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*Abstract—It can be natural to believe that many of the traditional issues of scale have been eliminated or at least greatly reduced via 
cloud computing. That is, if one can create a seemingly wellfunctioning cloud application that operates correctly on small or moderate-
sized problems, then the very nature of cloud programming abstractions means that the same application will run as well on potentially 
significantly larger problems. In this paper, we present our experiences taking MODISAzure, our satellite data processing system built 
on the Windows Azure cloud computing platform, from the proof-of-concept stage to a point of being able to run on significantly larger 
problem sizes (e.g., from national-scale data sizes to global-scale data sizes). To our knowledge, this is the longest-running eScience 
application on the nascent Windows Azure platform. We found that while many infrastructure-level issues were thankfully masked 
from us by the cloud infrastructure, it was valuable to design additional redundancy and fault-tolerance capabilities such as transparent 
idempotent task retry and logging to support debugging of user code encountering unanticipated data issues. Further, we found that 
using a commercial cloud means anticipating inconsistent performance and black-box behavior of virtualized compute instances, as well 
as leveraging changing platform capabilities over time. We believe that the experiences presented in this paper can help future eScience 
cloud application developers on Windows Azure and other commercial cloud providers. 
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I.  INTRODUCTION  
The increasing availability of scientific data from both large 

experimental instruments and networks of ground-based and 
space-based sensors is transforming the scientific computing 
landscape. Today, eScience applications at tera-byte or even 
peta-byte scale are not uncommon in domain areas such as 
Environmental Science and High Energy Physics [1]. The 
continuously generated data sets in these domains have created 
invaluable repositories for new science discoveries. 

However, with the increasing scale of data sets comes the 
problem of how to process them. Acquiring the computational 
resources necessary to meet the requirements of these large 
scale applications is difficult for many science research groups. 
At the same time, scientists that have access to high-
performance clusters or supercomputing centers often 
experience indefinite job turnaround times due to resource-
sharing policies that cause long queue wait times. This 
inefficient situation becomes more severe when scientists need 
to frequently submit large jobs to test and improve their 
scientific models. There are also huge process gaps going from 
large-scale raw data to scientific knowledge. Complexities 
involved in data collection, storage management, computation 
scheduling, and fault-tolerance increase as the scientific 
computation scales up. These complexities, if not correctly 
handled by software systems and appropriately masked from 
domain scientists, can cause invalid results in the final 
scientific knowledge or make an analysis impossibly daunting. 

Cloud computing has recently emerged as a large-scale, 
distributed computing platform with on-demand resource 
provisioning capability and a “pay as you go” service model. 
Commercial cloud providers such as Google App Engine [2], 
Amazon EC2 [3], and Microsoft Windows Azure [4] are 
pioneering in this area providing hosting of cloud applications 
on powerful datacenters. Although the specific resource 
provisioning and programming models are different,  all 
provide a common set of building blocks in the form of 
compute and storage services to enable large-scale, compute- 
and data-intensive applications to be developed and deployed. 
The on-demand nature of these compute and storage services 
allows applications to scale by orders of magnitude without 
changing the underlying software components and 
architectures or incurring long wait times. The “pay as you go” 
model can save users huge upfront investments in the hardware 
resources. Cloud computing has the potential to bring benefits 
to the scientific community by hosting large-scale eScience 
applications on-demand. 

However, cloud computing is still in its early development 
stages and is relatively immature. The distinct capabilities and 
characteristics of cloud computing need to be fully explored 
and evaluated before we can confidently adopt cloud 
computing for existing and next-generation eScience 
applications. In this paper, we present our experience 
developing and using MODISAzure, a large-scale satellite data 
processing system built on the Windows Azure cloud 
computing platform. Because we built this application from 
scratch, we leveraged a large subset of the Azure cloud service 

elements as the basic building blocks for our application 
components. To our knowledge, this is one of the earliest 
scientific applications that were natively built on top of the 
cloud infrastructure and service elements provided by 
Windows Azure.  

