
Adding Standards Based Job Submission to a
Commodity Grid Broker
David Colling1, A. Stephen McGough2, Tiejun Ma3,

Vesso Novov2, Jazz Mack Smith2, David Wallom∗3 and Xin Xiong3

1 Department of Physics, Imperial College London, London SW7 2AZ, UK
d.colling@imperial.ac.uk

2 Department of Computing, Imperial College London, London SW7 2AZ, UK
{asm, jms3,vesso}@doc.ic.ac.uk

3 Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford, OX1 3QG, UK
{tiejun.ma, david.wallom, xin.xiong}@oerc.ox.ac.uk

Abstract—The Condor matchmaker provides a powerful mech-
anism for optimally matching between user task and resource
provider requirements, making the Condor system a good choice
for use as a meta-scheduler within the Grid. Integrating Condor
within a wider Grid context is possible but only through
modification to the Condor source code as each new mechanism
for connection to remote resources is defined. In this paper we
describe how the emerging standards for job submission and
resource description can be integrated into the Condor system,
thereby allowing arbitrary remote Grid resources which support
these standards to be brokered using Condor.

Keywords-Grid Computing, GridSAM, Condor, Distributed
Computing, Windows HPC

I. INTRODUCTION

The Grid [1] provides a platform in which owners of
computational power – referred to as resources – can expose
these for consumption by users potentially for financial (or
other) reward. In order for users to discover suitable resources
for their jobs and resource owners to obtain high utilisation
of their resource, a brokering or meta-scheduling service is
required. Conventionally a resource owner, who manages their
resources through a Distributed Resource Manager (DRM),
will advertise their resources to a Grid brokering service.
Likewise users will submit usage requests for resources to
the broker. The broker is then responsible to select resources
which meet both the users and the resource owners require-
ments. The broker may also provide mechanisms to monitor
the progress of the users computation on the resource and
transfer files both to and from the resource on behalf of the
user. This generic Grid architecture is illustrated in Figure 1.

As the number of both sites exposing their resources and the
number of resources within these sites increase the problem
of selecting the ‘best’ resource to use becomes more complex.
Where ‘best’ is defined as an optimised choice based on
a combination of both the users and the resource owners
requirements. This complexity comes not only from the scale
of the problem but the heterogeneity of the technologies used

∗The correspondence author.

Grid Broker

DRM

DRM

Submit

Advertise

Data Transfer and Monitor

Fig. 1. A generic Grid architecture

to advertise, submit, select, monitor and transfer files. Ven-
dors exist such as (UNICORE [2], Globus [14], Condor [3],
gLite [4]) each providing a customised solution to these
problems. However, in general these solutions present a tie-in
to their particular interfaces. Users therefore cannot arbitrarily
discover and use any resource available on the internet for
which they have security clearance. Instead only the subset
of resources with which their software solutions are able to
communicate with its supported interface. For the Grid to
truly become a success it is necessary to break down these
incompatibilities through the utilisation of open standards for
these interfaces to prevent ’vendor lock-in’.

The work within the Open Grid Forum (OGF) [5] has led to
a number of standards for resource discovery e.g. Grid Lab-
oratory Uniform Environment (GLUE) [6]), job description
e.g. Job Specification Description Language (JSDL) [7] and
submission interface, e.g. Open Grid Services Architecture Ba-
sic Execution Service (BES) [8]. These are all recommended
standards and as such have a number of interoperable server
side implementations developed including such projects as
OMII-UK GridSAM [9] and Microsoft HPCServer 2008 [10].

Of the implementations of the OGF standards that have been
produced there are though no high functionality clients and
as such in this paper we propose integrating a set of stan-
dards based interfaces into Condor. Through the use of these

standards Condor can be used as a meta-scheduler capable of
interfacing directly with any standards compliant DRM. Thus
any new system implementing these standards may be quickly
and easily added to the grid, providing a clean and clear
interface between the DRM and Condor. We exemplify this
through the ability to gather resource information from both
the Microsoft HPCServer 2008 cluster and resources made
available through GridSAM – a veneer service for exposing
DRM systems through a BES interface – along with the
submission of jobs to these systems. Both sets of resources
are advertised through GLUE schema documents which are
translated into ClassAds for submission to Condor.

