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Abstract— To perform computational experiments at greater 

scale and in less time, enterprises are increasingly looking to 

dynamically expand their computing capabilities through the 

temporary addition of cloud resources (aka “cloudbursting”). 

Computational infrastructure can be dismantled in minutes with 

no long-term capital investments. However, research is needed to 

identify which properties of an application best determine the 

potential benefits of cloudbursting. For example, there are 

certainly situations where the cost to transfer the necessary input 

data from the enterprise to the cloud (to execute the application 

in the cloud) outweighs the value of simply waiting until 

resources become available in-house. To better understand and 

quantify these general issues, we perform a concrete analysis of 

the value of cloudbursting for a large-scale application we have 

previously created to process and derive environmental results 

from satellite imagery.  More specifically, we compare three 

versions of the application (an all-cloud design; a version that 

runs in-house on our cluster; and a hybrid cloudbursting version) 

on dimensions of debuggability, fault tolerance, correctness, 

economics, usability, and run-time speed. We find that for our 

application, cloudbursting is effective primarily because we were 

able to design the application so that its I/O behavior does not 

preclude remote (cloud) execution, we were able to minimize 

developmental cost by constructing a cloud run-time 

environment that is very similar our in-house environment, and 

we achieve good run-time performance in our cloud-based 

executions (for example, we describe how a representative 

computation that takes 2 ½ hours in-house is completed in 35 

minutes via cloudbursting). By generalizing this analysis, we 

believe that we contribute guidance to the broader community on 

the value of cloudbursting for escience applications.  

Keywords-cloud computing, Windows Azure; cloudbursting;  
MODIS. 

I.  INTRODUCTION 

For many enterprises, the appeal of cloud computing is not 
to wholly replace in-house computational infrastructure with 
cloud resources, but rather to selectively and opportunistically 
augment in-house resources with cloud resources. This is the 
“best of both worlds”, whereby dynamic scalability is achieved 
without large capital expenditures, and without the upheaval of 
porting/rewriting applications to run solely in a cloud 
environment. This “cloudbursting” methodology allows 

maximum productivity from existing in-house resources, while 
still facilitating a future environment where cloud resources are 
increasingly relied upon for day-to-day operations, including 
escience experiments. 

However, not every application can execute effectively in a 
cloudbursting model. The extreme cases are understood – for 
example, a tightly-coupled MPI application is unlikely to be 
successful if cloudbursted in the wide-area across enterprise 
and cloud resources, as network latency becomes intolerable. 
On the other hand, a bag-of-tasks Monte Carlo simulation with 
minimal I/O might be an excellent candidate for cloudbursting. 
In between, however, there are applications that might 
significantly benefit (or not) from cloudbursting, and the 
dominant reason might be different for each. One application 
might work because it can be easily ported to leverage in-cloud 
storage capabilities (similarly, an application might work 
because no such porting is even necessary!) Another 
application might be a good fit for cloudbursting because the 
economics of running it in the cloud are particularly appealing. 
A third application might not make sense for cloudbursting 
because the input data for the application is too big to justify 
moving from the enterprise to the cloud just for the execution 
(and of course some enterprises might decide that there are 
security requirements that prevent the application from ever 
running in a cloud. Research is needed to identify which 
properties of an application best determine the potential 
benefits of cloudbursting.  

To better understand and quantify these general issues, we 
perform a concrete analysis of the value of cloudbursting for a 
large-scale application we have previously created to process 
and derive environmental results from satellite imagery. Our 
application, MODISAzure [1][2], is one of the first escience 
applications to use the Microsoft Windows Azure cloud 
platform. A typical execution of MODISAzure produces an 
analysis of environmental characteristics for each day being 
studied (in a bag-of-tasks style) and then aggregates the day-of-
year results (more details are contained in Section 3 of this 
paper). To study the value of cloudbursting, we created and 
compare three versions of this application. The first version 
executes entirely in Windows Azure.  The second version is a 
port of the Windows Azure version to run entirely on our 
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Windows HPC cluster. The main modifications that were 
necessary were to replace the use of cloud storage (e.g., blobs, 
tables, queues) and to replace our custom job-management 
software in Windows Azure with invocations to the Windows 
HPC scheduler. Our third version is the cloudbursting version, 
capable of running in-house on our Windows HPC system as 
well as inside the Windows Azure cloud. As we describe in the 
paper, this third version was not simply a sum of the first two 
versions, as this hybrid cloudbursting model required 
modifications to the first two versions in order to be effective.  