We have already presented the basic architecture of the 
MODISAzure system and its overall performance in a previous 
publication [5]. However, the work we presented in that 
publication was completed during summer 2009, when 
Windows Azure was still on the Community Technology 
Preview (CTP) phase. Since then, Windows Azure has been 
evolving and bringing new important features for the 
development of cloud applications, and we have incorporated 
some of these new features into our system design (e.g. using 
the Management API for dynamic instance scaling). 
Furthermore, we have been running this scientific computation 
for more than 9 months since we submitted that paper, and 
have gained experiences and insights from running it in the 
cloud. Therefore, in this paper we aim to present the following 
unique contributions: 

1. We introduce the design and implementation of a native 
cloud application for parallel data-intensive scientific 
computing, and identify some of the key principles for 
developing a scalable cloud science application, such as queue 
service based task scheduling and fault tolerance; 

2. We discuss the advantages and limitations of current 
cloud services, such as on-demand scaling capability and VM 
hosting reliability, in the context of Windows Azure but the 
lessons are largely applicable to other cloud computing 
platforms; 

3. We present our experiences running and scaling up this 
scientific application to encompass larger data sets and we 
evaluate the issues encountered.  

 The remaining of this paper is organized as follows: 
Section II provides the scientific background of this 
application; Section III introduces the overall design and 
implementation of our software architecture; Section IV 
discusses our evaluations and experiences running and scaling 
this application; Section V presents related works; Section VI 
concludes our work. 

II. BACKGROUND 
Terra and Aqua are two remote sensing satellites, each 

carrying a Moderate Resolution Imaging Spectroradiometer 
(MODIS) that measures and images the entire Earth’s surface 
in 36 spectral bands and at multiple spatial resolutions [6]. 
These two MODIS satellites can provide accurate and timely 
data about the global dynamics and processes occurring on the 
land, oceans, and atmosphere, as they orbit the entire Earth 
surface every 1 to 2 days. The MODIS data is made available 
on multiple FTP sites. 

The science goal of our project is to apply the MODIS data 
in the calculation of the evapotranspiration (ET) on the earth 
surface. ET controls land-atmosphere feedbacks and constitutes 
an important source of water vapor to the atmosphere. In turn, 
atmospheric water vapor is the most significant greenhouse gas 



and key to understanding hydrologic water balance. As such, 
ET plays a fundamental role in weather and climate. Our 
computation of ET involves multiple science data products 
from the MODIS source data sets, each containing a specific 
type of earth surface imagery (such as Land surface 
temperature or atmospheric aerosol). Each data product 
contains a number of related science variables separated into 
HDF format source files [7]. The size of a single data product 
for each global year ranges from several hundred GBs to over 1 
TB. Although files can be downloaded from the FTP sites, 
currently there are no public software frameworks available in 
the earth science community to automate the processes of 
reconciling and cataloging the various data products and/or 
scheduling parallel computations over these data. As a result, 
scientists need to handle processing complexities manually, 
which often prevents large scale analyses.  

To lower the barriers for scientists to perform large-scale 
scientific computations on the MODIS data, we proposed and 
implemented a cloud-based parallel data processing system in 
Windows Azure. Our parallel data processing system, 
MODISAzure, can completely automate the processes involved 
in metadata management, source data downloading, 
computation task scheduling, and fault-tolerance. Furthermore, 
the on-demand resource provisioning capability of cloud 
computing allows us to smoothly scale our ET computation 
from a small regional level to the global level. During a 9-
month system operational period, we have successfully 
completed computations at 3 different geographical scales. The 
first scale of computation covers the US continent and uses 15 
sinusoidal tiles (A sinusoidal tile is a piece of the globe mosaic 
which covers a relatively small unit of geographic area). The 
next scale of computation covers the                                                                                                                                                                                                           
set of regions that have FluxNet [8] towers on their land as we 
are using FluxNet tower data to validate our science results. 
Computation at this scale accounts for another 32 sinusoidal 
tiles. Finally, we calculate the ET at the global scale, which 
includes totally 193 sinusoidal tiles. Table 1 gives a view of the 
data management requirements in terms of number of data files 
and data sizes. The numbers in the columns are for a single 
satellite year (i.e. the scale of data from a single satellite in a 
single calendar year). The numbers in the parentheses in the 
first column indicate the total satellite years for each scale that 
we have incorporated in our computation. One thing worth 
noting is that the numbers in the Result Size column do not 
increase/decrease proportionally with the different scales, 
because during the 9-month operational period, we have 
developed several methods along the way to reduce the result 
data size for our computation in order to save storage cost. We 
will discuss these methods and the result savings in details in 
section IV.  

