
Fault Tolerance and Scaling in e-Science Cloud Applications:
Observations from the Continuing Development of MODISAzure

Jie Li, Marty Humphrey
Department of Computer Science

University of Virginia
Charlottesville, VA USA

You-Wei Cheah
School of Informatics and Computing

Indiana University, Bloomington
Bloomington, IN USA

Youngryel Ryu
Dept. Environmental Science, Policy

and Management
University of California, Berkeley

Berkeley, CA USA

Deb Agarwal, Keith Jackson
Advanced Computing for Science Department

Lawrence Berkeley National Lab
Berkeley, CA USA

Catharine van Ingen
eScience Group

Microsoft Research
San Francisco, CA USA

*Abstract—It can be natural to believe that many of the traditional issues of scale have been eliminated or at least greatly reduced via
cloud computing. That is, if one can create a seemingly wellfunctioning cloud application that operates correctly on small or moderate-
sized problems, then the very nature of cloud programming abstractions means that the same application will run as well on potentially
significantly larger problems. In this paper, we present our experiences taking MODISAzure, our satellite data processing system built
on the Windows Azure cloud computing platform, from the proof-of-concept stage to a point of being able to run on significantly larger
problem sizes (e.g., from national-scale data sizes to global-scale data sizes). To our knowledge, this is the longest-running eScience
application on the nascent Windows Azure platform. We found that while many infrastructure-level issues were thankfully masked
from us by the cloud infrastructure, it was valuable to design additional redundancy and fault-tolerance capabilities such as transparent
idempotent task retry and logging to support debugging of user code encountering unanticipated data issues. Further, we found that
using a commercial cloud means anticipating inconsistent performance and black-box behavior of virtualized compute instances, as well
as leveraging changing platform capabilities over time. We believe that the experiences presented in this paper can help future eScience
cloud application developers on Windows Azure and other commercial cloud providers.

Keywords-cloud computing; eScience; Windows Azure

* DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed
to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof or the Regents of the University of California.

I. INTRODUCTION
The increasing availability of scientific data from both large

experimental instruments and networks of ground-based and
space-based sensors is transforming the scientific computing
landscape. Today, eScience applications at tera-byte or even
peta-byte scale are not uncommon in domain areas such as
Environmental Science and High Energy Physics [1]. The
continuously generated data sets in these domains have created
invaluable repositories for new science discoveries.

However, with the increasing scale of data sets comes the
problem of how to process them. Acquiring the computational
resources necessary to meet the requirements of these large
scale applications is difficult for many science research groups.
At the same time, scientists that have access to high-
performance clusters or supercomputing centers often
experience indefinite job turnaround times due to resource-
sharing policies that cause long queue wait times. This
inefficient situation becomes more severe when scientists need
to frequently submit large jobs to test and improve their
scientific models. There are also huge process gaps going from
large-scale raw data to scientific knowledge. Complexities
involved in data collection, storage management, computation
scheduling, and fault-tolerance increase as the scientific
computation scales up. These complexities, if not correctly
handled by software systems and appropriately masked from
domain scientists, can cause invalid results in the final
scientific knowledge or make an analysis impossibly daunting.

Cloud computing has recently emerged as a large-scale,
distributed computing platform with on-demand resource
provisioning capability and a “pay as you go” service model.
Commercial cloud providers such as Google App Engine [2],
Amazon EC2 [3], and Microsoft Windows Azure [4] are
pioneering in this area providing hosting of cloud applications
on powerful datacenters. Although the specific resource
provisioning and programming models are different, all
provide a common set of building blocks in the form of
compute and storage services to enable large-scale, compute-
and data-intensive applications to be developed and deployed.
The on-demand nature of these compute and storage services
allows applications to scale by orders of magnitude without
changing the underlying software components and
architectures or incurring long wait times. The “pay as you go”
model can save users huge upfront investments in the hardware
resources. Cloud computing has the potential to bring benefits
to the scientific community by hosting large-scale eScience
applications on-demand.

However, cloud computing is still in its early development
stages and is relatively immature. The distinct capabilities and
characteristics of cloud computing need to be fully explored
and evaluated before we can confidently adopt cloud
computing for existing and next-generation eScience
applications. In this paper, we present our experience
developing and using MODISAzure, a large-scale satellite data
processing system built on the Windows Azure cloud
computing platform. Because we built this application from
scratch, we leveraged a large subset of the Azure cloud service

elements as the basic building blocks for our application
components. To our knowledge, this is one of the earliest
scientific applications that were natively built on top of the
cloud infrastructure and service elements provided by
Windows Azure.

