
1

Assessing the Value of Cloudbursting: A Case Study
of Satellite Image Processing on Windows Azure

Marty Humphrey, Zach Hill

Department of Computer Science
University of Virginia

Charlottesville, VA 22904

Catharine van Ingen

Microsoft Research, Bay Area Research Center
San Francisco, CA

Keith Jackson

Lawrence Berkeley National Lab
Berkeley, CA

Youngryel Ryu

Seoul National University
Seoul, Korea

Abstract— To perform computational experiments at greater

scale and in less time, enterprises are increasingly looking to

dynamically expand their computing capabilities through the

temporary addition of cloud resources (aka “cloudbursting”).

Computational infrastructure can be dismantled in minutes with

no long-term capital investments. However, research is needed to

identify which properties of an application best determine the

potential benefits of cloudbursting. For example, there are

certainly situations where the cost to transfer the necessary input

data from the enterprise to the cloud (to execute the application

in the cloud) outweighs the value of simply waiting until

resources become available in-house. To better understand and

quantify these general issues, we perform a concrete analysis of

the value of cloudbursting for a large-scale application we have

previously created to process and derive environmental results

from satellite imagery. More specifically, we compare three

versions of the application (an all-cloud design; a version that

runs in-house on our cluster; and a hybrid cloudbursting version)

on dimensions of debuggability, fault tolerance, correctness,

economics, usability, and run-time speed. We find that for our

application, cloudbursting is effective primarily because we were

able to design the application so that its I/O behavior does not

preclude remote (cloud) execution, we were able to minimize

developmental cost by constructing a cloud run-time

environment that is very similar our in-house environment, and

we achieve good run-time performance in our cloud-based

executions (for example, we describe how a representative

computation that takes 2 ½ hours in-house is completed in 35

minutes via cloudbursting). By generalizing this analysis, we

believe that we contribute guidance to the broader community on

the value of cloudbursting for escience applications.

Keywords-cloud computing, Windows Azure; cloudbursting;
MODIS.

I. INTRODUCTION

For many enterprises, the appeal of cloud computing is not
to wholly replace in-house computational infrastructure with
cloud resources, but rather to selectively and opportunistically
augment in-house resources with cloud resources. This is the
“best of both worlds”, whereby dynamic scalability is achieved
without large capital expenditures, and without the upheaval of
porting/rewriting applications to run solely in a cloud
environment. This “cloudbursting” methodology allows

maximum productivity from existing in-house resources, while
still facilitating a future environment where cloud resources are
increasingly relied upon for day-to-day operations, including
escience experiments.

However, not every application can execute effectively in a
cloudbursting model. The extreme cases are understood – for
example, a tightly-coupled MPI application is unlikely to be
successful if cloudbursted in the wide-area across enterprise
and cloud resources, as network latency becomes intolerable.
On the other hand, a bag-of-tasks Monte Carlo simulation with
minimal I/O might be an excellent candidate for cloudbursting.
In between, however, there are applications that might
significantly benefit (or not) from cloudbursting, and the
dominant reason might be different for each. One application
might work because it can be easily ported to leverage in-cloud
storage capabilities (similarly, an application might work
because no such porting is even necessary!) Another
application might be a good fit for cloudbursting because the
economics of running it in the cloud are particularly appealing.
A third application might not make sense for cloudbursting
because the input data for the application is too big to justify
moving from the enterprise to the cloud just for the execution
(and of course some enterprises might decide that there are
security requirements that prevent the application from ever
running in a cloud. Research is needed to identify which
properties of an application best determine the potential
benefits of cloudbursting.

To better understand and quantify these general issues, we
perform a concrete analysis of the value of cloudbursting for a
large-scale application we have previously created to process
and derive environmental results from satellite imagery. Our
application, MODISAzure [1][2], is one of the first escience
applications to use the Microsoft Windows Azure cloud
platform. A typical execution of MODISAzure produces an
analysis of environmental characteristics for each day being
studied (in a bag-of-tasks style) and then aggregates the day-of-
year results (more details are contained in Section 3 of this
paper). To study the value of cloudbursting, we created and
compare three versions of this application. The first version
executes entirely in Windows Azure. The second version is a
port of the Windows Azure version to run entirely on our

Preliminary version. Final version appears in Proceedings of 7
th
 IEEE International Conference

on e-Science (escience 2011). Stockholm, Sweden, Dec 5-8 2011.

2

Windows HPC cluster. The main modifications that were
necessary were to replace the use of cloud storage (e.g., blobs,
tables, queues) and to replace our custom job-management
software in Windows Azure with invocations to the Windows
HPC scheduler. Our third version is the cloudbursting version,
capable of running in-house on our Windows HPC system as
well as inside the Windows Azure cloud. As we describe in the
paper, this third version was not simply a sum of the first two
versions, as this hybrid cloudbursting model required
modifications to the first two versions in order to be effective.