TABLE I.  DATA REQUIREMENTS AT DIFFERENT SCALES    

III.  SYSTEM DESIGN 

A. System Overview 
MODISAzure is a loosely coupled, component based 

parallel data processing system running in Windows Azure. 
Different components of the MODISAzure system are 

developed based on the various resource abstractions and 
services provided by Windows Azure. Windows Azure 
provides two types of virtualized compute instances as 
differentiated by roles: the Web Role instances are Windows-
based virtual machines hosting web applications on IIS; the 
Worker Role instances are background Windows virtual 
machines for running customized user code. The MODISAzure 
system consists of two main service components running on 
these two different types of compute instances: The first 
service component is a front-end web portal for user job 
submission and execution status monitoring. This component is 
a Microsoft Silverlight-based web application which is hosted 
on a web role instance. The second component is a back-end 
computing system hosted on a number of worker role compute 
instances. It includes three main data processing stages, which 
can be either pipelined or run independently. Each stage 
performs a specific type of data-processing task: 

1. In the data collection stage, a set of compute instances 
download the MODIS source data from external FTP sites to 
local storage, and then upload the data to the blob storage, a 
persistent storage service for large scale unstructured data in 
Windows Azure. The source data are stored in the blob storage 

for computations in the next two stages. To download the target 
source data set for a specific date/area, a compute instance first 
queries the geo-spatial information about the target source data 
against a source metadata table, and then goes to the specific 
FTP location indicated by the metadata to fetch the data. The 
metadata table is built using the Azure table service, which is 
the persistent storage for structured data.  

2. In the reprojection stage, a set of heterogeneous data 
products collected in the first stage are reprojected into time- 
and spatial-aligned imagery data. A set of compute-intensive 
algorithms (such as nearest neighbor pixel matching) are 
performed in this process when matching or adjusting the data 
points pixel by pixel across the source data files. The 

reprojected result data will then be uploaded to the blob storage 
for use in future scientific analysis.  

 #Source Files Source Size  # Result Files Result Size  
USA (18) 21850 238 GB 27375 261 GB 

FluxTower (3) 80670 993 GB 58400 210 GB 
Global (3) 152670 2414 GB 352225 630 GB 



3. In the reduction stage, a number of compute instances 
invoke a reduction executable uploaded by the scientist to 
perform the analysis computation over the reprojected data 
from the previous stage. The executable can be compiled from 
any source code, such as C/C++, MATLAB, etc.  

A more detailed description of the above data processing 
stages as well as other components of MODISAzure can be 
found in [5]. Besides the front-end web role instance and a 
number of worker role instances running tasks for the above 3 
stages, there is also one dedicated worker role instance running 
as the service monitor, whose main responsibility is to process 
job requests from scientists as well as monitor and manage the 
execution progress. As an example, the processes involved in a 
reduction stage computation are shown in figure 1: A scientist 
submits a reduction job request which specifies the parameters 
for the computation and the reduction executable to be 
uploaded for the reduction computation. The computation 
parameters specify the data scope, which identifies interested 
MODIS data sets that cover a specific date period and 
geographical area, as well as a set of parameters that need to be 
passed into the reduction executable for execution. The job 
request is then sent to a job queue, which is implemented on 
the Azure Queue Service. When the service monitor gets the 
request from the job queue, it parses this specification and 
separates the job into a number of embarrassingly parallel tasks 
where each task performs reduction computation for a single 
day on a single geographic unit (i.e. a single sinusoidal tile). 
These tasks are sent to a task queue, from which a number of 
worker role instances keep pulling the tasks (discussed in 
section III.B). For each dequeued task, a worker role instance 
will first download the reduction executable which has 
previously been uploaded by the scientist from the Azure blob 
storage to local storage. It then invokes the executable with 
parameters specified in the task to perform corresponding 
reduction computation. During the execution, information and 
status about the task computation will be persisted and updated 
in corresponding tables, which are implemented on the Azure 
Table Service (discussed in section III.E). After the execution, 
the results (i.e. output files from the execution) will be 
uploaded to the Azure blob storage for persistence. Finally, 
when all the tasks for a job request are finished, a single 
download link will be sent by the service monitor via email to 
the scientist who submitted the request.  