We have already presented the basic architecture of the
MODISAzure system and its overall performance in a previous
publication [5]. However, the work we presented in that
publication was completed during summer 2009, when
Windows Azure was still on the Community Technology
Preview (CTP) phase. Since then, Windows Azure has been
evolving and bringing new important features for the
development of cloud applications, and we have incorporated
some of these new features into our system design (e.g. using
the Management API for dynamic instance scaling).
Furthermore, we have been running this scientific computation
for more than 9 months since we submitted that paper, and
have gained experiences and insights from running it in the
cloud. Therefore, in this paper we aim to present the following
unique contributions:

1. We introduce the design and implementation of a native
cloud application for parallel data-intensive scientific
computing, and identify some of the key principles for
developing a scalable cloud science application, such as queue
service based task scheduling and fault tolerance;

2. We discuss the advantages and limitations of current
cloud services, such as on-demand scaling capability and VM
hosting reliability, in the context of Windows Azure but the
lessons are largely applicable to other cloud computing
platforms;

3. We present our experiences running and scaling up this
scientific application to encompass larger data sets and we
evaluate the issues encountered.

 The remaining of this paper is organized as follows:
Section II provides the scientific background of this
application; Section III introduces the overall design and
implementation of our software architecture; Section IV
discusses our evaluations and experiences running and scaling
this application; Section V presents related works; Section VI
concludes our work.

II. BACKGROUND
Terra and Aqua are two remote sensing satellites, each

carrying a Moderate Resolution Imaging Spectroradiometer
(MODIS) that measures and images the entire Earth’s surface
in 36 spectral bands and at multiple spatial resolutions [6].
These two MODIS satellites can provide accurate and timely
data about the global dynamics and processes occurring on the
land, oceans, and atmosphere, as they orbit the entire Earth
surface every 1 to 2 days. The MODIS data is made available
on multiple FTP sites.

The science goal of our project is to apply the MODIS data
in the calculation of the evapotranspiration (ET) on the earth
surface. ET controls land-atmosphere feedbacks and constitutes
an important source of water vapor to the atmosphere. In turn,
atmospheric water vapor is the most significant greenhouse gas

and key to understanding hydrologic water balance. As such,
ET plays a fundamental role in weather and climate. Our
computation of ET involves multiple science data products
from the MODIS source data sets, each containing a specific
type of earth surface imagery (such as Land surface
temperature or atmospheric aerosol). Each data product
contains a number of related science variables separated into
HDF format source files [7]. The size of a single data product
for each global year ranges from several hundred GBs to over 1
TB. Although files can be downloaded from the FTP sites,
currently there are no public software frameworks available in
the earth science community to automate the processes of
reconciling and cataloging the various data products and/or
scheduling parallel computations over these data. As a result,
scientists need to handle processing complexities manually,
which often prevents large scale analyses.

To lower the barriers for scientists to perform large-scale
scientific computations on the MODIS data, we proposed and
implemented a cloud-based parallel data processing system in
Windows Azure. Our parallel data processing system,
MODISAzure, can completely automate the processes involved
in metadata management, source data downloading,
computation task scheduling, and fault-tolerance. Furthermore,
the on-demand resource provisioning capability of cloud
computing allows us to smoothly scale our ET computation
from a small regional level to the global level. During a 9-
month system operational period, we have successfully
completed computations at 3 different geographical scales. The
first scale of computation covers the US continent and uses 15
sinusoidal tiles (A sinusoidal tile is a piece of the globe mosaic
which covers a relatively small unit of geographic area). The
next scale of computation covers the
set of regions that have FluxNet [8] towers on their land as we
are using FluxNet tower data to validate our science results.
Computation at this scale accounts for another 32 sinusoidal
tiles. Finally, we calculate the ET at the global scale, which
includes totally 193 sinusoidal tiles. Table 1 gives a view of the
data management requirements in terms of number of data files
and data sizes. The numbers in the columns are for a single
satellite year (i.e. the scale of data from a single satellite in a
single calendar year). The numbers in the parentheses in the
first column indicate the total satellite years for each scale that
we have incorporated in our computation. One thing worth
noting is that the numbers in the Result Size column do not
increase/decrease proportionally with the different scales,
because during the 9-month operational period, we have
developed several methods along the way to reduce the result
data size for our computation in order to save storage cost. We
will discuss these methods and the result savings in details in
section IV.