We find that for our application, cloudbursting is effective
primarily because we were able to design the application so
that its I/O behavior does not preclude remote (cloud)
execution, we were able to minimize software development
cost by constructing a cloud run-time environment that is very
similar our in-house environment, and we achieve good run-
time performance in our cloud-based executions (for example,
we describe how a representative computation that takes 2 ½
hours in-house is completed in 35 minutes via cloudbursting).
By generalizing this analysis on dimensions of debuggability,
fault tolerance, correctness, economics, usability, and run-time
speed, we believe that we contribute guidance to the broader
community on the value of cloudbursting for escience
applications.

The rest of the paper is organized as follows. Section II
contains the related work. Section III describes the science we
are pursuing involving the MODIS satellites. Section IV
describes the three versions of the application. Section V
contains the evaluation and discussion. Section VI concludes.

II. RELATED WORK

There are a number of emerging “science clouds” [3]
[4][5]. Similarly, there is an increasing number of science
applications in otherwise non-science clouds (e.g.,
CloudBLAST [6], coupled atmospheric-ocean climate models
[7], data mining [8], astrophysics [9], astronomy [10][11], high
energy physics [12]). Windows Azure has been used as the
platform for executing BLAST very effectively [13][14].
Whereas the focus of these projects is to get an application to
execute entirely in a cloud, we attempt to create an
implementation that can run effectively within the enterprise, in
the cloud, or both.

Beyond facing the initial challenges of just getting an
application to run in a cloud at all, there is an increasing
recognition of performance concerns of clouds and their
underlying technologies. One of the first studies was provided
by Garfinkel [15], who evaluates some of the cloud services
that Amazon provides. Similarly, local HPC clusters were
compared against EC2 [16]. Another report examines the
feasibility of using EC2 for HPC in comparison to clusters at
NCSA [17], pitting EC2 against high-end clusters utilizing
Infiniband interconnects. A recent study considered the newest
support for MPI in EC2 against local clusters [18].

The scheduling of bag-of-tasks applications in a
cloudbursting model is the focus of a recent study [19], in
which it is assumed that the application can be executed in the
cloud, and the issue is thus how to schedule it so that its overall
time to completion and cost is minimized. In contrast, in our

work, we investigate whether or not the application is suitable
for this cloudbursting execution at all.

III. BACKGROUND: MODIS AND WINDOWS AZURE

We first describe the nature of the scientific computation
we are performing. We then give an overview of the Microsoft
cloud: Windows Azure.

A. MODIS and the Scientific Computation

The MODIS (Moderate Resolution Imaging
Spectroradiometer) sensor, on board the Terra and Aqua
satellites, was designed to improve the understanding of global
dynamics and processes occurring on the land, oceans, and
atmosphere [20][21]. The MODIS data is a view of the entire
Earth’s surface in 36 spectral bands, at multiple spatial
resolutions, generated every 1-2 days. There are a large number
of research activities that currently use the MODIS data to
explore and validate scientific hypotheses (e.g., see [22] for an
overview with regard to vegetation and [23] for an overview
with regard to ocean science).

The science goal of our project is to apply the MODIS data
in the calculation of the evapotranspiration (ET) on the earth
surface. ET controls land-atmosphere feedback and is an
important source of water vapor to the atmosphere.
Atmospheric water vapor is the most significant greenhouse
gas and key to understanding hydrologic cycle. As such, ET
plays a fundamental role in weather and climate. Our
computation of ET involves multiple science data products
from the MODIS source data sets, each containing a specific
type of earth surface imagery (such as Land surface
temperature or atmospheric aerosol). Each data product
contains a number of related science variables separated into
HDF format source files. The size of a single data product for
each global year ranges from several hundred GBs to over 1
TB. Although files can be downloaded from the FTP sites,
currently there are no public software frameworks available in
the earth science community to automate the processes of
reconciling and cataloging the various data products and/or
scheduling parallel computations over these data. As a result,
scientists need to handle processing complexities manually,
which often prevents large scale analyses.

There are two computations we are performing. The first is
reprojection, in which the heterogeneous data products
collected from the appropriate NASA FTP sites are reprojected
into time and spatial-aligned imagery data. A set of compute-
intensive algorithms (e.g. nearest neighbor pixel match) is
performed to harmonize data points pixel by pixel. Typically, a
single reprojection task requires a collection of only 3-4 source
data files, each in the size of several MBs to tens of MBs. The
computation required to produce a target sinusoidal file (i.e.,
reproject the source data into a uniform format) can be finished
in 10-15 minutes on a typical commodity PC. The second is
reduction, in which a scientist performs an analysis
computation over the reprojected data from the previous stage.
A “first reduction stage” is used for science derivation such as
computing a new science variable from a number of input
variables. The “second reduction stage” is used for subsequent
analysis of spatial or temporal aggregates. The first reduction

3

stage does the science computation at scale; the second
reduction stage creates the smaller science analysis artifacts
necessary to understand the results of the first stage.

B. Windows Azure

Windows Azure was announced by Microsoft as its cloud
computing platform at its Professional Developers Conference
(PDC) Nov 2008. Windows Azure presents a .NET-based
hosting platform that is integrated into a virtual machine
abstraction. Thus, developers who are familiar with .NET
application development can take advantage of this
homogeneous cloud environment and develop applications for
Azure just like ordinary .NET applications by using Visual
Studio. In contrast to this “Platform as a Service” (PaaS),
Amazon’s EC2 has focused on support for virtual machine
technology (aka Infrastructure as a Service, or IaaS). Microsoft
has recently augmented its PaaS with IaaS as well. In both EC2
and Windows Azure, users can customize the environment for
their application by installing specific software or by
purchasing particular machine images.