Figure 1.  Processes in a reduction stage computation. 

B. Task Scheduling and Execution 
The task scheduling and execution model of MODISAzure 

is based on the Windows Azure queue service, an 
asynchronous message-based communication service. 
Parallelized task items are wrapped into XML format messages 
and sent to the task queues. Each compute instance pulls task 
items from the queues and invokes corresponding data 
processing code for different types of tasks (data collection, 
reprojection, and reduction). 

We implemented a Generic Worker task execution 
framework similar to the one described in [9]. In this execution 
framework, every compute instance is capable of executing all 
types of tasks. In other words, we don’t deploy multiple types 

of worker role instances in the system and assign a specific 
type of task for each instance type. This execution model helps 
eliminate the potential load imbalance between the instances 
when working on different types of tasks from the queues. 
Also, it is flexible enough to support a new task type in the 
system without modifying the underlying service architecture. 
The new task processing code can be added to the framework 
in the form of source classes in C#, compiled libraries or 
executables. They will be packaged together with the service 
deployment to be hosted on every compute instance.  

In retrospect, the combination of the queue-based task 
dispatching and the task pulling model was the key to 
achieving software scalability and flexibility in our system. 
Instead of the task pushing model, there is no need for a central 
job scheduler in charge of managing and assigning tasks to 
different worker instances. Every worker instance is self-
managing, and thus can dynamically enter or leave the 
computation resource pool. This in turn enables compute 
instances to be dynamically scaled up/down without impacting 
any of the service components as well as implicitly load 
balancing work across instances. This on-demand resource 
scalability brought by cloud computing allows us to scale from 
a small regional computation up to the global level 
computation without any changes to the software components.    

C. Dynamic Instance Scaling 
Dynamic instance scaling is the ability to adjust the number 

of compute instances for a cloud service. As discussed above, 
the loose-coupling and self-managing paradigm of our Generic 
Workers allows us to dynamically scale up/down the number of 
compute instances according to the real-time workloads from 
scientists’ job requests, so as to balance the cost and 
responsiveness. Dynamic instance scalability can be achieved 
by invoking the Azure Management API to update the service 
configuration for a deployed application, which specifies the 
number of compute instances for each type of web/worker role.  
In MODISAzure, an independent component is deployed on 
the service monitor instance to monitor the real-time job 
requests submitted by scientists. When there are no job requests 
submitted to the queue, the service monitor reduces the number 
of compute instances to a minimum number to maintain service 
availability; Upon the submission of a new job request, the 
service estimates the total computational requirements for this 
request, calculates the number of new instances that need to be 
started to work on the computation based on the criteria of 
turnaround time, and invokes the Management API to adjust 
the number of instances accordingly. 

Given the many complexities and issues involved in the 
cloud resource provisioning infrastructure and service model, 
we have currently identified several limitations and 
performance issues of the instance scaling capability in 
Windows Azure: 

1. Instance start time overhead: The time delay for new 
compute instances to start is significant [10]. For dynamic 
instance scaling, we’ve observed more than 30-minute start 
time for new instances; 

2. Lack of fine-grained control: Concurrent and orthogonal 
instance add/remove operations are not supported within a 



service deployment. Worse, when scaling down compute 
instances, it is infeasible to specify which instance(s) to shut 
down. 

3. Cost efficiency: Compute instance usage are charged in 
full hours, which means a 10-minute instance up time is 
charged the same as a 60-minute instance up time. Therefore, 
frequent instance start/shutdown may cause low cost-
efficiency. 

D. Fault tolerance 
At the scale of over a quarter million tasks and tiles in a 

single job request, even rare failure events pose problems that 
can take significant human effort to understand and repair. A 
significant amount of time and effort has been devoted to 
identifying these failures and ensuring that the service is 
reliable and robust enough to automatically handle the various 
failures that we have faced. These failures stem from both the 
data scale of our application and also the characteristics of the 
cloud environment. We categorize the types of failures that we 
encountered into the following two classes: 

1. Data Failures: Failures that are caused by flaws in 
the data, such as corrupted data content, missing source data, 
etc.  

2. Computation Failures: Transient hardware or 
infrastructure failures, such as slow instances, storage access 
exceptions, etc. 

