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Abstract

Beyond its direct involvement in protein synthesis with mRNA, tRNA, and rRNA, RNA is now

being appreciated for its significance in the overall metabolism and regulation of the cell.

Comparative analysis has been very effective in the identification and characterization of RNA

molecules, including the accurate prediction of their secondary structure. We are developing an

integrative scalable data management and analysis system, the RNA Comparative Analysis

Database (rCAD), implemented with SQL Server to support RNA comparative analysis. The

platformagnostic database schema of rCAD captures the essential relationships between the

different dimensions of information for RNA comparative analysis datasets. The rCAD

implementation enables a variety of comparative analysis manipulations with multiple integrated

data dimensions for advanced RNA comparative analysis workflows. In this paper, we describe

details of the rCAD schema design and illustrate its usefulness with two usage scenarios.
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I. Introduction

A new perspective is now emerging in Biology: RNAs have a dominant role in the structure,

function and regulation of the cell. Like DNA, it has a well-defined set of rules for

nucleotide base pairing – A pairs with U, and G pairs with C. These consecutive and

antiparallel base pairs form canonical helices. Like protein, RNA is capable of forming a

three-dimensional structure composed of helices, hairpin, internal, and multi-stem loops, and

other structural motifs, and like proteins, RNA is capable of catalyzing chemical reactions

NIH Public Access
Author Manuscript
Proc IEEE Int Conf Escience. Author manuscript; available in PMC 2014 April 24.

Published in final edited form as:
Proc IEEE Int Conf Escience. 2011 December 31; 2011: 15–22. doi:10.1109/eScience.2011.11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



[1-7]. It is now widely appreciated that RNA, as a precursor to DNA and proteins, was

essential to the origin of life and to establish the mechanism for the association of a cell’s

genotype to its phenotype [8-11].

Comparative analysis, used effectively by Darwin to compare and contrast anatomical

features of animals [12], has the potential to facilitate the identification and characterization

of the RNAs primary and higher-order structure, and patterns of variation and conservation

for the set of analyzed sequences [13]. The utilization of comparative analysis is based on a

very important discovery in molecular biology - the same RNA secondary and tertiary

structure can have different RNA sequences [14, 15]. The predicted secondary structure

models are generally conserved for each of the specific RNAs. The accuracy from these

comparative studies is impressive. Approximately 98% of the base pairs identified with

comparative analysis in the three ribosomal RNAs – 16S, 23S, and 5S that contain more

than 4,500 nucleotides are in the high resolution crystal structures [16]. In addition to the

prediction of an entire RNA structure model, comparative analysis has identified RNA

structural motifs, the basic building blocks of RNA structure and biases in the distribution of

nucleotides in the ribosomal RNAs secondary structure. These include: unpaired adenosines

in the rRNA secondary structures [17, 18], preponderance of tetraloops - hairpin loops with

four nucleotides [19] and other types of irregular structural elements in the ribosomal RNA

[20].

Successful application of comparative analysis to an RNA dataset requires an interactive

workflow that includes the acquisition, management and analysis of large amounts of

biological information divided into multiple dimensions: 1) sequences and the alignments of

those sequences based on a common structure model, 2) evolutionary relationships between

sequences and 3) higher-order structure and structural motifs. The iterative nature of the

comparative analysis workflow ultimately improves the predicted structure model and the

quality of the sequence alignment.

However, the comparative analysis workflow does not lend itself to the software pipeline

architecture currently favored by most computational biology and bioinformatics

applications [21, 22]. The pipeline architecture assumes that relevant data (e.g., sequence

alignment) is primarily stored in flat-files. Different programs load the data from flat-files

into memory, perform analysis and output the results to a different flat-file. The pipeline is

created by chaining different programs together. Raw data enters at one end of the pipeline

and the value-added analyses exit at the other end in an automated fashion.

The comparative analysis workflow requires a semiautomated iterative approach. An

important part of the comparative analysis is the interaction between biologists and the data.