TABLE I. DATA REQUIREMENTS AT DIFFERENT SCALES

III. SYSTEM DESIGN

A. System Overview
MODISAzure is a loosely coupled, component based

parallel data processing system running in Windows Azure.
Different components of the MODISAzure system are

developed based on the various resource abstractions and
services provided by Windows Azure. Windows Azure
provides two types of virtualized compute instances as
differentiated by roles: the Web Role instances are Windows-
based virtual machines hosting web applications on IIS; the
Worker Role instances are background Windows virtual
machines for running customized user code. The MODISAzure
system consists of two main service components running on
these two different types of compute instances: The first
service component is a front-end web portal for user job
submission and execution status monitoring. This component is
a Microsoft Silverlight-based web application which is hosted
on a web role instance. The second component is a back-end
computing system hosted on a number of worker role compute
instances. It includes three main data processing stages, which
can be either pipelined or run independently. Each stage
performs a specific type of data-processing task:

1. In the data collection stage, a set of compute instances
download the MODIS source data from external FTP sites to
local storage, and then upload the data to the blob storage, a
persistent storage service for large scale unstructured data in
Windows Azure. The source data are stored in the blob storage

for computations in the next two stages. To download the target
source data set for a specific date/area, a compute instance first
queries the geo-spatial information about the target source data
against a source metadata table, and then goes to the specific
FTP location indicated by the metadata to fetch the data. The
metadata table is built using the Azure table service, which is
the persistent storage for structured data.

2. In the reprojection stage, a set of heterogeneous data
products collected in the first stage are reprojected into time-
and spatial-aligned imagery data. A set of compute-intensive
algorithms (such as nearest neighbor pixel matching) are
performed in this process when matching or adjusting the data
points pixel by pixel across the source data files. The

reprojected result data will then be uploaded to the blob storage
for use in future scientific analysis.

 #Source Files Source Size # Result Files Result Size
USA (18) 21850 238 GB 27375 261 GB

FluxTower (3) 80670 993 GB 58400 210 GB
Global (3) 152670 2414 GB 352225 630 GB

3. In the reduction stage, a number of compute instances
invoke a reduction executable uploaded by the scientist to
perform the analysis computation over the reprojected data
from the previous stage. The executable can be compiled from
any source code, such as C/C++, MATLAB, etc.

A more detailed description of the above data processing
stages as well as other components of MODISAzure can be
found in [5]. Besides the front-end web role instance and a
number of worker role instances running tasks for the above 3
stages, there is also one dedicated worker role instance running
as the service monitor, whose main responsibility is to process
job requests from scientists as well as monitor and manage the
execution progress. As an example, the processes involved in a
reduction stage computation are shown in figure 1: A scientist
submits a reduction job request which specifies the parameters
for the computation and the reduction executable to be
uploaded for the reduction computation. The computation
parameters specify the data scope, which identifies interested
MODIS data sets that cover a specific date period and
geographical area, as well as a set of parameters that need to be
passed into the reduction executable for execution. The job
request is then sent to a job queue, which is implemented on
the Azure Queue Service. When the service monitor gets the
request from the job queue, it parses this specification and
separates the job into a number of embarrassingly parallel tasks
where each task performs reduction computation for a single
day on a single geographic unit (i.e. a single sinusoidal tile).
These tasks are sent to a task queue, from which a number of
worker role instances keep pulling the tasks (discussed in
section III.B). For each dequeued task, a worker role instance
will first download the reduction executable which has
previously been uploaded by the scientist from the Azure blob
storage to local storage. It then invokes the executable with
parameters specified in the task to perform corresponding
reduction computation. During the execution, information and
status about the task computation will be persisted and updated
in corresponding tables, which are implemented on the Azure
Table Service (discussed in section III.E). After the execution,
the results (i.e. output files from the execution) will be
uploaded to the Azure blob storage for persistence. Finally,
when all the tasks for a job request are finished, a single
download link will be sent by the service monitor via email to
the scientist who submitted the request.

Figure 1. Processes in a reduction stage computation.

B. Task Scheduling and Execution
The task scheduling and execution model of MODISAzure

is based on the Windows Azure queue service, an
asynchronous message-based communication service.
Parallelized task items are wrapped into XML format messages
and sent to the task queues. Each compute instance pulls task
items from the queues and invokes corresponding data
processing code for different types of tasks (data collection,
reprojection, and reduction).