Due to the different causes and situations involved in these 
different types of failures, we found it necessary to enforce 
fault tolerant policies differently for the above two categories. 

For data failures, the errors are often domain-specific, thus 
these failures require the scientist to incorporate fault tolerant 
logic into the scientific code. Although flawed data takes up a 
small fraction of the datasets that we have, the consequences 
are severe at large scale as they may cause software failures 
and invalidate the results of scientific experiments.  

Current cloud infrastructures are built on top of commodity 
hardware, applications running in the cloud are prone to 
hardware and software failures. Computation failures are 
typical at the service infrastructure level. Some of the examples 
of these failures are slow Virtual Machine (VM) instances and 
storage access exceptions. A typical fault tolerant solution to 
overcome these failures is to implement a recovery strategy by 
retrying the task execution. In our service, we have 
implemented a customized task retry policy. For every task that 
times out or fails, a task is terminated and placed back in the 
service queue to be retried. This is performed for a certain 
number of retries (three times by default), before the service 
declares it as a failure. 

E. Job Status Monitoring and Logging 
Monitoring is critical for tracking and diagnosing the 

execution status and problems of the numerous tasks in 
MODISAzure. Since the number of tasks for a single job 
ranges from several hundred to over a quarter million, it is 
important for us to record this vast amount of information in 
such a way that it can be used effectively and efficiently. The 

Azure table service is used because it provides a structured data 
store that is scalable yet supports querying in an easy manner. 
Separate tables (such as ReprojectionTaskStatus and 
ReductionTaskStatus, etc.) are used to record the specification, 
execution status and exception messages for each kind of 
computation. Data from the monitoring and logging 
components are mainly used in one of two ways. 

The first way the data is used is via online job execution 
monitoring and analysis. This is through a status monitoring 
interface on the web portal that retrieves task execution 
information from the corresponding TaskStatus table. The 
execution progress and statistics for any computation task can 
be retrieved in real-time by providing a unique job ID. Other 
helpful information such as the standard output and error 
output from the invocation of reduction executables are also 
provided. Through these information, scientists are able to 
better diagnose and debug the various problems for their 
executable during the development phase. The status of each 
task is also tracked for fault-tolerance and failed tasks are first 
handled by issuing a certain number of retries before finally 
declaring it as a failure.  

We also mine the data offline. Since the table services do 
not provide the capability of performing complex statistical 
analysis over the data, we download the logged records from 
the tables and place them in a SQL database. By building an 
OLAP data cube over these data, we are able to perform richer 
statistical analysis across various dimensions. Comprehensive 
views of billing records, task status and storage consumption 
across time are examples of how logging records are used. 
Support for analyses of this kind would be impractical if 
implemented on the Azure tables, and we are currently 
considering SQL Azure for this mining. 

IV. EXPERIENCES AND EVALUATION 
We have been developing and operating MODISAzure 

since summer 2009. In this section, we relate our experiences 
developing and operating the application and present 
evaluations of reliability and quality of service of the 
application running on Windows Azure.  

A. Experience 
There have been four distinct phases in our work with 

MODISAzure: early development (7/2009 to 9/2009), 
Continental USA computation (10/2009 to 3/2010), Fluxnet 
tower computation (3/2010 to 4/2010), and global computation 
(5/2010 to present). Each phase is characterized both by 
computational scale and science data challenges. In addition to 
the data processing system described in Section III, we also 
developed a reprojection algorithm and evolved our ET 
science reduction algorithm. Each of these three software 
components have evolved relatively independently as our 
computation has scaled and we learned from experience.  
 

I) Early Development 

We began by prototyping the reprojection algorithm in 
MATLAB on the desktop and sizing the source data based on 
an initial list of the source MODIS products. Because we had 
no way of guessing how many times we would run the ET 



reduction, we simply guessed that the total load would be no 
more than double the reprojection. This enabled an early 
capacity plan for the upload, storage, and compute 
requirements. We continue to refine those estimates and 
monitor our current usage. That gives us an ability to plan 
ahead as well as simply identify potential problems by 
comparing our estimate with the observed behavior.  