For example, as more sequences become available, the existing multiple sequence alignment

are updated and curated to improve the comparative model. Similarly, while comparative

analysis leads to new discoveries about structure and function of RNA sequences, these

findings subsequently need to be integrated into the comparative model. Therefore, the full

comparative analysis workflow cannot be supported by software tools using non-interactive,

in-memory pipeline architectures.
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We propose a different infrastructure to implement the comparative analysis workflow that

includes support for the rapid increase in size and number of suitable RNA datasets and

allows a biologist to perform manipulation and analysis of RNA datasets across the different

dimensions (sequence, structure and evolutionary relationships). At the core of our

infrastructure is an efficient data storage layer (Figure 1), the RNA Comparative Analysis

Database (rCAD), which persists both the data entities within each dimension in their

natural form and the biologically relevant relationships between entities. The schema is

applicable for any relational database management system and currently implemented using

a scalable, high performance enterprise relational database system, Microsoft SQL Server

2008. Two novel features of the rCAD schema are to efficiently support evolving data, such

as changes in alignment and the integration of multiple dimensions of information.

The rCAD schema enables direct storage of the data entities for an RNA dataset in rCAD.

The rCAD system implements a primary objective of the RNA structure alignment

ontology: the integration of structural (and phylogenetic) information with an RNA

sequence alignment to facilitate analysis and exploration [23]. A centralized database has

advantages over the use of flat-files. The rCAD system eliminates the translation of data

formats, and minimizes customized I/O and memory management routines. Thus it is more

efficient for analyzing large scale data. In this paper, we describe details of rCAD schema

and two examples of the benefits obtained with rCAD.

II. Related Works

The rCAD project integrates data curation, access and analysis within a centralized

relational database system. While rCAD is a unique application, several other projects are

related to the management and analysis of RNA information.

A well-known data source for RNA information is the RNA family database (Rfam) [24].

Rfam maintains a collection of RNA sequence families. Each RNA family is represented by

multiple sequence alignments and covariance models. Rfam is primarily a data provider

service. This database is frequently updated and curated from various external data sources.

The web interface of Rfam enables users to browse, search and retrieve RNA sequence

alignments and corresponding covariation models by taxonomy or keywords. Users can

download data in flat file format for further analysis.

There are other projects focused on specific RNA types. For example the Ribosomal

Database Project (RDP) contains bacterial and archaeal small subunit rRNA alignments and

some analysis of this data[25]. The alignments maintained in the RDP project are aligned

with a probabilistic model system. The probability parameters are trained from a set of

representative sequences. Recent updates on RDP introduced new features for browsing and

searching RNA sequence information, including a genome browser and a taxonomy

visualization tool. A new analytic feature of RDP is its pyrosequencing pipeline for the

analysis of bacterial rRNA composition from environmental samples. Another similar web

service is the GreenGenes project which enable users to align and analyze their own 16S

rRNA sequences [21].
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WATERS is a workflow tool that bundles a suite of publicly available 16S rDNA analysis

tools to construct analysis pipeline [22]. It doesn’t address data curation or include a

dedicated data management component. For example, the alignment has to be computed on

the fly or read from external sources into memory for processing.

The rCAD project maintains a comprehensive collection of RNA sequences and multiple

sequence alignments for all types of rRNAs – 5S, 16S, and 23S, from the three primary

forms of life: bacteria, archaea, and eukaryotes (including their nuclear, chloroplast, and

mitochondrial encoded rRNAs) as well as other dimensions of information. The RNA

sequences are retrieved daily from NCBI. The alignment data is curated and available at the

Comparative RNA Web (CRW) Site[13]. The rCAD schema also maintains other

dimensions of information and supports various analysis features in addition to storing raw

sequences and their alignments.