This paper is set out as follows. In Section II we introduce
related work. In Section III we describe the OGF recom-
mended standards used within this work before discussing
Condor in more detail in Section IV. In Section V we describe
the architecture used to allow Condor to interface to the Grid
through standards-based interfaces before concluding.

II. RELATED WORK

Many Grid brokering systems exist, including Condor [3],
gLite [4] and Maui [11] of which Condor is one of the
most popular. Although Condor does not directly support the
OGF standards for resource advertising and job submission
it is possible to submit tasks from Condor into a number
of different Grid frameworks including, Globus [14], Nor-
duGrid [15], UNICORE [2], PBS [16] and LSF [17]. This
has been achieved by providing grid specific adapters that
sit between the condor system and the remote grid system.
Resource descriptions are translated into ClassAds and be-
spoke code added to submit and monitor jobs. This process
is simplified through the use of interfaces in Condor – a
command line interface for submitting resource ClassAds and
a Grid ASCII Helper Protocol (GAHP [18]) for accessing the
DRM. However, as each implementation requires alterations
to the Condor source – DRM specific logic added to the client
side of the GAHP, this is a non-scalable solution where each
time a new Grid system is developed by a vendor community
a new ’shim’ needs to be developed, tested and deployed.

An alternative approach to ours is used by the GridWay [19]
project. GridWay is designed as a Grid-Level meta-scheduler
which uses Globus to dispatch jobs to the DRM systems, such
as PBS, gLite, Condor. In very much the same way as Condor
though the Gridway solution uses proprietary Globus interface
descriptions which makes the addition of new remote resources
using different local management solutions more problematic.
They also do not make use of any automated central resource
information service, even including the Globus Monitoring
and Discovery Service (MDS) or gLite BDII. Instead it
relies on communicating directly with each of the remote
resources underlying DRM systems to provide resource status
information. This solution, though scalable within a small grid
system, becomes problematic where you are connecting large
number of systems. In our approach specifically require a
centralised set of information providers to be available where
all resources registered for the grid are able to publish their

status information. This we feel offers a clearer abstraction
between the meta scheduler and remote resources and can
remove situations where remote system failures can introduce
errors into the broker. We are also able to introduce redundant
information provider systems into the process which will
ensure greater reliability.

III. GRID STANDARDS

In this section we describe in more detail the OGF recom-
mended standards used within this work.

A. GLUE

The Grid Laboratory Uniform Environment (GLUE [6])
schema is an information model used to describe the features
and status of a particular resource within a Grid environment.
It has been designed to be independent of the implementation
thereby allowing for interoperability between solutions. The
overall schema is extremely flexible, therefore for this solution
we have considered only the representation of a single com-
putational resource. In general though the information model
can be broken down into three different types of information,

• Static system information on a resource such as number
of nodes, operating system, type of DRM.

• Policy information on the resource, i.e. Maximum queue
lengths, maximum length of a running job.

• State of the system, number of queued jobs, running jobs,
free slots.

Current implementations from EGEE, NorduGrid, Open
Science Grid and the UK NGS make use of an LDAP based
repository though this is completely independent of the schema
itself. Other contributors to the GLUE schema include Globus,
UNICORE, GriPhyn [20], and APACGrid [21].

B. JSDL

The Job Submission Description Language (JSDL) de-
scribes a task that a user (or agent acting on behalf of a
user) wishes to have executed. The language is an open
contents template document, describing what is required rather
than how to achieve it, normally rendered in XML. The job
description is separated into four main sections.

• Job Identification, mostly human readable information
about the job

• Application Description, contains a definition of the job
to execute

• Resource Requirements, gives conditions which the re-
sources the job runs on must satisfy

• Data Staging for specifying locations of executable, input
or output data and their transport methods

JSDL has now been implemented natively by a number of
different groups with mappings to over fourteen DRM systems.

C. OGSA-BES

The Open Grid Services Architecture - Basic Execution
Service (OGSA-BES [8]), referred to as BES, is a partner
specification to JSDL. While JSDL defines the language used
to describe a task the BES specification describes how a

service can consume such a document and how to provide
monitoring and job control. The BES specification defines a
Web Services [24] interface with two main port-types, those
of a factory port to allow users to submit, monitor and control
sets of activities, along with a port for management of the BES
service. For the purposes of this work we are only interested
in the submission, monitoring and control of sets of activities.
In order to provide the most interoperability between different
BES client and server instances a very simple state model is
used which contains the states of Pending, Running, Finished,
Terminated and Failed. The valid transitions between these
states is illustrated in Figure 2.