In Windows Azure, the virtual machine instances can be
separated into three different roles: the front-end website
hosting server instances are called Web Roles, the back-end
computational instances called Worker Roles, and the new
Virtual Machine roles. Developers can specify the number of
instances for roles at the deployment of their application or can
dynamically adjust the number of instances at runtime.

Windows Azure provides three types of cloud storage
services, in addition to SQL Azure:

• Blob service, the main storage service for storing
durable large data items;

• Queue service, which provides a basic reliable queue
model to allow asynchronous task dispatch and to enable
service communication;

• Table service, which provides the structured storage in
the form of tables and supports simple queries on partitions,
row keys, and attributes.

The key aspect of cloud storage is that it is accessible via
any virtual machine in Azure (with the proper
authentication/authorization). Therefore, while there is local
storage available to a particular computation, it is assumed that
one of the cloud storage services will be used if the data is to be
shared across virtual machine instances.

IV. OUR APPLICATIONS FOR PROCESSING MODIS DATA

In this section, we describe each of the three versions of the
application we created to process the MODIS data and derive
new scientific results. It is important to note what we did not
design all three versions at the same time. Initially, we
designed an application solely for Windows Azure. It was only
later that we decided to investigate a cloudbursting version.

A. MODISAzure (only Windows Azure)

We began the scientific investigation with a few prototyped
algorithms, which we wanted to perform at a scale greater than
was realistically possible on a typical desktop computer. In

other words, we needed a new platform by which to perform
analysis of the MODIS data at finer spatial granularity, and we
wanted to perform the analysis over more sensed days. More
than anything, we were looking for computational capacity,
and the Microsoft Windows Azure platform seemed to be a
perfect fit for our requirements. However, we realized that
there were a number of key challenges in the use of Windows
Azure for this application to process the MODIS data:

1. First version: getting the application to run at all was a
challenge, as this was a new platform that did not have the
familiar mechanisms/abstractions for compute and storage.
The latter in particular – queues, blobs, and tables –
replaced the traditional distributed file system abstraction.

2. Debugging: we quickly realized that we could not debug
our application in our typical way (interactively). That is,
Windows Azure is PaaS, so we could not simply start up a
remote desktop session (RDP) to the machine to determine
what happened. [Note that Windows Azure recently began
supporting RDP access, greatly aiding debugging.]

3. Correctness: we decided it would be necessary to add
fault-tolerance techniques into our code to handle either
unavailable input data or quirky behavior in the cloud
platform. For example, we use Terra data and only switch
over to Aqua if the Terra data was not available (e.g.,
because of a satellite outage). However, if a particular
instance actually used the Aqua data, it was not clear if this
was because Terra was truly not available (which would be
correct behavior) or our application for some reason failed
to find the available Terra data (which would be incorrect
behavior). It was a challenge to be able to deal with
problems that can arise in the cloud because of scale and
not mask our own incorrect behavior. Similarly, it was not
clear from the first stages which Windows Azure transient
faults would masked from us and which issues would
rather be seen by our application.

4. Economics: How do we perform the science as cheaply as
possible, does our monthly bill match our expectations
(e.g., at scale idle machines and unused/forgotten data
stored in the cloud could become very expensive), and can
we predict how much the next experiment will cost?

5. Performance/scalability: Intuitively, parallelism in our
MODIS processing would be achievable through both a
space and time decomposition. That is, different regions of
the Earth could be processed largely independently, and
furthermore different days could be processed
independently. However, it was not clear how this implied
granularity matched the support for computational
parallelism, which was at the virtual machine abstraction.
In other words, our only real choice was to instantiate a
number of virtual machines, and have them pull ‘tasks’
from a common queue. It was not clear if this coarse
structure would limit our performance and/or scalability.

Figure 1 shows our implementation of the MODISAzure
application. The scientist uses a Web portal (not shown) to
submit jobs to the system (“Service Request Queue”), where a
job can be either to reproject some MODIS data or to perform a
reduction. Our Web-facing Windows Azure VM parses the

4

user request into a large number of parallel data collection,
reprojection, and reduction tasks (“Reprojection Task Queue”
is shown; other queues are similar). During the processing of a
user request in the pipeline, the task scheduler also keeps track
of the task statuses and retries/requeues tasks as necessary.
Each computational worker role instance fetches tasks from the
task queue and performs the corresponding data processing
work. The nature of a “task” is to: [1] retrieve all the necessary
input HDF files from Blob storage; [2] spawn the Matlab
process that [a] reads in all of the HDF files, [b] analyzes the
data, and [c] writes out its results; and [3] copies the output
data back into Blob storage. The particular Matlab job is not
memory-intensive. Details can be found in [1][2].

Figure 1. MODISAzure design

Figure 2 shows the aggregate usage of our MODISAzure
application. In Spring 2010 we were focusing on the
continental US, Summer 2010 was on Global scale
reprojection, the rest of 2010 was on Global scale reduction,
and the rest of the time was archive download. We have used
more than 250,000 CPU hours, amassed an over 5 TB dataset
and gained as a factor of over 100x speedup over our reference
high-end desktop.