We chose a simple, fast nearest neighbor algorithm to 
convert the tiles available only in the MODIS swath projection 
to the MODIS sinusoidal projection. This ensures that all data 
for our ET reduction are both time and space-aligned with an 
equal-sized land surface pixel [11]. We implemented the 
algorithm in C# to give better performance. We also designed 
the geo-spatial lookup necessary to identify the swath 
projection tiles necessary to create a given sinusoidal tile. We 
used a SQL Server database for initial development, but ported 
the results to Azure tables.   

We chose to support compiled MATLAB code for the ET 
reduction algorithm.  The simple science desktop debug and 
development capability as well as the availability of relevant 
support libraries more than compensates for any reduced 
performance.  

II) USA computation 

In late fall 2009, we achieved our first one year USA ET 
result. A key learning lead to adding the optional second stage 
science reduction to the pipeline. This second stage is used to 
produce science analysis artifacts such as maps, virtual sensors, 
or plots from the reduction computation. When reducing at 
scale, downloading the reduction results and then producing 
these artifacts on the desktop can be onerous. 

In January 2010, we moved from our Azure Community 
Technology Preview (free, pre-release) account to a 
commercial account. We could now monitor our resource 
usage and billing at the Microsoft Online Services Customer 
Portal [12]. We began to dynamically scale our deployment to 
keep our running costs down. 

We started the practice of comparing our billed compute 
hours with our TaskStatus tables in February 2010. Figure 2 
shows that comparison over time; our task logs account for 
85% of the billed compute hours. As expected, we observe 
very good agreement when running a large number of tasks 
consistently such as during the cpu-intensive USA and 
FluxTower reprojection. Each tile took approximately 2.5 
minutes of which ~0.4 minutes were spent in overhead staging 
tiles to/from the Azure VM instance and the blob store. Also as 
expected, we see less agreement when dynamically scaling 
instances during reduction such as on 4/17/2010. We keep 
“idle” instances running after task completion (currently 15 
minutes)  to avoid the need to stop/start instances unnecessarily 
in case of frequent job submissions and as Azure billing rounds 
up partial compute hours. 

We also started monitoring our storage billing. Unlike 
many grid platforms, Azure billing includes upload, download, 
and storage fees. For science convenience, most of the MODIS 
source tiles contain multiple science variables in a single file; 
we estimated that keeping only the variables needed for the ET 
computation would save us approximately 60% of the storage 

required for reprojected tiles. Since these represent over 90% of 
the source data, we felt this was an important savings.  

We gained experience operating the service at scale in this 
phase. We learned that we benefitted from retrying each 
download, reprojection, and reduction task to reduce the 
impact of intermittent Azure disruptions. If the task continues 
to fail, we can then use the logged status return to triage the 
failures and investigate to attribute the failure as discussed in 
Section III.D. Note that triage does not always tell us exactly 
what caused the error – we do not distinguish missing tiles 
caused by a satellite outage from missing tiles that are simply 
not present on the NASA site – but does tell us what we can 
do to get an ET reduction result.  

III) FluxTower Computation 

Since our USA computation was beginning to give good 
science results, we decided to expand the computation to 
include the additional sinusoidal tiles covering 114 additional 
eddy flux towers in late 3/2010. We expected and experienced 
simple scaling. Our capacity planning estimated that one 
FluxTower year corresponded to about 2 US satellite years (32 
tiles vs. 15 tiles). That resource scaling was very close - we 
actually consumed about 18 US satellite years. Our decision to 
automatically retry failed tasks served us very well in this 
phase; we saw approximately 6% task failure out of 57664 
tasks attempted. Of those, 41% were recovered by retry. The 
remaining 59% unrecoverable tasks were mainly caused by 
data failures or scientist code bugs.   

The increased data diversity presented challenges to our ET 
algorithm. We encountered a much wider range of biomes such 
as rainforests and climate regimes such as tropics. We found 
that we now needed additional science variables from the 
imagery; some of the layers we had previously discarded now 
needed to be retained.  

IV) Global Computation  

We first attempted an ET computation on a global scale for 
a single calendar year in April 2010. Based on early success, 

we started the initial download and reprojection for two 
additional calendar years in July 2010.  

 

Figure 2. Comparison of billing compute hours per day with observed 
reprojection and task times. The two correlate best when the 
reprojection was compute bound and the number of deployed 
instances is relatively static.  



