
This item may be protected under Title 17 of the U.S. Copyright Law. It is made available by
UMBC for non-commercial research and education. For permission to publish or reproduce,
please contact the author.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

A HighA High--Level Distributed Execution Level Distributed Execution
Framework for Scientific WorkflowsFramework for Scientific Workflows

Jianwu Wang1, Ilkay Altintas1,
Chad Berkley2, Lucas Gilbert1, Matthew B. Jones2

1 San Diego Supercomputer Center, UCSD, U.S.A.
2 National Center for Ecological Analysis and Synthesis, UCSB, U.S.A.

A High-Level Distributed Execution Framework for Scientific Workflows 2

Outline

• Introduction
• Background

– Scientific Workflow Specification Structure
– Requirements for Distributed Execution using

Scientific Workflows
• Our Conceptual Architecture
• Working Mechanisms
• Case Study
• Conclusion and Future Work

A High-Level Distributed Execution Framework for Scientific Workflows 3

Introduction

• Scientific workflow can help domain scientists
solve scientific problems.

• Most workflow systems centralize execution,
which often causes a performance bottleneck.

• Distributed execution of scientific workflows is
a growing and promising way to achieve
better execution performance and efficiency.

A High-Level Distributed Execution Framework for Scientific Workflows 4

Scientific Workflow Specification Structure

Focus: basic scientific workflow specification structure
- tasks
- data dependencies
- control dependencies

A High-Level Distributed Execution Framework for Scientific Workflows 5

Requirements for Distributed Execution using
Scientific Workflows

• Execution of Tasks on Remote Nodes
• Distributed Node Discovery
• Peer-to-Peer Data Transfer
• Provenance of Distributed Execution
• Distributed Monitoring
• Transparent Implementation
• Reuse of Existing Workflows
• Failure Recovery

A High-Level Distributed Execution Framework for Scientific Workflows 6

Our Goals

• Easy-to-use
• Comprehensive
• Adaptable
• Extensible
• Efficient

A High-Level Distributed Execution Framework for Scientific Workflows 7

Conceptual Architecture

A High-Level Distributed Execution Framework for Scientific Workflows 8

Interaction sequence of a distributed scientific
workflow execution

A High-Level Distributed Execution Framework for Scientific Workflows 9

Working Mechanisms (1/5)

• Decoupling of the Workflow Specification from
the Execution Model
– Ability to use existing workflow specifications with

both centralized and distributed execution models,
i.e., workflow engine

• Simply replacing the Director in Kepler

• Peer-to-Peer Data Transfer
– A corresponding pipeline for each data

dependency
– Data flows from source Slave to destination Slave(s)

directly

A High-Level Distributed Execution Framework for Scientific Workflows 10

Working Mechanisms (2/5)

• Transparent Implementation
– Define technology selection rule, detect and adapt

to the context of real situations
– Ease of deployment

• Each node running workflow instance can act as an
execution endpoint in either the Master or Slave role.

A High-Level Distributed Execution Framework for Scientific Workflows 11

Working Mechanisms (3/5)

• Capability-Based Slave Registration

Slave Execution Capability Metamodel

A High-Level Distributed Execution Framework for Scientific Workflows 12

Working Mechanisms (4/5)

• Automatic Constraint-Based Task Scheduling
– Match user requirements with Slave execution

capabilities to get optimal task scheduling solutions
• Meet both functional requirements and non-functional

constraints
– Need new task scheduling algorithms

• Run-times of some tasks vary with different input
configuration

• Take the task’s input and configuration values into account

A High-Level Distributed Execution Framework for Scientific Workflows 13

Working Mechanisms (5/5)

• Broker based Provenance Management
– Centralized

• Inefficient to store the data content
– Decentralized

• Efficient, but difficult to query and integrate the data in the
future

– Broker-based
• Tradeoff between functionality and efficiency

– Each slave records the data locally and register it to
Provenance Manager.

– Provenance Manager only record the reference info
– The Master node can get the data content from the

corresponding Slaves

A High-Level Distributed Execution Framework for Scientific Workflows 14

Case Study
• Scenario:

– A group of three scientists collaboratively construct a workflow
with tasks in their sub-domains.

• The workflow can’t be executed as a whole on any of their
computers.

– They hope to:
• Connect their computers (Computer 1, Computer 2, Computer 3) to execute

the workflow
• Track the provenance information

• Solution:

A High-Level Distributed Execution Framework for Scientific Workflows 15

Conclusion and Future Work

• A high-level distributed execution framework
– Based on requirements from the Kepler community

• Discuss its main working mechanisms.
• Main focus on its usability in terms of adoption

in our community
– Refine the design details
– Finish implementation in Kepler
– Evaluate it with applications

A quick demo…

Simhofi workflow: Terrestrial ecology
(With Parviez Hosseini from Princeton University)

A High-Level Distributed Execution Framework for Scientific Workflows 17

• Thanks! Questions?
• For More Information:

– Distributed Execution Interest Group of Kepler:
https://dev.kepler-project.org/developers/interest-
groups/distributed

– Contact: jianwu@sdsc.edu

A High-Level Distributed Execution Framework for Scientific Workflows 18

Related Work

• Several scientific workflow systems support
distributed execution.
– Triana

• Peer-to-peer execution
• Intuitive graphical user interface

– Pegasus
• Execute workflows in Grid environments
• Provenance support

– ASKALON
• Service repository to share service
• Data repository to share data

	ScholarWorksCoverSheet2 - Blank
	SWBES-Kepler-DistExec(Jianwu 2008)