B. MODISHPC (only Windows HPC)

We believe that MODISAzure was successful, both because
we believe that we performed novel environmental science
experiments and also because it gave us a concrete experience
with designing, implementing, and debugging a large-scale
science application in the cloud. However, there were a number
of limiting aspects of the MODISAzure application:

• Debugging was not easy for MODISAzure – we
changed our development style because we could not
interactively debug our cloud application. That is, we had to
replace our typical rapid development cycle with a coarser-
grained methodology based essentially on logging statements.
This greatly slowed the progress by which we could develop
and assess the correctness of our application.

• Scaling (dynamic) took too long for MODISAzure – if
we had a relatively large queue and wanted to add capacity to
service the requests more quickly, our only option was to add
new VMs. The problem is that it took about 15 minutes for this
new collection of VMs to become ready to start processing
items in the queue. While this is sufficient for many large
requests, it was not as quick as we would have liked.

• Economics were not a clear win: while the pay-as-
you-go nature was very appealing, and the cost-per-experiment
was arguably pretty low, at times we could not escape the
feeling that we were wasting money.

• Performance – microbenchmarks indicated that our
observed behavior was consistent with that promised by the
Windows Azure Service-Level Agreement (SLA), but we still
did not know if we could do better without significant effort
(via just running on a different platform)

• “Auxiliary Routines” – We had to create a fairly large
number of auxiliary routines that were arguably distracting
from our scientific pursuits. The most obvious examples of this
were that we essentially had to build our own (minimal)
queuing system to manage tasks and our own utility for results
downloading. The time to write and debug this took away from
the direct science experiments.

Because of these concerns, we decided to port the
MODISAzure application to run on a Windows HPC cluster.
We were already comfortable with the Windows HPC server
system, so we were able to accomplish this fairly quickly. Our
methodology was [a] change as little as possible in order to get
the application to run (we preferred to not have two separate
code bases, if possible), and [b] then investigate possible
extensions to customize the application to exploit the unique
characteristics of the HPC environment. As such, there were
two primary modifications necessary. First, instead of our
custom queue that we created for Windows Azure, we instead
used the Windows HPC SDK to submit jobs to the Windows
HPC queuing system. This was not difficult, as we were
already familiar with programmatically submitting jobs. The
second modification was to continue to use the “blob interface”
but instead create an implementation of the interface that uses
the local file system of the cluster head node and the internal
nodes as warranted. This design is consistent with a “run-
anywhere” application that we believe is increasingly
appropriate for applications and is a simplified version of our
longer-term research project to construct a “Cloud Storage
Adaptation Layer” (CSAL) [24] that provides an intelligent and
adaptive layering between the application logic and the
multiple local and non-local storage options.

Recall that in MODISAzure we copied a potentially large
number of input HDF files into the working directory of the
Matlab executable before it executed. In MODISHPC, we
retained this pattern, except that we cache content on each
internal node (instead of retrieving from a single folder resident
on the head node). This modification – and similarly the use of
hard links with the file system – was not trivial, as this
introduced issues related to multiple concurrent readers/writers
attempting to access and/or update the cache. This was the
only “fault tolerance” logic that we found necessary to add
(recall that we were starting with our MODISAzure code base,
so we already had code for application-level fault tolerance).

The biggest advantage of MODISHPC over MODISAzure
was with code development and debugging. Because it was all
local, we were able to debug interactively and quickly start/stop
jobs. In particular, because we were using a small cluster, we
found it very valuable: [a] to be the only user on the cluster (so
we could leave and return where we left off, knowing that the

5

Figure 2. MODISAzure runtime on Windows Azure

state of the system was retained); [b] to have a “debugging
folder” on each machine, where each computation on a
machine would write error logs; and [c] to monitor the
execution of a particular science experiment by real-time
viewing of all of the debugging folders via a console on the
head node – we watched both the queuing system and the
output of the jobs in real-time. When error logs appeared, we
“remote desktop” directly onto a node to investigate the error
and/or re-run the problem computation by hand to catch the
error in real-time and correct the code.

We benefited by replacing our minimal custom queuing
system in Windows Azure with the full-featured Windows
HPC queuing system, even as we left it to future research to
investigate scheduling policies other than essentially FIFO. At
the very least, its GUI made it very easy to assess the status of
the jobs. Additionally, one aspect of the Windows HPC
scheduler that facilitated debugging was that the HPC cluster
uses an underlying SQL Server database to keep track of jobs.
This proved to be valuable to use because we could use SQL
Server Management studio to directly access the “raw data” as
necessary to determine what was going on in those situations
where we believed that the HPC cluster management console
was not providing us directly the information we need. For
example, by using SQL Server Management studio to explore
the job data, we realized that certain jobs were re-queued
automatically when patches were applied to an internal node.
Without this capability, we would have believed that the tasks
failed for some unknown reason, leaving us to speculate that
our code was causing the problematic behavior.