Pending

Terminated

Running

Failed

Finished

Successful
termination of
activity

TerminateActivity request

System error/failure event

Fig. 2. The OGSA-BES basic State model

In order to allow for more complex descriptions of state
without breaking servers or clients which cannot support
these more complex states a system of sub-state modelling
is adopted. Here any of the primary states can be sub-stated
to give more information, while a less complex client (server)
can still use the basic state model – albeit without the extra
information. An example of sub-stating the execution of a
JSDL is given in Figure 3. We work only with the base model
as at present as there are no widely adopted profiles to the
BES state model.

Pending Running:
Stage-in

Finished

Terminated

Failed

Running:
Executing

Running:
Stage-out

Fig. 3. Sub-states in the BES state model

IV. CONDOR

Condor was developed originally as a batch job execution
service by the University of Wisconsin for the purpose of
high-throughput computing. In its default configuration Con-
dor utilises unused computing power within a collection of
attached computers. When a computer is unused a Condor
daemon indicates this to the Condor Manager which can
then use the computer as part of its pool. If someone starts
using the computer (either locally or remotely) Condor will
vacate, either by terminating the active job or migrating the
job elsewhere dependant on the computers configuration.

Execute MachineSubmit Machine

Submit

Schedd

Starter
JobJob

Shadow
Condor
Syscall Lib

Startd

Central Manager

CollectorNegotiator

Fig. 4. The standard Condor Architecture

The Condor system is broken up into a number of services
as illustrated in Figure 4. A daemon (Schedd) runs within each
submit machine, containing information on all jobs submitted
from that host. When a user submits a job, the daemon
transmits the job description to the central master system,
which runs the Collector. On each Execute Machine a daemon
runs (Startd) which reports to the Collector the state of that
machine. The Negotiator (or matchmaker) looks at the list
of submitted job descriptions that it can pair together with
the information held about resources in the Collector, when
a match is found the corresponding submit and execute hosts
daemon process are notified. The submit system Schedd will
then send the job to the execute machine Startd and generate a
Shadow daemon for the job on the Submit Machine which acts
as a local instance of the remote service for file reading etc.
The Startd then generates a Starter for the job which launches
the job and interacts with the Shadow daemon.

Within the condor system the same description language
is used for both job and resource descriptions, the ClassAd.
These are a semi-structured document allowing arbitrary ele-
ments to be defined of the form “name” equals “eval”, where
“eval” can be evaluated to a basic type (number, boolean or
string) from operations on values. A value can be a basic type
or a reference to a named element either in this document
or the matched document. As the documents do not have
mandated specific named elements boolean tests can evaluate
to true, false or undefined, with associated rules for how these
states are combined through operations. Further details may
be found in [12] and [13].

Though originally a local DRM system Condor is increas-
ingly being used as a meta-scheduler for the Grid. This is
achieved through submission of resource descriptions direct
to the Collector, with additional ’grid’ information added such
as type of remote grid system and the interface location. It is
also necessary to replace the Shadow process on the execute
system with a Grid-Manager that can deal with non-condor
execution systems by communicating through the Grid ASCII
Helper Protocol (GAHP) [18].

V. GRID STANDARDS ARCHITECTURE

In this section we describe how the standards used to
describe both resource and task as well as task submission
have been integrated with Condor. Figure 5 illustrates the
general architecture with the three main components to support
the Broker: advertising of resources, deployment of jobs and

file staging. The user submits a job to the broker using the
standard Condor submission tools. However, for a complete
Grid solution a BES/JSDL to Condor interface – such as
GridSAM – could be placed in-front of Condor completing the
encapsulation. Matched jobs in the GAHP server are translated
from ClassAds into JSDL documents and then submitted to
the remote OGSA-BES instance, in the diagram illustrated by
the GridSAM client. Information about these remote resources
is captured and described using the GLUE schema which
can be stored in a persistent repository such as BDII or
Grimories. The remote resource descriptions are retrieved as
GLUE documents and then translated into ClassAds. These are
then entered into the Condor Collector to enable matchmaking.
In the rest of this section we outline in more detail these three
main components of the architecture.