We implemented a Generic Worker task execution
framework similar to the one described in [9]. In this execution
framework, every compute instance is capable of executing all
types of tasks. In other words, we don’t deploy multiple types

of worker role instances in the system and assign a specific
type of task for each instance type. This execution model helps
eliminate the potential load imbalance between the instances
when working on different types of tasks from the queues.
Also, it is flexible enough to support a new task type in the
system without modifying the underlying service architecture.
The new task processing code can be added to the framework
in the form of source classes in C#, compiled libraries or
executables. They will be packaged together with the service
deployment to be hosted on every compute instance.

In retrospect, the combination of the queue-based task
dispatching and the task pulling model was the key to
achieving software scalability and flexibility in our system.
Instead of the task pushing model, there is no need for a central
job scheduler in charge of managing and assigning tasks to
different worker instances. Every worker instance is self-
managing, and thus can dynamically enter or leave the
computation resource pool. This in turn enables compute
instances to be dynamically scaled up/down without impacting
any of the service components as well as implicitly load
balancing work across instances. This on-demand resource
scalability brought by cloud computing allows us to scale from
a small regional computation up to the global level
computation without any changes to the software components.

C. Dynamic Instance Scaling
Dynamic instance scaling is the ability to adjust the number

of compute instances for a cloud service. As discussed above,
the loose-coupling and self-managing paradigm of our Generic
Workers allows us to dynamically scale up/down the number of
compute instances according to the real-time workloads from
scientists’ job requests, so as to balance the cost and
responsiveness. Dynamic instance scalability can be achieved
by invoking the Azure Management API to update the service
configuration for a deployed application, which specifies the
number of compute instances for each type of web/worker role.
In MODISAzure, an independent component is deployed on
the service monitor instance to monitor the real-time job
requests submitted by scientists. When there are no job requests
submitted to the queue, the service monitor reduces the number
of compute instances to a minimum number to maintain service
availability; Upon the submission of a new job request, the
service estimates the total computational requirements for this
request, calculates the number of new instances that need to be
started to work on the computation based on the criteria of
turnaround time, and invokes the Management API to adjust
the number of instances accordingly.

Given the many complexities and issues involved in the
cloud resource provisioning infrastructure and service model,
we have currently identified several limitations and
performance issues of the instance scaling capability in
Windows Azure:

1. Instance start time overhead: The time delay for new
compute instances to start is significant [10]. For dynamic
instance scaling, we’ve observed more than 30-minute start
time for new instances;

2. Lack of fine-grained control: Concurrent and orthogonal
instance add/remove operations are not supported within a

service deployment. Worse, when scaling down compute
instances, it is infeasible to specify which instance(s) to shut
down.

3. Cost efficiency: Compute instance usage are charged in
full hours, which means a 10-minute instance up time is
charged the same as a 60-minute instance up time. Therefore,
frequent instance start/shutdown may cause low cost-
efficiency.

D. Fault tolerance
At the scale of over a quarter million tasks and tiles in a

single job request, even rare failure events pose problems that
can take significant human effort to understand and repair. A
significant amount of time and effort has been devoted to
identifying these failures and ensuring that the service is
reliable and robust enough to automatically handle the various
failures that we have faced. These failures stem from both the
data scale of our application and also the characteristics of the
cloud environment. We categorize the types of failures that we
encountered into the following two classes:

1. Data Failures: Failures that are caused by flaws in
the data, such as corrupted data content, missing source data,
etc.

2. Computation Failures: Transient hardware or
infrastructure failures, such as slow instances, storage access
exceptions, etc.

Due to the different causes and situations involved in these
different types of failures, we found it necessary to enforce
fault tolerant policies differently for the above two categories.

For data failures, the errors are often domain-specific, thus
these failures require the scientist to incorporate fault tolerant
logic into the scientific code. Although flawed data takes up a
small fraction of the datasets that we have, the consequences
are severe at large scale as they may cause software failures
and invalidate the results of scientific experiments.

Current cloud infrastructures are built on top of commodity
hardware, applications running in the cloud are prone to
hardware and software failures. Computation failures are
typical at the service infrastructure level. Some of the examples
of these failures are slow Virtual Machine (VM) instances and
storage access exceptions. A typical fault tolerant solution to
overcome these failures is to implement a recovery strategy by
retrying the task execution. In our service, we have
implemented a customized task retry policy. For every task that
times out or fails, a task is terminated and placed back in the
service queue to be retried. This is performed for a certain
number of retries (three times by default), before the service
declares it as a failure.