C. MODISHybrid

MODISAzure and MODISHPC were successful in general,
but each had limitations. For MODISAzure, the development
cycle was too long to really facilitate rapid progress. For
MODISHPC, for our particular situation, our Windows HPC
cluster was fairly small, so we could not easily scale up/down
to meet the dynamic requirements of a particular computation.
On Dec 1, 2010, Microsoft announced the general availability
of Windows HPC Server 2008 R2 SP1, which included support
for adding Windows Azure nodes to a local Windows HPC
cluster. We saw this as a way to potentially achieve the best of
MODISAzure and MODISHPC, namely the development

environment of a local machine with the scalability of the
cloud.

After a few configuration steps (e.g., recording the security
credentials and account information for Windows Azure), the
HPC cluster administrator can start/stop a new Windows Azure
node as easily as adding a local enterprise node via the HPC
Cluster management console. We used a second mechanism
called Windows Azure Connect to provide Virtual Private
Network (VPN) capability so that the IP address of the
Windows Azure nodes appeared to be within our enterprise IP
space. This simplified our code, as computations within
Windows Azure were able to securely read/write from our HPC
cluster head node (e.g., to retrieve the Matlab reduction
executable uploaded by the scientist to the head node).

We utilized the new “hpcpack” command to upload our file
packages into Windows Azure Blob storage, and we then
subsequently issued a “hpcsync” command on each Windows
Azure node install these packages from Blob storage to create a
file system structure that matched our enterprise nodes in our
Windows HPC cluster so that we could more easily code and
debug. We had four packages: our MODIS application
functionality, the HPC client package (to potentially submit
subsequent jobs to our Windows HPC cluster from our
Windows Azure nodes), the Matlab runtime environment, and
a collection of default input files. Once a Windows Azure node
comes on-line, we also had to run some additional commands
from the management console to install/configure these
package as necessary (e.g., when a Windows Azure node came
on-line, the Matlab runtime package was in the file system of
the VM but it still needed to have its installer executed). It
should be noted that Windows Azure supports the ability to
upload an application-customized VM (instead of taking the
default VM and configuring it via the ‘hpcpack’ command),
but we found that it was not necessary for our application.

Recall that our original MODISAzure application retrieved
content from Windows Azure Blob storage and placed it
directly as files into the Windows Azure VM, and that we
changed the “blob implementation layer” in MODISHPC to
instead directly engage the local file system. In MODISHybrid,
the application retrieves input files based on where it was
executing – if in the cloud, then retrieve input files from Blob
storage, and if in the enterprise retrieve input files from the file

6

system of the head node. (Inside our application, this was
essentially the beginnings of an “#IFDEF CLOUD”
programming pattern). To facilitate this, we “pre-staged” input
files into Blob storage of Windows Azure, and established a
“cache” on each VM of input files – a Windows Azure
application would first check to see if another computation had
already retrieved it from Blob storage. We found that this
particular I/O enhancement most improved the speed of our
Windows Azure-based computations. All day-of-year
computations copy their output to Blob storage no matter
where they execute. An optional 2nd stage reduction retrieves
all of this output data to use as input.

During our development, we found it most productive to
typically have four windows open on our desktop. The first
window was the web page for submitting a new job. The
second window was the Windows Azure management portal –
to monitor our VMs via a direct console to Windows Azure.
The third window was the Windows HPC management console
– to monitor jobs, to facilitate RDP to the Windows Azure
nodes, and to directly run commands on selected Windows
Azure nodes. Our final window was RDP to one or more
Windows Azure nodes for debugging purposes.

Overall, the development productivity was greatly
enhanced as compared to the situation in which we could only
use Windows Azure. Similarly, the cloudbursting capability
was well-integrated with the Windows HPC management
console, and we could add/remove nodes easily. The biggest
open issue at this point is the degree to which the “#IFDEF
CLOUD” pattern should be used. On one hand, it is certainly
desirable to customize the behavior to its operating
environment. On the other hand, this heterogeneity increases
code complexity and complicates debugging.

V. EVALUATION AND DISCUSSION

Our goal is to assess the three systems based on experiment
duration and cost – that is, “how long will the science take?”
and “how much will it cost?” To focus the analysis, we attempt
a representative moderate-scale computation: the analysis of
the region of the earth’s surface h28v05 (South Korea and parts
of Japan and China) for the entire-year 2003 at a resolution of
1km. Furthermore, this analysis focuses on the reduction phase
(after the entire 2003 h28v05 data has been reprojected).
Overall, there are 365 independent computations, one for each
day of the year. On average, each of these 365 computations
requires 217 input files (76 matlab routines – 2.49GB, 141
HDF files – 471 MB), produces 173 temp files (416 MB), and
produces 32 output files (5.70 MB). As mentioned in the
previous section, if the particular day’s computation occurs
within the enterprise, the input files are taken from the head
node, and if it occurs on Windows Azure then the input files
are taken from Blob storage. The temp files and output files are
written to local storage (within the VM for Windows Azure,
and on a worker node for Windows HPC). After all 365
computations complete, a second-stage reduction (Matlab-
based) is executed to determine numerous properties from the
viewpoint of the entire year. For example, Figure 3 shows the
resulting evapotranspiration calculation for h28v05 for 2003.