Chado is a relational database schema for biological sequences published in recent literature

[26]. Chado manages biological knowledge for a wide variety of organisms with information

that can be directly or indirectly associated with genome sequences or the primary RNA and

protein products encoded by a genome. Chado is based on existing ontology and

interoperability between open access model organism databases or any biological databases

that conform to this schema. The primary focus of Chado is to support genome analysis

instead of comparative sequence analysis. Alignments and comparative features of

sequences are typically stored as pairs. For example, features of a sequence alignment may

include hits and high-scoring pairs of the alignment. Such schema is a generic way for

storing comparative features and enables results from external analysis programs (e.g. Blast)

to be stored in a unified way. However, it is less efficient for storing evolving multiple

sequence alignments at large scale. The rCAD is designed to provide an integrative platform

for sequence data management access and analysis. Therefore, the database schema used in

rCAD is to facilitate common analysis tasks within the relational database system and is

different from Chado.

III. Schema Design and Implementations

The design of rCAD is motivated by several requirements: 1) persist the different elements

of an RNA dataset (sequences and sequence alignments, structures, evolutionary

relationships and alignments) that mimics their natural relationships; 2) efficiently support

frequent updates to the biological data, and 3) provide a central data repository supporting

the manipulation and efficient execution of computational algorithms involved in

comparative analysis.

Our RNA dataset for comparative analysis is decomposed into three interrelated dimensions

of information: sequence (metadata and nucleotides), structure (2-D) and evolutionary

relationships. The organization of our dimensions of information is congruent with the

proposed RNA structure ontology [23]. The unique capabilities of SQL Server allow for

different comparative analysis algorithms and analyses to be executed on very large RNA

datasets in-process, avoiding the need to export large amounts of data to separate analysis

applications (Figure 1). Relationships between the data entities persisted in rCAD are
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coordinated with the biological relationships and are queried directly. RNA sequence

alignments are stored as 2-D grids (sparse matrices) as proposed by the RNA structure

alignment ontology [23]. SQL queries can be used to access any column of the sequence

alignment, without loading the entire alignment into memory, using the indexing provided

by the database. RNA secondary structure elements (e.g., base pairs, helices, etc.) are

directly related to the relevant columns of the sequence alignment. The sequences in the

alignment are mapped onto the Tree of Life, and queries can be devised to retrieve specific

fragments of the alignment containing sequences from specific taxonomy subsets.

The database schema is de-normalized into four compartments extracted from three major

dimensions of an RNA dataset used for Comparative Analysis: Sequence Alignment,

Sequence Metadata, Evolutionary Relationships and Structure Relationships (Figure-2).

A. Sequence Metadata Compartment

Metadata describing RNA sequences is stored in the Sequence Metadata compartment

(Figure 3). Types of metadata include external database identifiers (e.g., Genbank Accession

and revisions) stored in the SequenceAccession table, the sequence classification (e.g., 16S

rRNA) stored in SequenceType table and the organellar location within the cell (e.g.,

Nucleus or Mitochondrion) stored in CellLocationInfo table. The design of the

SequenceAccession table allows the rCAD instance to include revisions of a sequence

introduced into Genbank.

B. Evolutionary Relationships Compartment

Evolutionary relationships (taxonomy) in rCAD are stored in the Evolutionary Relationships

compartment (Figure 4), and are obtained from the NCBI Taxonomy database [27]. The

evolutionary relationships among sequences are stored in the Taxonomy table as a set of

parent-child pairs (TaxID, ParentTaxID). The TaxID field is the primary key for the

Taxonomy, TaxonomyNames and TaxonomyNamesOrdered tables and acts as a foreign

key to link between the Sequence Metadata and the Evolutionary Relationships

compartments. The scientific name of each taxon is stored in TaxonomyNames table while

all other names are stored in the AlternateNames table for references. The

TaxonomyNamesOrdered table stores the full lineage to any leaf in the LineageName field

(e.g., root/cellular organisms/Bacteria) in order to facilitate depth-based queries of the

evolutionary relationships.