E. Job Status Monitoring and Logging
Monitoring is critical for tracking and diagnosing the

execution status and problems of the numerous tasks in
MODISAzure. Since the number of tasks for a single job
ranges from several hundred to over a quarter million, it is
important for us to record this vast amount of information in
such a way that it can be used effectively and efficiently. The

Azure table service is used because it provides a structured data
store that is scalable yet supports querying in an easy manner.
Separate tables (such as ReprojectionTaskStatus and
ReductionTaskStatus, etc.) are used to record the specification,
execution status and exception messages for each kind of
computation. Data from the monitoring and logging
components are mainly used in one of two ways.

The first way the data is used is via online job execution
monitoring and analysis. This is through a status monitoring
interface on the web portal that retrieves task execution
information from the corresponding TaskStatus table. The
execution progress and statistics for any computation task can
be retrieved in real-time by providing a unique job ID. Other
helpful information such as the standard output and error
output from the invocation of reduction executables are also
provided. Through these information, scientists are able to
better diagnose and debug the various problems for their
executable during the development phase. The status of each
task is also tracked for fault-tolerance and failed tasks are first
handled by issuing a certain number of retries before finally
declaring it as a failure.

We also mine the data offline. Since the table services do
not provide the capability of performing complex statistical
analysis over the data, we download the logged records from
the tables and place them in a SQL database. By building an
OLAP data cube over these data, we are able to perform richer
statistical analysis across various dimensions. Comprehensive
views of billing records, task status and storage consumption
across time are examples of how logging records are used.
Support for analyses of this kind would be impractical if
implemented on the Azure tables, and we are currently
considering SQL Azure for this mining.

IV. EXPERIENCES AND EVALUATION
We have been developing and operating MODISAzure

since summer 2009. In this section, we relate our experiences
developing and operating the application and present
evaluations of reliability and quality of service of the
application running on Windows Azure.

A. Experience
There have been four distinct phases in our work with

MODISAzure: early development (7/2009 to 9/2009),
Continental USA computation (10/2009 to 3/2010), Fluxnet
tower computation (3/2010 to 4/2010), and global computation
(5/2010 to present). Each phase is characterized both by
computational scale and science data challenges. In addition to
the data processing system described in Section III, we also
developed a reprojection algorithm and evolved our ET
science reduction algorithm. Each of these three software
components have evolved relatively independently as our
computation has scaled and we learned from experience.

I) Early Development

We began by prototyping the reprojection algorithm in
MATLAB on the desktop and sizing the source data based on
an initial list of the source MODIS products. Because we had
no way of guessing how many times we would run the ET

reduction, we simply guessed that the total load would be no
more than double the reprojection. This enabled an early
capacity plan for the upload, storage, and compute
requirements. We continue to refine those estimates and
monitor our current usage. That gives us an ability to plan
ahead as well as simply identify potential problems by
comparing our estimate with the observed behavior.

We chose a simple, fast nearest neighbor algorithm to
convert the tiles available only in the MODIS swath projection
to the MODIS sinusoidal projection. This ensures that all data
for our ET reduction are both time and space-aligned with an
equal-sized land surface pixel [11]. We implemented the
algorithm in C# to give better performance. We also designed
the geo-spatial lookup necessary to identify the swath
projection tiles necessary to create a given sinusoidal tile. We
used a SQL Server database for initial development, but ported
the results to Azure tables.

We chose to support compiled MATLAB code for the ET
reduction algorithm. The simple science desktop debug and
development capability as well as the availability of relevant
support libraries more than compensates for any reduced
performance.

II) USA computation

In late fall 2009, we achieved our first one year USA ET
result. A key learning lead to adding the optional second stage
science reduction to the pipeline. This second stage is used to
produce science analysis artifacts such as maps, virtual sensors,
or plots from the reduction computation. When reducing at
scale, downloading the reduction results and then producing
these artifacts on the desktop can be onerous.

In January 2010, we moved from our Azure Community
Technology Preview (free, pre-release) account to a
commercial account. We could now monitor our resource
usage and billing at the Microsoft Online Services Customer
Portal [12]. We began to dynamically scale our deployment to
keep our running costs down.

We started the practice of comparing our billed compute
hours with our TaskStatus tables in February 2010. Figure 2
shows that comparison over time; our task logs account for
85% of the billed compute hours. As expected, we observe
very good agreement when running a large number of tasks
consistently such as during the cpu-intensive USA and
FluxTower reprojection. Each tile took approximately 2.5
minutes of which ~0.4 minutes were spent in overhead staging
tiles to/from the Azure VM instance and the blob store. Also as
expected, we see less agreement when dynamically scaling
instances during reduction such as on 4/17/2010. We keep
“idle” instances running after task completion (currently 15
minutes) to avoid the need to stop/start instances unnecessarily
in case of frequent job submissions and as Azure billing rounds
up partial compute hours.