Figure 3. Evapotranspiration (ET) calculated for 2003 h28v05

Part of our research motivation is: do we buy more
hardware for our local cluster or do we rent resources from a
cloud provider such as Windows Azure? Our cluster was circa-
2008, created via commodity hardware: the head node is a
Shuttle SN78S dual-core AMD Athlon X2 2.8GHz, with 4GB
RAM, with a single hard drive (7200 RPM, 640 GB). There are
two internal nodes to the cluster. Each is dual-quad-core (AMD
Opteron 2344 HE 1.7GHz), 16GB RAM, one hard drive (C:)
150GB 10K RPM, and another hard drive (D:) 640 GB 7200
RPM. A Netgear 10/100/1000 switch is used.

Given that our cluster was at UVa, there were only two
Windows Azure datacenters to realistically choose between:
Chicago and San Antonio. We found to the edge of the
Chicago datacenter, latency was 21 ms, download bandwidth
was 91.1 Mbps, and upload bandwidth was 30.1 Mbps. To the
edge of the San Antonio datacenter, latency was 43 ms,
download bandwidth was 61.7 Mbps, and upload bandwidth
was 15.9 Mbps. We chose to use the Chicago datacenter for our
cloudbursting experiments. Typically, it required
approximately 45 minutes to fully add new Windows Azure
nodes to our enterprise cluster: 15-20 minutes to boot the
Windows Azure nodes (in total, irrespective of the number of
nodes being added, although a large number generally took a
little longer), then install the VPN software and wait for the
Windows Azure nodes to register with the VPN, then execute
hpcsync, and finally install our software packages.

TABLE I. WINDOWS AZURE INSTANCES

Compute
Instance

Size
CPU Memory

Instance
Storage

I/O Perf

Cost
per

hour
Extra
Small

1.0
GHz

768 MB 20 GB
Low $0.05

Small 1.6
GHz

1.75 GB 225 GB
Moderate $0.12

Medium 2 x 1.6
GHz

3.5 GB 490 GB
High $0.24

Large 4 x 1.6
GHz

7 GB
1,000
GB

High $0.48

Extra
Large

8 x 1.6
GHz

14 GB
2,040
GB

High $0.96

As is generally the case with other clouds, Windows Azure
offers different virtual machines sizes (Table I). Our expected

7

workload for cloudbursting required non-trivial I/O, so we
limited our experiments to Medium, Large, and Ex-Large.

TABLE II. 2003, DOY=301, H28V05: EXECUTION TIME (MINUTES)

 Stage-In Compute Total

Local 0:44 5:46 6:32

Medium (local) 1:24 1:43 3:17

Medium (blob) 1:48 1:43 3:31

Medium (UVa) 13:35 1:43 15:38

Large (local) 0:59 1:46 2:47

Large (blob) 1:44 1:46 3:30

Large (UVa) 13:58 1:46 15:44

Ex-Large (local) 1:24 1:50 3:14

Ex-Large (blob) 1:53 1:50 3:43

Ex-Large (UVa) 13:47 1:50 15:37

Our first task was to assess the performance of the
Windows Azure instance sizes (note that from Table I it can
be seen that 1 Ex-Large was approximately equal to 2 Large
instances or 4 Medium instances). Table II shows the duration
to analyze day-of-year (DOY) 301 on Windows Azure nodes
of different size. For each size, we execute 3 configurations:
“local” means that the input files are already on the virtual
machine but not in the necessary folder; “blob” means that the
input files are retrieved from Windows Azure Blob storage in
the same datacenter; and “UVa” means that the input files are
retrieved from the head node within UVa. The baseline is
“local”, which is the duration for one of the enterprise cluster
nodes. The first column is the duration to copy the necessary
input files into the local folder of the machine for the Matlab
code. The second column shows the duration to execute the
Matlab code. All durations are in minutes. This data shows:

1. Our science Matlab code executes at least 3 times faster
than on our cluster nodes, even though the specifications
are approximately equal. We believe that Windows Azure
is under-promising its behavior, perhaps to ensure that it
can meet its SLA under higher-duress situations.

2. As expected, all three VM sizes tested performed roughly
the same for this single-threaded execution. In particular,
the application is dominated by I/O and does not greatly
benefit from the additional RAM of larger VMs.

3. Inside the cloud, input data should be retrieved from
within the cloud. VPN functionality added convenience
(to retrieve the input data from UVa), but wide-area
latency/bandwidth makes any non-trivial I/O infeasible.
Instead, pre-stage data as necessary to blob storage.

We next ran a more holistic experiment consisting of 16
DOY with a second stage reduction across different Windows
Azure sizes (Table III). Our goal was to assess the duration of
the escience experiment as well as its cost. Overall, the 16
DOY required 216 files (859 MB) be retrieved from Blob
storage, and 118 files (1.58 MB) output were produced. Table
III shows the duration and cost in dollars for a local compute
node and three 8-core Windows Azure configurations. The
cost is essentially just the VM cost, as it is free to upload data
into Windows Azure and, once uploaded, it cost
approximately $0.45 per month to store. We ignore the cost of

Windows Azure boot/prep and assume that we delete the
Windows Azure instances immediately after completion (in
reality, these costs would be amortized across multiple runs).