C. Sequence Alignment Compartment

All biological sequences in rCAD are stored in the Sequence Alignment compartment,

organized into one or more logical sequence alignments. A sequence alignment for a

specific RNA molecule type can be described as a two-dimensional matrix. All sequences

within the alignment are juxtaposed with one another to identify equivalent positions. The

juxtaposition is accomplished through the addition and removal of gaps. Thus, the contents

of any individual cell in the alignment matrix is either a nucleotide or a gap (‘-’). Unlike in

other schema where alignments are stored at the sequence level, rCAD directly stores

multiple sequence alignment at nucleotide level.
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Each sequence alignment stored in rCAD is assigned a unique key, the AlnID, and is

catalogued in the Alignment table (Figure 5). Members of a sequence alignment are stored

in the AlignmentSequence table through a mapping of the AlnID to SeqID. The

AlignmentData table maps each nucleotide in a sequence aligned to a specific column

within an alignment as a row record. In AlignmentData table, each nucleotide is associated

to a specific PhysicalColumnNumber which does not change unless that specific

nucleotide’s relative position within the sequence alignment is modified. The columns of

any sequence alignment are identified and managed through the AlignmentColumn table.

This particular schema design for storing sequence alignment has two advantages, space

saving and efficient updates when changing the alignment data.

First, in this schema, there is no need to store any gap values as they are inferred at query

time. As the number of sequences and observed sequence variation in an alignment

increases, the number of gaps also increases significantly. The increasing sequence variation

is partially a result of insertions and deletions observed in specific branches of the Tree of

Life. The result is that the total number of columns in the alignment can greatly exceed the

number of nucleotides for any sequence within the alignment (Table 1). For example, for the

small subunit Ribosomal RNA (16S rRNA) sequence alignment spanning the entire Tree of

Life [13], the average per row ratio of gaps to nucleotides is 85% (Table 1). Thus, for any

given row of the 16S rRNA sequence alignment, on average 85% of the columns have gaps.

Therefore our database schema, which doesn’t store gaps, results in a significant space

reduction for storing large alignments and permits the rCAD database to scale and support

very large (>106 rows × >104 columns) sequence alignments.

Secondly, the mapping of PhysicalColumnNumber to LogicalColumnNumber in the

AlignmentColumn table supports efficient (from a database perspective) global operations

on a sequence alignment by placing a layer of indirection between the physical storage in the

database and the logical view of the sequence alignment. As new RNA datasets are added to

rCAD, the AlignmentData table quickly becomes the largest table, even with a minimum of

one entry per nucleotide for each sequence within each alignment in an rCAD instance.

Without this columnNumber mapping, any further updates of an existing alignment, such as

inserting or deleting a column will require updating a significant portion of the existing

rows. For example, when the sequence alignment topology is modified by column insertion

(Figure 6), the data structure only adds columns to the “end” of the alignment, regardless of

where the column is logically inserted. The mapping of PhysicalColumnNumber to

LogicalColumnNumber in the AlignmentColumn table is updated to reflect the topology

change, and no rows in the AlignmentData table are modified (Figure 6). Without the

column indirection in the data structure, global operations on large sequence alignments,

such as column insertions, would be expensive operations, requiring a significant number of

row updates to the AlignmentData table.

To simplify queries that obtain data from a sequence alignment stored in rCAD, two views

are created: vAlignmentGrid and vAlignmentGridUngapped that return sequence alignment

with or without gaps respectively. The ability to retrieve specific sub-grids (rows × columns)

of a sequence alignment through SQL queries drives many of the advanced applications of
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the rCAD system such as structural statistics and evolutionary event counting. Figure 7

depicts the power of the rCAD system through an example query for retrieving a subset of a

sequence alignment using vAlignmentGrid -- leveraging the integration between the

sequence alignment and the evolutionary relationships among sequences within the

alignment. First, the rows of the subset are identified by evolutionary relationships (Figure

7a). The example query in Figure 7 is designed to only retrieve rows that contain Bacterial

sequences. A recursive query (SQL Server common table expression) is used to identify all

rows in the sequence alignment that contain Bacterial sequences (Figure 7b). The subset of

the alignment is then retrieved on a column by column basis (Figure 7c) for the rows that

contain Bacterial sequences.