We find that for our application, cloudbursting is effective 
primarily because we were able to design the application so 
that its I/O behavior does not preclude remote (cloud) 
execution, we were able to minimize software development 
cost by constructing a cloud run-time environment that is very 
similar our in-house environment, and we achieve good run-
time performance in our cloud-based executions (for example, 
we describe how a representative computation that takes 2 ½ 
hours in-house is completed in 35 minutes via cloudbursting). 
By generalizing this analysis on dimensions of debuggability, 
fault tolerance, correctness, economics, usability, and run-time 
speed, we believe that we contribute guidance to the broader 
community on the value of cloudbursting for escience 
applications. 

The rest of the paper is organized as follows. Section II 
contains the related work. Section III describes the science we 
are pursuing involving the MODIS satellites. Section IV 
describes the three versions of the application. Section V 
contains the evaluation and discussion. Section VI concludes. 

II. RELATED WORK 

There are a number of emerging “science clouds” [3] 
[4][5]. Similarly, there is an increasing number of science 
applications in otherwise non-science clouds (e.g., 
CloudBLAST [6], coupled atmospheric-ocean climate models 
[7], data mining [8], astrophysics [9], astronomy [10][11], high 
energy physics [12]). Windows Azure has been used as the 
platform for executing BLAST very effectively [13][14]. 
Whereas the focus of these projects is to get an application to 
execute entirely in a cloud, we attempt to create an  
implementation that can run effectively within the enterprise, in 
the cloud, or both.   

Beyond facing the initial challenges of just getting an 
application to run in a cloud at all, there is an increasing 
recognition of performance concerns of clouds and their 
underlying technologies.  One of the first studies was provided 
by Garfinkel [15], who evaluates some of the cloud services 
that Amazon provides. Similarly, local HPC clusters were 
compared against EC2 [16]. Another report examines the 
feasibility of using EC2 for HPC in comparison to clusters at 
NCSA [17], pitting EC2 against high-end clusters utilizing 
Infiniband interconnects. A recent study considered the newest 
support for MPI in EC2 against local clusters [18].  

The scheduling of bag-of-tasks applications in a 
cloudbursting model is the focus of a recent study [19], in 
which it is assumed that the application can be executed in the 
cloud, and the issue is thus how to schedule it so that its overall 
time to completion and cost is minimized. In contrast, in our 

work, we investigate whether or not the application is suitable 
for this cloudbursting execution at all. 

III. BACKGROUND: MODIS AND WINDOWS AZURE 

We first describe the nature of the scientific computation 
we are performing. We then give an overview of the Microsoft 
cloud: Windows Azure. 

A. MODIS and the Scientific Computation 

The MODIS (Moderate Resolution Imaging 
Spectroradiometer) sensor, on board the Terra and Aqua 
satellites, was designed to improve the understanding of global 
dynamics and processes occurring on the land, oceans, and  
atmosphere [20][21]. The MODIS data is a view of the entire 
Earth’s surface in 36 spectral bands, at multiple spatial 
resolutions, generated every 1-2 days. There are a large number 
of research activities that currently use the MODIS data to 
explore and validate scientific hypotheses (e.g., see [22] for an 
overview with regard to vegetation and [23] for an overview 
with regard to ocean science). 

The science goal of our project is to apply the MODIS data 
in the calculation of the evapotranspiration (ET) on the earth 
surface. ET controls land-atmosphere feedback and is an 
important source of water vapor to the atmosphere. 
Atmospheric water vapor is the most significant greenhouse 
gas and key to understanding hydrologic cycle. As such, ET 
plays a fundamental role in weather and climate. Our 
computation of ET involves multiple science data products 
from the MODIS source data sets, each containing a specific 
type of earth surface imagery (such as Land surface 
temperature or atmospheric aerosol). Each data product 
contains a number of related science variables separated into 
HDF format source files. The size of a single data product for 
each global year ranges from several hundred GBs to over 1 
TB. Although files can be downloaded from the FTP sites, 
currently there are no public software frameworks available in 
the earth science community to automate the processes of 
reconciling and cataloging the various data products and/or 
scheduling parallel computations over these data. As a result, 
scientists need to handle processing complexities manually, 
which often prevents large scale analyses. 