 We were initially surprised that the Medium VMs
perform the best. Further analysis showed that with a 16-day
computation and 8 cores, there were two 8-day “phases” that
happened nearly in lockstep, as each DOY calculation took the
same duration. At the beginning of each phase, 8 Matlab
computations were each reading approx. 3 GB. With a single
Ex-Large, all 8 computations were on the same machine. With
the “Medium” configuration, only 2 processes were reading in
parallel. Simply, the Medium VM and the Ex-Large VM had
approximately the same I/O specs, so each Matlab
computation took about twice the time on the Ex-Large VM
(approx. 4 minutes compared to 2 minutes)! We found later
that in larger experiments, eventually the concurrent DOY
operations are not lockstep, so this effect is not as significant.

TABLE III. 2003, DOY=301-316, H28V05 (WITH STAGE 2 REDUCTION)

 Execution Time (minutes) Cost ($)

Local (8 cores) 21:50 --

4 Medium 10:14 $ 0.16

2 Large 12:07 $ 0.19

1 Ex-Large 14:17 $ 0.23

TABLE IV. 2003, FULL YEAR,H28V05 (WITH STAGE 2 REDUCTION)

 Execution Time
(1st Stage)

Execution Time
(2nd Stage)

Compute
($)

Local
 (16 cores)

2:33:16
4:24

$ 0

32 Medium 28:58 7:17 $ 3.70

16 Large 31:52 7:39 $ 4.07

8 Ex-Large 39:35 7:27 $ 5.06

Hybrid: Local + 32
Medium

28:12
7:20

$ 3.60

We now evaluate (Table IV) whether to perform the full-
year 2003 reduction using only our local enterprise cluster,
cloudbursting using only Windows Azure nodes, or
cloudbursting using both enterprise nodes and Windows Azure
nodes. Rather than attempt to determine the cost per
experiment today for our circa-2008 enterprise hardware, we
approximate the marginal cost as $0. In all 5 cases, the
Windows HPC queuing system is used to schedule the tasks.
We decided to use 64 cores in Windows Azure – enough to
substantially improve capacity beyond our existing
infrastructure but not too many such that the experiment was
unrealistically dominated by setup time. The number of cores
to use for any particular escience experiment is the subject of
future research. In terms of duration and cost, we see that 32
medium VMs alone is better than 16 large VMs alone or 8 ex-
large VMs alone – our computation that takes 2 ½ hours in-
house is completed in 35 minutes via cloudbursting with 32
medium VMs. It is not clear whether the hybrid case should
be pursued, as the overall duration was greatly influenced by
the relatively slow duration of the last DOY calculation on the
local resources. In other words, the faster Windows Azure
nodes were largely idle toward the end of the experiment as
the last enterprise tasks were completing. Based on these

8

experiments, we are currently using enterprise nodes to
develop and test modifications to our satellite image
processing algorithms. The small scale facilitates interactive
debugging. We are also using the enterprise nodes when we
need small-scale production runs (e.g., a few day-of-year
calculations). When we need to run larger experiments, we
cloudburst and acquire and use only Windows Azure nodes.

Based on our experiences, we recommend a number of
steps when considering cloudbursting. First, benchmark the
application in a broad number of situations on different cloud
configurations. The cloud is largely a “black box”, so it is very
important to observe actual behavior rather than speculate.
Second, focus on the application itself by minimizing
“auxiliary” code whenever possible. For example, we greatly
benefited by using the existing Windows HPC queuing
system. Third, reduce (as much as possible) the heterogeneity
between the local development environment and cloud
platform. Finally, we believe that a stage-in, execute, stage-out
pattern fits well with cloudbursting and that it is not as clear
for other I/O patterns. We have found that in general that the
determining factor is data – where it is and how much is
moved. In many situations, the key to successful cloudbursting
is to minimize data movement.

VI. CONCLUSION

For the near future, a significant challenge for enterprises is
how best to explore the potential of cloud computing while
continuing to leverage their existing computational
infrastructure. In this paper, we have investigated a concrete
example of cloudbursting as a means to produce new scientific
results through satellite image processing. We found that the
bag-of-tasks model of our escience application greatly
benefited from cloudbursting, as we achieved good
performance, software development productivity was
enhanced, and a cloud-based execution was cost-effective. We
believe that further specific studies like this one are needed, as
inevitably different factors will most likely determine the
appropriateness of cloudbursting for different applications.

REFERENCES

[1] J. Li, D. Agarwal, M. Humphrey, C. van Ingen, K. Jackson, and Y. Ryu.
eScience in the Cloud: A MODIS Satellite Data Reprojection and
Reduction Pipeline in the Windows Azure Platform. In Proceedings of
the 24th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2010), Apr 19-23, 2010. Atlanta, Georgia.

[2] J. Li, M. Humphrey, Y-W Cheah, Y. Ryu, D. Agarwal, K. Jackson, and
C. van Ingen. Fault Tolerance and Scaling in e-Science Cloud
Applications: Observations from the Continuing Development of
MODISAzure. In IEEE e-Science 2010 Conference. Brisbane,
Australia. Dec 7-10, 2010.