D. Structure Relationships Compartment

The Structural Relationships compartment (Figure 8) stores secondary structure

relationships. RNA secondary structure for a given sequence, at a minimum, is the set of

base pairs between different positions of an RNA sequence. From the set of base pairs, other

structural elements/extents can be inferred such as helices (consecutive base pairs) and loops

(un-paired nucleotides) classified as hairpin, internal or multi-stem.

The SecondaryStructureBasePairs table holds the set of known or predicted base pairs for

any RNA sequence in a sequence alignment. Each base pair is stored with two fields

FivePrimeElementSequenceIndex and ThreePrimeElementSequenceIndex. The more

complicated secondary structural elements are identified in the SecondaryStructureExtents
table and split into their subelements depending on extent type enumerated in the

SecondaryStructureExtentTypes table. For example, Helices and internal loop structural

elements are split into two extents for their 5′ and 3′ halves. Multi-stem loops are split into

n extents depending on the number of stems in the loop. An extent is defined by its first and

last nucleotide (index), ExtentStartIndex and ExtentEndIndex. The entire structural element

is given an identifier, ExtentID, and each extent of the structural element has its own

ExtentOrdinal.

The mapping of a simple stem-loop RNA secondary structure into the Structural

Relationships compartment is depicted in Figure 9. The stem-loop structure has two helices

(5′ 1-4, 3′ 32-35 & 5′ 10-18, 3′ 20-25) an internal loop (5′ 5-9, 3′ 26-31) and a hairpin

loop (16-19). All base pairs from the two helices are entered in the

SecondaryStructureBasePairs table. The first helix (5′ 14, 3′ 32-35) has two entries in

SecondaryStructureExtents table (ExtentID, ExtentOrdinal, ExtentStartIndex,

ExtentEndIndex, ExtentTypeID) where the 5′ half is (1, 1, 1, 4, 1) and the 3’ half is (1, 2, 32,

35, 1) (Figure 9). The internal loop (ExtentID 2) also has two extents for its 5′ and 3′ half,

but the hairpin loop has only one extent (ExtentID 4). The extent model enables SQL queries

to characterize the patterns of sequence variation for different elements of a structural motif,

across the phylogenetic tree.

IV. Use case examples

Algorithms that operate on sequence alignments benefit from rCAD streamlining and

managing their access to the other dimensions of data. Thus the development of programs
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for rCAD is not encumbered with data that is already organized and cross-indexed. Two

representative examples of applications utilizing the rCAD system are presented below:

structural statistics and evolutionary event counting.

A. Structural Statistics

Here, we present a common task of finding base pair frequencies. The frequency of different

base pair types observed for a base pair in a reference secondary structure model has many

applications in comparative analysis. This includes the prediction of base pairings in an

RNAs higher-order structure with covariation analysis and the evaluation of the alignment

accuracy for any new sequence within an existing sequence alignment [13, 28].

The selected base pair, labeled (1) in Figure 10, is projected across the sequence alignment

by identifying the column ordinals associated with the 5′ and 3′ nucleotides from a

reference row (Figure 10 middle). The rows of the sequence alignment included in the

frequency tabulation are selected using evolutionary relationships. Using the two column

ordinals for the 5′ and 3′ half of the base pair, a SQL query is defined to retrieve

nucleotides from the sequence alignment, and a grouping statement is applied to determine

frequencies of observed base pair types (Figure 10 bottom).

Different structural statistics have been developed as SQL queries or compiled applications.

Visit the CRW Site (http://www.rna.ccbb.utexas.edu/SAE/2D) for more presentations on

structural statistics. Computing statistical potentials for RNA folding programs is one

specific application of our structural statistics[29, 30].