We also started monitoring our storage billing. Unlike
many grid platforms, Azure billing includes upload, download,
and storage fees. For science convenience, most of the MODIS
source tiles contain multiple science variables in a single file;
we estimated that keeping only the variables needed for the ET
computation would save us approximately 60% of the storage

required for reprojected tiles. Since these represent over 90% of
the source data, we felt this was an important savings.

We gained experience operating the service at scale in this
phase. We learned that we benefitted from retrying each
download, reprojection, and reduction task to reduce the
impact of intermittent Azure disruptions. If the task continues
to fail, we can then use the logged status return to triage the
failures and investigate to attribute the failure as discussed in
Section III.D. Note that triage does not always tell us exactly
what caused the error – we do not distinguish missing tiles
caused by a satellite outage from missing tiles that are simply
not present on the NASA site – but does tell us what we can
do to get an ET reduction result.

III) FluxTower Computation

Since our USA computation was beginning to give good
science results, we decided to expand the computation to
include the additional sinusoidal tiles covering 114 additional
eddy flux towers in late 3/2010. We expected and experienced
simple scaling. Our capacity planning estimated that one
FluxTower year corresponded to about 2 US satellite years (32
tiles vs. 15 tiles). That resource scaling was very close - we
actually consumed about 18 US satellite years. Our decision to
automatically retry failed tasks served us very well in this
phase; we saw approximately 6% task failure out of 57664
tasks attempted. Of those, 41% were recovered by retry. The
remaining 59% unrecoverable tasks were mainly caused by
data failures or scientist code bugs.

The increased data diversity presented challenges to our ET
algorithm. We encountered a much wider range of biomes such
as rainforests and climate regimes such as tropics. We found
that we now needed additional science variables from the
imagery; some of the layers we had previously discarded now
needed to be retained.

IV) Global Computation

We first attempted an ET computation on a global scale for
a single calendar year in April 2010. Based on early success,

we started the initial download and reprojection for two
additional calendar years in July 2010.

Figure 2. Comparison of billing compute hours per day with observed
reprojection and task times. The two correlate best when the
reprojection was compute bound and the number of deployed
instances is relatively static.

We chose a 5 KM rather than 1 KM spatial scale based on
capacity planning. The USA represents approximately 5% of
the world land surface area, so we were attempting to scale up
by a factor of 20. Scaling down the resolution meant that 1 US
year is approximately 1 global year. As shown in Figure 3, this
decision most strongly impacted the storage requirements. At
the end of the global reprojection, we deleted all global source
tile precursors for the calendar year 2003 and two extra years
of FluxTower tiles. Prior to that “storage diet”, our storage bills
were approximately half of our total bill.

The 5 KM choice shifted our reprojection from compute
bound to slightly IO bound. Processing each tile now took
approximately 5 minutes of which ~2.6 minutes were spent in
overhead staging tiles to/from the Azure VM instance and the
blob store. This change is apparent in Figure 3. The billed
storage transactions are negligible in the early phases, but
closely track the compute hour billing for the global
reprojection. We also observed over 10X variation in the
reprojection task time. The MODIS satellites cross a given
sinusoidal tile location more often at the poles than at the
equator and the number of nearest neighbor pixels increases
dramatically. We simplified the algorithm to reduce the search
space across the source files and thereby reduce the overhead.

The choice also impacted the scaling of our reduction
phase. We observed that a one year global ET reduction job
took approximately 6 hours. To decrease that, we increased our
Azure quota from 100 instances to 250 instances.
Unfortunately, we saw change in wall clock time due to more
than double the overhead associated with staging the tiles
to/from the Azure VM instance. We speculate that we reached
a rack cross-sectional bandwidth limit. We have examined our
task logs, computed and therefore discounted the number of
table and queue updates; much of Azure remains a black box.

 We also learned the importance of having a complete tile
catalog including all source tiles on the NASA ftp sites,
reprojected targets, and known expected missing tiles as well
as our TaskStatus logs. Our Service Monitor experienced an
Azure VM restart in the middle of scheduling the tasks for a
global reprojection job with over 240K tasks. At the same

time, our download tasks were failing intermittently due to
NASA site outage. Retrying both eventually generated 95% of
the tiles needed for the ET reduction. We then had to track
down the missing 5%. Figure 4 shows one of our maps from
that analysis. Causes included missing tiles on the NASA site
such as on the coast of Africa, winter polar nights, and (not
shown) satellite outages.