A. Resource Information Intergration

The resource broker must have up to date information fed to
it on the status of the individual resources so that scheduling
decisions are as accurate as possible, thus frequent harvesting
of this information is essential. The standard method of
achieving this is through aggregation into systems such as
LDAP-based [25] information servers, e.g. BDII-based index
servers or as XML based metadata within a UDDI-registry [?],
e.g. Grimories [26]. We have developed a system, comprising
of three main components, to gather information on resources
from both static and dynamic information sources (Figure 6).

The first component is the information retriever, this inter-
rogates both LDAP-based directory services and UDDI-based
registries to collect information on the remote resources. This
includes static information such as the number of CPU, mem-
ory size and installed DRM systems and dynamic information
such as current queue length and number of free CPU. The
type of information retrieved is defined in a mapping file which
is derived from the version of the GLUE schema being used
in each type of remote system and the type of directory ser-
vice/registry. Information from the system Virtual Organisation
Management System (VOMS) [?] server is also retrieved at
this point. The second part – the Information Translator –
translates the incoming documents, LDAP objects or XML,
into the required output data format, Condor ClassAds, using
static configuration rules. The final part is the writer/verifier,
which writes the converted resource information into files.
Before the information is written specific attribute values fromAppendix A

Figure 1: Architecture

Appendix B Gantt Chart

On the next page we present the Gantt chart for this project. The tasks marked in blue are for Imperial
College, while those in green are for Oxford with the task in red requiring effort from both sites.

Broker
(eg Condor

Matchmaker)

GLUE in
repository

Broker Specific Translator

GLUE / BDII Collector

B
roker to JS

D
L translator

JS
D

L C
lient and m

apper

GridSAM
GridSAM

GridSAM
GridSAM

GridSAM
GridSAM

DRM
DRM

DRM
DRM

DRM
DRM

DR
M DRM

File Stage Handling

Persistent
Grid Info Persistent

Grid Info Persistent
Grid Info

User
Tool

Fig. 5. The GridBS Architecture

NGS

BDII

UDDI

CCS

Condor
Queue

Info

Retrievers

VOM Info

Mapping
Rules

Translators Writer /
Verifier

RB

ClassAd

Fig. 6. Information Integration Architecture

the retrieved data are compared with statically retrieved values
from the VOMS server. If the information matches then it is
written into files in the specified format. In the case of a failure
of verification no files are written and a flag is raised.

B. Publishing GLUE information from Microsoft HPC Server
2008

As Microsoft HPC Server 2008 (HPCS08) has no method to
publish information in a standards compliant manner, we have
provided our own system to perform this role. HPCS08 GLUE
information publishing has been implemented using three
packages: GLUE-Generation (GLUE-G), GLUE-Translation
(GLUE-T) and GLUE-Publish (GLUE-P).

GLUE-G provides access to HPCS08 and retrieves resource
information such as number of CPUs, memory, running job
numbers. Information is constructed in a key-value form
similar to GLUE and streamed to GLUE-T which translates it
to an XML format according to the GLUE Schema. As these
components are separate they can be developed in different
languages – GLUE-G in C# and GLUE-T in Java – thus
we can develop different GLUE-G implementations for other
DRM systems while re-using GLUE-T. The GLUE-Publish
package is a Java web service that addresses the aspects
of publishing HPCS08 GLUE information to an XML-based
UDDI registry.

C. Job Submission and Monitoring

Figure 7 illustrates our BES/JSDL GAHP integration within
Condor. A new JSDL GAHP client side has been developed
which runs within the Grid Manager. This is a thin client which
passes the ClassAd, rendered in XML, to the GAHP server.
The GAHP server, developed in Java, translates the ClassAd
into an equivalent JSDL document which it submits to a BES
enabled service. In order for the JSDL/BES GAHP server to
know the name of the remote BES instance this information is

Condor
Submit Machine

Schedd

Submit Grid
Manager

JSLD/BES
GAHP
Client

JSDL/BES
GAHP
Server

BES
Service

BES Service

JSDL/BES
GAHP

JSDL/
BES

Fig. 7. The JSDL/BES-GAHP architecture

Command Parameters Result
JSDL JOB SUBMIT <id> <classad> <id> <S/F>

<jobID>
[<error string>]