B. Evolutionary Event Counting

Positions in a sequence alignment that have similar patterns of variation (covariation) are

usually base paired in the RNAs higher-order structure [17, 31]. The traditional methods for

identifying these positions with covariation determine the frequency of each base pair type

for all of the sequences in two columns of the alignment [32, 33]. While these methods have

been very effective in the accurate prediction of an RNAs higher-order structure [16], they

do not explicitly determine the number of covariations during the evolution of the RNA. It

has been known since at least 1983 that the evolutionary history for each putative base pair

will enhance the accuracy and resolution of the covariation analysis [31]. We utilized the

phylogenetic tree to identify the first tertiary interaction in the rRNA [34]. However the

number of covariations based on the phylogenetic tree (called evolutionary event counting)

was identified manually and thus a rigorous attempt to identify and quantify these

phylogenetic events was not possible at that time. Attempts to identify phylogenetic events

with computational statistical algorithms of the phylogenetic trees improved the sensitivity

of the covariation methods [35, 36].

However, instead of using statistical methods, a more precise count of the number of

changes and locations of the changes on the phylogenetic tree can be determined with

rCAD. Our method builds an in-memory tree structure, populated with the nucleotides

obtained from projecting the candidate positions across the sequence alignment (Figure 11).

The in-memory tree structure is obtained from the Evolutionary Relationships compartment
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of rCAD, which is based on the NCBI Taxonomy database [27]. The application traverses

the in-memory data structure using recursion to deduce the nucleotide composition of

ancestor nodes and compute the evolutionary event counts. An earlier version of our method

was published previously [37]. Our current event counting algorithm successfully identifies

more true strong and weakly covariant positions with less false positives when compared to

other methods (Shang, Xu, Ozer, & Gutell, manuscript in preparation).

V. Conclusions

Presented here is a new database schema for the application of comparative analysis to RNA

datasets. It is predicated on the integration and simultaneous manipulation of three primary

dimensions of information - sequence and sequence alignments, associations between

primary, secondary, and three-dimensional structure, and evolutionary relationships.

The rCAD system is significantly different from the traditional computational biology

workflows where RNA sequence alignments are primarily stored in flat-files and

manipulated in-memory by different programs. The rCAD schema directly persists and

indexes RNA sequence alignments as sparse matrices.

Using a column indirection technique, rCAD is capable of performing global alignment

operations including the insertion and deletion of columns efficiently for very large

sequence alignments. The rCAD schema stores both evolutionary and secondary structure

entities and relates them directly to the sequences and individual nucleotides in an RNA

sequence alignment. Comparative sequence analysis algorithms can be implemented as

declarative SQL queries. For example, structural statistics, relationships between sequences,

different RNA structural elements and their occurrence on different parts of the phylogenetic

tree are easily determined with rCAD.

The rCAD database implemented on the Microsoft SQL Server enables the development of

more complicated algorithms as compiled applications that execute within the memory

space of the database engine. These programs do not require significant amounts of custom

programming for resource allocation, parallel processing, memory management and input/

output optimization. The rCAD system places the responsibility for managing the data

elements on the enterprise database engine, which is optimized for manipulating large

quantities of information, and is scalable to support extremely large RNA datasets.

Readers who are interested in RNA sequence data can visit CRW Site (http://

www.rna.ccbb.utexas.edu/) which uses rCAD for data management. Readers interested in

building customized database can visit http://rcat.codeplex.com/ for available codes and

utilities.
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Figure 1.
Overview of rCAD system
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Figure 2.
rCAD database schema overview.
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Figure 3.
Schema for sequence metadata.
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Figure 4.
Schema for evolutionary relationships

Ozer et al. Page 15

Proc IEEE Int Conf Escience. Author manuscript; available in PMC 2014 April 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Schema for sequence alignment
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Figure 6.
an example of updating alignment data.
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Figure 7.
An exemplar SQL query for retrieving partial alignment
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Figure 8.
Schema of Structure Relationships
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Figure 9.
Example of mapping RNA structure into database
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Figure 10.
Finding base pair frequency example.
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Figure 11.
Evolutionary Event Counting example
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Table 1

Topology of Ribosomal RNA sequence alignments spanning the Tree of Life

Sequences
Total

Alignment
Columns

Max/Min
Sequence
Length

Avg. Gap
Ratio (%)

5S
rRNA 5355 404 242/14 73% ± 7%

16S
rRNA 5762 9655 3316/506 85% ± 2%

23S
rRNA 670 17047 5317/880 85% ± 5%
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