Lastly, we continue to evolve the science computation and
validation. Understanding how to think about regions such as
the Sahara and the implications for crop fertilization remains

active science research. That our pipeline is running well
allows us to focus on that science.

B. Evaluation
I) Performance Variation

During our several months of reprojection and reduction
computations in Windows Azure we have observed significant
performance variations within a compute instance. Ideally a
virtualized compute instance would have identical performance
along its lifetime, but in practice many sources of variations
from the cloud infrastructure could break this assumption.
These sources of variations include imperfect resource isolation
between hosted instances, fluctuating network performance,
and the location of the instance, etc.

Figure 3. Compute hours, Storage transactions, and Data Storage.
The US and FluxTower 1 KM reprojection was compute bound; the
reduction and 5 KM reprojection tend to be IO bound. We
transferred 3 US years from the CTP account in January 2010. The
dramatic decrease in storage at the end of June was due to deletion
of the global computation swath tiles after successful reprojection.

Figure 4. Global data availability for the ET reduction in February.
Color coding indicates data availability; white areas were not
included in the computation.

Figure 5. Performance variability of a single compute instance at
different temporal points.

We have conducted an experiment to evaluate the
performance variations. From July 5 to July 20, we set up a
compute instance to run the same set of 5 reduction tasks twice
a day (6am and 5pm US EST Time). We then measured the
execution time for each task run. The results are shown in
Figure 5. Each line along the X-axis represents the time series
for task execution, and the Y-axis value for a data point in each
line represents the normalized task execution time, with a
maximum execution time of ~13 minutes. As shown in the
figure, the difference between the best performance and the
worst performance for the same task execution can be as large
as 350%.

II) VM Hosting Reliability

The reliability of VM provisioning and hosting in
Windows Azure is yet to be fully understood [13]. For
MODISAzure, we have maintained a logging table to track
every single instance start event occuring in the system.
Instances are started either upon a clean service deployment or
during the dynamic instance scaling processes. By analyzing
this logging table, we were able to track the information about
every VM instance that have been started. Through the
analysis, we found a fraction of the instances have ran into
unknown problems after a certain running period, and a
substitution of the same instance was started by the Azure
infrastructure after the problem was detected. In some cases,
the same instance has been retried starting for many times.
Figure 6 shows the separation of instances which were started
only once during their lifetimes (unique starts) and instances
that have been started for multiple times (retries). Out of a
total of 10032 VM unique instance start events, 8568 instances
only started once during their lifetimes, a success rate of
approximately 85%. This is certainly not a satisfactory number
for system reliability, which again indicates the importance of
fault tolerance on the application level.

Figure 6. Instance start events during a five-month period. The
instance start events are broken down to unique instance starts and
retried instance starts.

V. RELATED WORK
An increasing number of existing scientific applications and

benchmarks have been migrated and deployed to the clouds to
evaluate the performance and quality of service in the cloud
environments. T. Gunarathne et al. [14] compared the
performances of the Cap3 and the MDS & GTM interpolation
scientific applications in both EC2 and Windows Azure. X. Qiu
et al. [15] took a similar approach and compared the
performance of 3 bioinformatics applications on Windows
Azure and Dryad. K. Jackson et al. [16] ported a large-scale
image processing application for seeking supernova from local
clusters to Amazon EC2, and compared a number of different
data storage and communication strategies. A. Thakar and A.
Szalay[17] discussed their experience with migrating a
scientific relational database into both EC2 and SQL Azure,
and evaluated the performances as well as identified their
limitations as compared to on-premise database solutions. Of
all the ongoing efforts on evaluating the feasibility of cloud
computing for data-intensive eScience applications, the
AzureBlast project [18] took an approach that is the most
similar to ours to use the basic service elements provided by
Windows Azure to build a parallel bioinformatics application
running the BLAST algorithm.

Our work is complementary to the above projects in that we
have built a production earth science application in the cloud
and have been operating it over a 9-month period. The unique
experience we gained from continuously scaling up the
computation in the cloud provides an early picture on some of
the issues with a long-running production eScience application
in the cloud.

VI. CONCLUSION
In this paper we provide some early observations and

experiences with the development and operation of the
MODISAzure application in the Windows Azure cloud
computing platform. Not like the approach used by many other
eScience applications that directly move existing codes and
software stacks into the cloud, we build the application from
scratch on top of the basic service elements and scalable
infrastructures of cloud computing.