JSDL JOB STATUS <id> <jobID> <id> <S/F>
<classadR>
[<error string>]

JSDL JOB RECOVER <id> <classad> <id> <S/F>
<jobID>
[<error string>]

JSDL JOB TERMINATE <id> <jobID> <id> <S/F>
[<error string>]

TABLE I
GAHP COMMAND SET

passed in as part of the ClassAd in the Grid Resource element.
The structure of this element is ”Grid Resource = jsdl <URI>
<Type>” where <URI> is the remote BES instance Uniform
Resource Identifier (URI) whilst <Type> describes the BES
flavour.

Table I lists the commands understood by the JSDL/BES
GAHP protocol. As commands are asynchronous each contain
an <id> element which is used to locally identify the job and
is given by the Condor system job identity. For each command
invoked an immediate return code is given indicating if the
command was interpreted successfully or not. The remote
identity of the job, <jobID>, is then recorded such that later
commands may correctly communicate with the remote job.
Job describing ClassAds are rendered in XML as single line
strings and for JSDL JOB STATUS the returned ClassAd
describes the status of the job as a Condor status. The status
model for Condor and OGSA-BES are very similar and the
mapping between these is given in Table II. As BES does not
support the Held state this will never be returned by the server.
The JSDL JOB RECOVER command is provided in case the
Grid Manager needs to re-start. The original ClassAd is sent
back to the GAHP server and allows the server to re-identify
the job.

Condor code BES
Job Status Job Status
I (Idle) 1 Pending
R (Running) 2 Running
X (Removed) 3 Terminated
C (Completed) 4 Finished
H (Held) 5

TABLE II
MAPPING CONDOR TO BES JOB STATES

D. Data Staging

Condor uses elements within the ClassAd to list those
files that need to be staged to and from the resource, this
information is available to the GAHP server as it receives
the whole ClassAd. In a JSDL document files are marked for
transfer along with a URL indicating where the file should be
staged from/to. If the location where the user has placed their
files is already exposed through a file transfer protocol (such
as FTP, GridFTP, HTTP(S)) then these locations can be used
as the URL. If the files are not in exposed locations then the

GAHP server itself will copy the files to a location where they
can be accessed.

E. Evaluation

The framework developed is operating system and platform
independent. It is able to collect information published in the
GLUE schema from either BDII/LDAP or UDDI servers about
remotely accessible resources. Incoming jobs are translated
into standardised JSDL documents and submitted through a
standardised (OGSA-BES) interface to the underlying Grid
fabric. This allows us to exploit both the benefits of the Condor
matchmaking service and the OGF recommended standards
on job submission and resource description. This relieves the
requirements imposed by many of the existing proprietary
systems tying the user into a particular software stack. Since
the system builds on the fundamentally strong basis of Condor,
evaluation of the performance of the system is limited by that
system.

We have built a prototype of the system on the Oxford
Campus Grid system. To ensure compatibility with current
grid standards as well as OGF recommended systems we
have ensured the framework is compatible with all existing
production level GLUE environments (GLUE 1.1–1.3). For
nine months we have been brokering jobs to around 35 Grid
and cluster resources including the UK NGS Grid services,
Oxford University departmental Condor resources, Oxford Su-
percomputing Centre resources and Windows HPC resources.
During this time our system has processed in excess of 271000
individual jobs smoothly and adapted to the different job
requirements. This has allowed us to develop a whole Grid
ecosystem which can make the basis of a campus/other Grid
toolkit allowing quick and easy deployment of Grid systems
through institutions.

Further evaluation will be completed through the systems
ability to support the many current implementations of the
OGF HPC Basic Profile that are being used within the
demonstration organised by the Grid Interoperability Now
community Group [?]. This work is currently leading towards
a standards compliance system of which this developed frame-
work will become a significant part.

VI. CONCLUSION

In this paper we have shown how the Condor system
can be integrated with OGF recommended standards for job
submission (JSDL and OGSA-BES) and resource description
(GLUE). This allows the use of a powerful brokering service
with resources exposed through standards based interfaces.
This is a more scalable solution than using GAHP alone as
different DRM systems need only develop a BES interface for
their existing software rather than developing both a Client and
Server interface to integrate with Condor alone. The added
advantage is that as their software exposes a BES interface
other Grid users can access these resources from standards
based clients. Future work includes support for the new GLUE
2.0 standard for both BDII and UDDI and incorporating

the system into the current OGF Global HPC Basic Profile
Interoperability demonstration.