We chose a 5 KM rather than 1 KM spatial scale based on 
capacity planning. The USA represents approximately 5% of 
the world land surface area, so we were attempting to scale up 
by a factor of 20. Scaling down the resolution meant that 1 US 
year is approximately 1 global year. As shown in Figure 3, this 
decision most strongly impacted the storage requirements. At 
the end of the global reprojection, we deleted all global source 
tile precursors for the calendar year 2003 and two extra years 
of FluxTower tiles. Prior to that “storage diet”, our storage bills 
were approximately half of our total bill.  

The 5 KM choice shifted our reprojection from compute 
bound to slightly IO bound. Processing each tile now took 
approximately 5 minutes of which ~2.6 minutes were spent in 
overhead staging tiles to/from the Azure VM instance and the 
blob store. This change is apparent in Figure 3. The billed 
storage transactions are negligible in the early phases, but 
closely track the compute hour billing for the global 
reprojection. We also observed over 10X variation in the 
reprojection task time. The MODIS satellites cross a given 
sinusoidal tile location more often at the poles than at the 
equator and the number of nearest neighbor pixels increases 
dramatically. We simplified the algorithm to reduce the search 
space across the source files and thereby reduce the overhead.  

The choice also impacted the scaling of our reduction 
phase. We observed that a one year global ET reduction job 
took approximately 6 hours. To decrease that, we increased our 
Azure quota from 100 instances to 250 instances. 
Unfortunately, we saw change in wall clock time due to more 
than double the overhead associated with staging the tiles 
to/from the Azure VM instance. We speculate that we reached 
a rack cross-sectional bandwidth limit. We have examined our 
task logs, computed and therefore discounted the number of 
table and queue updates; much of Azure remains a black box.  

 We also learned the importance of having a complete tile 
catalog including all source tiles on the NASA ftp sites, 
reprojected targets, and known expected missing tiles as well 
as our TaskStatus logs. Our Service Monitor experienced an 
Azure VM restart in the middle of scheduling the tasks for a 
global reprojection job with over 240K tasks. At the same 

time, our download tasks were failing intermittently due to 
NASA site outage. Retrying both eventually generated 95% of 
the tiles needed for the ET reduction. We then had to track 
down the missing 5%. Figure 4 shows one of our maps from 
that analysis. Causes included missing tiles on the NASA site 
such as on the coast of Africa, winter polar nights, and (not 
shown) satellite outages.  

Lastly, we continue to evolve the science computation and 
validation. Understanding how to think about regions such as 
the Sahara and the implications for crop fertilization remains 

active science research. That our pipeline is running well 
allows us to focus on that science.   

B. Evaluation 
I) Performance Variation 

During our several months of reprojection and reduction 
computations in Windows Azure we have observed significant 
performance variations within a compute instance. Ideally a 
virtualized compute instance would have identical performance 
along its lifetime, but in practice many sources of variations 
from the cloud infrastructure could break this assumption. 
These sources of variations include imperfect resource isolation 
between hosted instances, fluctuating network performance, 
and the location of the instance, etc.  

 

 

Figure 3. Compute hours, Storage transactions, and Data Storage. 
The US and FluxTower 1 KM reprojection was compute bound; the 
reduction and 5 KM reprojection tend to be IO bound. We 
transferred 3 US years from the CTP account in January 2010. The 
dramatic decrease in storage at the end of June was due to deletion 
of the global computation swath tiles after successful reprojection. 

 
Figure 4. Global data availability for the ET reduction in February. 
Color coding indicates data availability; white areas were not 
included in the computation. 



Figure 5. Performance variability of a single compute instance at 
different temporal points.  

We have conducted an experiment to evaluate the 
performance variations. From July 5 to July 20, we set up a 
compute instance to run the same set of 5 reduction tasks twice 
a day (6am and 5pm US EST Time). We then measured the 
execution time for each task run. The results are shown in 
Figure 5. Each line along the X-axis represents the time series 
for task execution, and the Y-axis value for a data point in each 
line represents the normalized task execution time, with a 
maximum execution time of ~13 minutes. As shown in the 
figure, the difference between the best performance and the 
worst performance for the same task execution can be as large 
as 350%.    