[3] C. Lee, “A Perspective on Scientific Cloud Computing”, 1st Workshop
on Scientific Cloud Computing (ScienceCloud 2010), Chicago, IL, June
21 2010.

[4] The Florida Stratus Cloud: http://www.acis.ufl.edu/vws/.

[5] P. Watson, P. Lord, F. Gibson, P. Periorellis, and G. Pitsilis, "Cloud
Computing for e-Science with CARMEN", the 2nd Iberian Grid
Infrastructure Conference, Porto, May, 2008.

[6] A. Matsunaga, M. Tsugawa, J. Fortes. CloudBLAST: Combining
MapReduce and Virtualization on Distributed Resources for
Bioinformatics Applications Proceedings of 4th IEEE International
Conference on e-Science (eScience 2008), Indianapolis, IN, Dec 2008.

[7] C. Evangelinos and C. Hill. Cloud Computing for parallel Scientific
HPC Applications: Feasibility of running Coupled Atmosphere-Ocean
Climate Models on Amazon’s EC2. Cloud Computing and its
Applications (CCA-08). Chicago, IL. Oct 22-23, 2008.

[8] R. Grossman, Y. Gu, Data mining using high performance data clouds:
experimental studies using sector and sphere. Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD’08). Las Vegas, NV, 2008.

[9] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib, J. Wang. Introducing
Map-Reduce to High End Computing. 3rd petascale data storage
workshop (held in conjunction with SC’08). Austin, TX. Mon Nov 17,
2008.

[10] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good. The Cost of
Doing Science on the Cloud: The Montage Example. Proceedings of
Supercomputing 2008, Austin, TX, Nov 15-21, 2008.

[11] K. Jackson, L. Ramakrishnan, K. Runge, and R. Thomas. “Seeking
Supernovae in the Clouds: A Performance Study”. 1st Workshop on
Scientific Cloud Computing (ScienceCloud 2010), Chicago, IL, June 21
2010.

[12] M. Palankar, A. Lamnitchi, M. Ripeanu, S. Garfinkel. Amazon S3 for
Science Grids: A Viable Solution? International Workshop on Data-
Aware Distributed Computing, Boston, Massachusetts, June 2008.

[13] W. Lu, J. Jackson, and R. Barga. “AzureBlast: A Case Study of
Developing Science Applications on the Cloud.” 1st Workshop on
Scientific Cloud Computing (ScienceCloud 2010), Chicago, IL, June 21
2010.

[14] W. Lu, J. Jackson, J. Ekanayake, R. S. Barga, N. Araujo. Performing
Large Science Experiments on Azure: Pitfalls and Solutions. IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom 2010), Nov. 30-Dec.1, 2010, Bloomington, Ind.

[15] S. L. Garfinkel. 2007. An evaluation of Amazon’s grid computing
services: EC2, S3 and SQS. Center for Research on Computation and
Society School for Engineering and Applied Sciences, Harvard
University, Tech. Rep., 2007

[16] Z. Hill and M. Humphrey. 2009. A Quantitative Analysis of High
Performance Computing with Amazon’s EC2 Infrastructure. In
Proceedings of the 10th IEEE/ACM International Conference on Grid
Computing (Grid 2009). (Oct 13-15 2009).

[17] E. Walker, “Benchmarking Amazon EC2 for High-Performance
Scientific Computing”, ;Login: The Usenix Magazine, Vol. 33, No. 5.,
2008

[18] K. Jackson, L. Ramakrishnan, K. Muriki, S.Canon, S. Cholia, J. Shalf,
H. Wasserman, and N. Wright. Performance Analysis of High
Performance Computing Applications on the Amazon Web Services
Cloud. IEEE International Conference on Cloud Computing Technology
and Science (CloudCom 2010), Nov. 30-Dec.1, 2010, Bloomington, Ind.

[19] Candeia, D.; Araujo, R.; Lopes, R.; Brasileiro, F..Investigating
Business-Driven Cloudburst Schedulers for E-Science Bag-of-Tasks
Application. IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2010), Nov. 30-Dec.1, 2010,
Bloomington, Ind.

[20] NASA MODIS Web page. http://modis.gsfc.nasa.gov/

[21] C. Justice et al., “The Moderate Resolution Imaging Spectroradiometer
(MODIS): land Remote Sensing for Global Change Research,” IEEE
Transactions on Geoscience and Remote Sensing, 36(4): 1313-1323,
1998.

[22] Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira,
L. G. (2002). Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sensing of Environment, 83,
195– 213

[23] W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J.W. Campbell, K.
L. Carder,D.K. Clark, R. H. Evans, F. E. Hoge, H. R. Gordon,W. M.
Balch, R. Letelier, and P. J. Minnett, “An overview of MODIS
capabilities for ocean science observations,” IEEE Trans. Geosci.
Remote Sensing, vol. 36, pp. 1250–1265, July 1998.

[24] Z. Hill and M. Humphrey. CSAL: A Cloud Storage Abstraction Layer to
Enable Portable Cloud Applications (work in progress). 2nd IEEE
International Conference on Cloud Computing Technology and Science .
November 30-December 3, 2010 . Indianapolis, Indiana.