ACKNOWLEDGEMENT

This work is funded by the Open Middleware Infrastructure
Institute (OMII) UK through the GridBS project.

REFERENCES

[1] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, Jul. 98.

[2] S. Haubold, H. Mix, W. Nagel, and M. Romberg, Performance Analysis
and Grid Computing. Kluwer Academic Publishers, 2003, ch. The
UNICORE Grid and its Options for Performance Analysis, pp. 275–
288.

[3] M. Litzkow, M. Livny, and M. Mutka, “condor-a hunter of idle work-
stations,” in 8th International Conference on Distributed Computing
Systems, 1998, pp. 104–111.

[4] EGEE, “glite middleware,” http://www.glite.org, Aug 2008.
[5] OGF, “The Open Grid Forum,” http://www.ogf.org, May 2008.
[6] GLUE-WG, “The GLUE working group,” https://forge.gridforum.org/sf/

projects/glue-wg, May 2008.
[7] JSDL-WG, “Job submission description language,” https://forge.

gridforum.org/sf/projects/jsdl-wg, May 2008.
[8] OGSA-BES-WG, “Basic execution service,” https://forge.gridforum.org/

sf/projects/ogsa-bes-wg, May 2008.
[9] A. S. McGough, W. Lee, and S. Das, “A standards based approach to

enabling legacy applications on the grid,” Future Gener. Comput. Syst.,
vol. 24, no. 7, pp. 731–743, 2008.

[10] Microsoft, “Microsoft compute cluster server,” http://www.microsoft.
com/windowsserver2003/ccs/default.aspx, May 2008.

[11] Maui Scheduler, “The maui scheduler,”
http://www.supercluster.org/maui.

[12] M. Solomon, “The ClassAd Language Reference Manual,” Computer
Sciences Department, University of Wisconsin, Madison, WI, Oct, 2003.

[13] M. S. Rajesh Raman, Miron Livny, “Matchmaking: Distributed resource
management for high throughput computing,” in Proceedings of the Sev-
enth IEEE International Symposium on High Performance Distributed
Computing, Chicago, IL., July 1998.

[14] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure
Toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115–128, Summer
1997.

[15] M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. Lindemann,
I. Livenson, J. Nielsen, M. Niinimaki, O. Smirnova, and A. Waananen,
“Advanced resource connector middleware for lightweight computa-
tional grids,” Future Generation Computer Systems, vol. 23, no. 2, pp.
219–240, February 2007.

[16] PBS Team, “Open Portable Batch System,” http://www.pbsgridworks.
com/PBSTemp1.3.aspx?top nav name=Products&item name=
OpenPBS&top nav str=1&AspxAutoDetectCookieSupport=1.

[17] Platform LSF, http://www.platform.com/products/LSF.
[18] The Condor Project, “Grid ASCII Helper Protocol,”

http://www.cs.wisc.edu/condor/gahp/.
[19] E. Huedo, R. Montero, and I. Llorente, “The GridWay framework for

adaptive scheduling and execution on Grids,” SCPE, vol. 2006, p. 2007,
2004.

[20] Grid Physics Network, “Grid physics network,” http://www.griphyn.org/.
[21] The Australian Grid, “The APAC Grid,” http://grid.apac.edu.au/.
[22] Open Grid Forum, “The High Performance Computing Profile Working

Group (hpcp wg),” http://www.ogf.org/gf/group info/view.php?group=
hpcp-wg.

[23] A. Savva, “JSDL SPMD Application Extension,”
http://www.ogf.org/documents/GFD.115.pdf.

[24] W3C Consortium, “Web Services Description Language (WSDL) 1.1,”
http://www.w3.org/TR/wsdl.

[25] OpenLDAP Project, http://www.openldap.org.

[26] S. Wong, V. Tan, W. Fang, S. Miles, and L. Moreau, “Grimoires:
Grid registry with metadata oriented interface: Robustness, efficiency,
security,” IEEE Distributed Systems Online, vol. 6, no. 10, 2005.