 
II) VM Hosting Reliability 

The reliability of VM provisioning and hosting in 
Windows Azure is yet to be fully understood [13]. For 
MODISAzure, we have maintained a logging table to track 
every single instance start event occuring in the system. 
Instances are started either upon a clean service deployment or 
during the dynamic instance scaling processes.  By analyzing 
this logging table, we were able to track the information about 
every VM instance that have been started. Through the 
analysis, we found a fraction of the instances have ran into 
unknown problems after a certain running period, and a 
substitution of the same instance was started by the Azure 
infrastructure after the problem was detected. In some cases, 
the same instance has been retried starting for many times. 
Figure 6 shows the separation of instances which were started 
only once during their lifetimes (unique starts) and instances 
that have been started for multiple times (retries). Out of a 
total of 10032 VM unique instance start events, 8568 instances 
only started once during their lifetimes, a success rate of 
approximately 85%. This is certainly not a satisfactory number 
for system reliability, which again indicates the importance of 
fault tolerance on the application level.   

 
Figure 6. Instance start events during a five-month period. The 
instance start events are broken down to unique instance starts and 
retried instance starts.  

V. RELATED WORK 
An increasing number of existing scientific applications and 

benchmarks have been migrated and deployed to the clouds to 
evaluate the performance and quality of service in the cloud 
environments. T. Gunarathne et al. [14] compared the 
performances of the Cap3 and the MDS & GTM interpolation 
scientific applications in both EC2 and Windows Azure. X. Qiu 
et al. [15] took a similar approach and compared the 
performance of 3 bioinformatics applications on Windows 
Azure and Dryad. K. Jackson et al. [16] ported a large-scale 
image processing application for seeking supernova from local 
clusters to Amazon EC2, and compared a number of different 
data storage and communication strategies.  A. Thakar and A. 
Szalay[17] discussed their experience with migrating a 
scientific relational database into both EC2 and SQL Azure, 
and evaluated the performances as well as identified their 
limitations as compared to on-premise database solutions.  Of 
all the ongoing efforts on evaluating the feasibility of cloud 
computing for data-intensive eScience applications, the 
AzureBlast project [18] took an approach that is the most 
similar to ours to use the basic service elements provided by 
Windows Azure to build a parallel bioinformatics application 
running the BLAST algorithm.      

Our work is complementary to the above projects in that we 
have built a production earth science application in the cloud 
and have been operating it over a 9-month period. The unique 
experience we gained from continuously scaling up the 
computation in the cloud provides an early picture on some of 
the issues with a long-running production eScience application 
in the cloud.  

VI. CONCLUSION 
In this paper we provide some early observations and 

experiences with the development and operation of the 
MODISAzure application in the Windows Azure cloud 
computing platform. Not like the approach used by many other 
eScience applications that directly move existing codes and 
software stacks into the cloud, we build the application from 
scratch on top of the basic service elements and scalable 
infrastructures of cloud computing.   

Our decision to build a satellite image processing pipeline 
leveraging the native capabilities of Azure has served us well. 
As we have scaled the application from Continental US to 
global scale, our initial service architecture has had only minor 
changes. We have leveraged blob service to store and manage 
large amounts of science data; the queue service for task 
dispatching and scheduling; the table service to monitor 
execution status in real-time and keep history logs; and the 
Management API to dynamically scale up/down the instances 
to be adapted to the dynamic workloads.  

Our decision to “bake in the faults” has also served us well. 
While Azure presents a highly reliable platform and masks 
many faults, our scale is such that even 99.999% reliability still 
creates too many faults for human examination. At the same 
time, the virtualized nature of Azure presents new faults such 
as VM substitution. Our application is delightfully parallel and 
the image tile is an obvious idempotent building block. This 



enabled us to rapidly understand how and where to build in 
fault retries that isolate our science user.  

Lastly, our decision to use Azure tables as a common 
logging mechanism has given us two very important abilities. 
First, we can monitor our application and use the accumulated 
measurements to plan forward. Second, that same forensics 
also gives us the ability to debug the science application code 
forensically.  

Overall, we think cloud computing has provided an 
appealing environment for building scalable, data-intensive 
eScience applications. However, in this early stage, it still has 
some limitations on the application development and execution 
processes. The hosted environment and black-box nature of 
cloud computing indicate that we will at least have to live with 
that for a long time. 
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