Our decision to build a satellite image processing pipeline
leveraging the native capabilities of Azure has served us well.
As we have scaled the application from Continental US to
global scale, our initial service architecture has had only minor
changes. We have leveraged blob service to store and manage
large amounts of science data; the queue service for task
dispatching and scheduling; the table service to monitor
execution status in real-time and keep history logs; and the
Management API to dynamically scale up/down the instances
to be adapted to the dynamic workloads.

Our decision to “bake in the faults” has also served us well.
While Azure presents a highly reliable platform and masks
many faults, our scale is such that even 99.999% reliability still
creates too many faults for human examination. At the same
time, the virtualized nature of Azure presents new faults such
as VM substitution. Our application is delightfully parallel and
the image tile is an obvious idempotent building block. This

enabled us to rapidly understand how and where to build in
fault retries that isolate our science user.

Lastly, our decision to use Azure tables as a common
logging mechanism has given us two very important abilities.
First, we can monitor our application and use the accumulated
measurements to plan forward. Second, that same forensics
also gives us the ability to debug the science application code
forensically.

Overall, we think cloud computing has provided an
appealing environment for building scalable, data-intensive
eScience applications. However, in this early stage, it still has
some limitations on the application development and execution
processes. The hosted environment and black-box nature of
cloud computing indicate that we will at least have to live with
that for a long time.

ACKNOWLEDGMENT
This work is supported in part by Microsoft External

Research. It is also supported in part by the Director, Office of
Science, Office of Advanced Scientific Computing, of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

REFERENCES
[1] T. Hey and A. Trefethen, “The Data Deluge: An e-Science Perspective”,

Grid Computing: Making the Global Infrastructure a Reality, Wiley
2003.

[2] Google App Engine. http://code.google.com/appengine/
[3] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/
[4] Microsoft Windows Azure Platform.

http://www.microsoft.com/azure/default.mspx

[5] J. Li, D. Agarwal, M. Humphrey, C.van Ingen, K. Jackson, Y. Ryu,
“eScience in the Cloud: A MODIS Satellite Data Reprojection and
Reduction Pipeline in the Windows Azure Platform”, 24th IEEE
International Parallel & Distributed Processing Symposium , April 2010.

[6] MODIS Website. http://modis.gsfc.nasa.gov/
[7] The HDF Group. http://www.hdfgroup.org/
[8] FluxNet. http://www.fluxdata.org
[9] Y. Simmhan, C. van Ingen, G. Subramanian, J. Li, “Bridging the Gap

between Desktop and the Cloud for eScience Applications”, The 3rd
International Conference on Cloud Computing, July 2010.

[10] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early
Observations on the Performance of Windows Azure”, 1st Workshop on
Scientific Cloud Computing, June 2010.

[11] R.E. Wolfe, D.P. Roy and E. Vermote, “MODIS land data storage,
gridding, and compositing methodology: Level 2 grid”, IEEE
Transactions on Geoscience and Remote Sensing, 36(4): 1324-1338.

[12] Microsoft Online Services Customer Portal.
https://mocp.microsoftonline.com/site/default.aspx

[13] R. Barga and C.van Ingen, Invited talk on Microsoft Faculty Summit
2010. http://research.microsoft.com/en-
us/people/barga/faculty_summit_2010.pdf

[14] T. Gunarathne, T. Wu, J. Qiu, and G. Fox, “Cloud Computing
Paradigms for Pleasingly Parallel Biomedical Applications” , Emerging
Computational Methods for the Life Sciences Workshop, June 2010.

[15] X. Qiu, J. Ekanayake, S. Beason, T. Gunarathne, G. Fox, R. Barga, and
D. Gannon, “Cloud Technologies for Bioinformatics Applications”, 2nd
ACM Workshop on Many-Task Computing on Grids and
Supercomputers, November 2009.

[16] K. Jackson, L. Ramakrishnan, K. Runge, R. Thomas, “Seeking
Supernovae in the Clouds: A Performance Study”, 1st Workshop on
Scientific Cloud Computing, June 2010.

[17] A. Thakar and A. Szalay, “Migrating a (Large) Science Database to the
Cloud”, 1st Workshop on Scientific Cloud Computing, June 2010.

[18] W. Lu, J. Jackson, and R. Barga, “AzureBlast: A Case Study of
Developing Science Applications on the Cloud”, 1st Workshop on
Scientific Cloud Computing, June 2010.

