Papka, and Rick Wagner. Petrel: A programmatically
accessible research data service. In Proceedings of the Practice and
Experience in Advanced Research Computing on Rise of the Machines
(learning), pages 1–7. 2019.

[28] Michael A Salim, Thomas D Uram, J Taylor Childers, Prasanna
Balaprakash, Venkatram Vishwanath, and Michael E Papka. Balsam:
Automated scheduling and execution of dynamic, data-intensive hpc
workflows. arXiv preprint arXiv:1909.08704, 2019.

[29] SMT Carl Zeiss and VP Sigma. Detection principles based on gemini
technology, 2011.

[30] Yunfeng Hua, Philip Laserstein, and Moritz Helmstaedter. Large-
volume en-bloc staining for electron microscopy-based connectomics.
Nature communications, 6(1):1–7, 2015.

[31] R Schalek, N Kasthuri, K Hayworth, D Berger, J Tapia, J Morgan,
S Turaga, E Fagerholm, H Seung, and J Lichtman. Development of
high-throughput, high-resolution 3d reconstruction of large-volume
biological tissue using automated tape collection ultramicrotomy
and scanning electron microscopy. Microscopy and Microanalysis,
17(S2):966–967, 2011.


	1 Introduction
	2 Related work
	3 Computational Pipeline
	3.1 Processing methods for EM data
	3.2 Workflow Management

	4 Results
	4.1 Workflow Validation
	4.2 Complete Pipeline

	5 Closing Remarks
	References