There are two computations we are performing. The first is 
reprojection, in which the heterogeneous data products 
collected from the appropriate NASA FTP sites are reprojected 
into time and spatial-aligned imagery data. A set of compute-
intensive algorithms (e.g. nearest neighbor pixel match) is 
performed to harmonize data points pixel by pixel. Typically, a 
single reprojection task requires a collection of only 3-4 source 
data files, each in the size of several MBs to tens of MBs. The 
computation required to produce a target sinusoidal file (i.e., 
reproject the source data into a uniform format) can be finished 
in 10-15 minutes on a typical commodity PC. The second is 
reduction, in which a scientist performs an analysis 
computation over the reprojected data from the previous stage. 
A “first reduction stage” is used for science derivation such as 
computing a new science variable from a number of input 
variables. The “second reduction stage” is used for subsequent 
analysis of spatial or temporal aggregates. The first reduction 
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stage does the science computation at scale; the second 
reduction stage creates the smaller science analysis artifacts 
necessary to understand the results of the first stage. 

B. Windows Azure 

Windows Azure was announced by Microsoft as its cloud 
computing platform at its Professional Developers Conference 
(PDC) Nov 2008. Windows Azure presents a .NET-based 
hosting platform that is integrated into a virtual machine 
abstraction. Thus, developers who are familiar with .NET 
application development can take advantage of this 
homogeneous cloud environment and develop applications for 
Azure just like ordinary .NET applications by using Visual 
Studio. In contrast to this “Platform as a Service” (PaaS), 
Amazon’s EC2 has focused on support for virtual machine 
technology (aka Infrastructure as a Service, or IaaS). Microsoft 
has recently augmented its PaaS with IaaS as well. In both EC2 
and Windows Azure, users can customize the environment for 
their application by installing specific software or by 
purchasing particular machine images.  

In Windows Azure, the virtual machine instances can be 
separated into three different roles: the front-end website 
hosting server instances are called Web Roles, the back-end 
computational instances called Worker Roles, and the new 
Virtual Machine roles. Developers can specify the number of 
instances for roles at the deployment of their application or can 
dynamically adjust the number of instances at runtime.           

Windows Azure provides three types of cloud storage 
services, in addition to SQL Azure:  

• Blob service, the main storage service for storing 
durable large data items;  

• Queue service, which provides a basic reliable queue 
model to allow asynchronous task dispatch and to enable 
service communication;  

• Table service, which provides the structured storage in 
the form of tables and supports simple queries on partitions, 
row keys, and attributes.  

The key aspect of cloud storage is that it is accessible via 
any virtual machine in Azure (with the proper 
authentication/authorization). Therefore, while there is local 
storage available to a particular computation, it is assumed that 
one of the cloud storage services will be used if the data is to be 
shared across virtual machine instances. 

IV. OUR APPLICATIONS FOR PROCESSING MODIS DATA 

In this section, we describe each of the three versions of the 
application we created to process the MODIS data and derive 
new scientific results. It is important to note what we did not 
design all three versions at the same time. Initially, we 
designed an application solely for Windows Azure. It was only 
later that we decided to investigate a cloudbursting version. 

A. MODISAzure (only Windows Azure) 

We began the scientific investigation with a few prototyped 
algorithms, which we wanted to perform at a scale greater than 
was realistically possible on a typical desktop computer. In 

other words, we needed a new platform by which to perform 
analysis of the MODIS data at finer spatial granularity, and we 
wanted to perform the analysis over more sensed days. More 
than anything, we were looking for computational capacity, 
and the Microsoft Windows Azure platform seemed to be a 
perfect fit for our requirements. However, we realized that 
there were a number of key challenges in the use of Windows 
Azure for this application to process the MODIS data: 

1. First version: getting the application to run at all was a 
challenge, as this was a new platform that did not have the 
familiar mechanisms/abstractions for compute and storage. 
The latter in particular – queues, blobs, and tables – 
replaced the traditional distributed file system abstraction. 

2. Debugging: we quickly realized that we could not debug 
our application in our typical way (interactively). That is, 
Windows Azure is PaaS, so we could not simply start up a 
remote desktop session (RDP) to the machine to determine 
what happened. [ Note that Windows Azure recently began 
supporting RDP access, greatly aiding debugging. ] 

3. Correctness: we decided it would be necessary to add 
fault-tolerance techniques into our code to handle either 
unavailable input data or quirky behavior in the cloud 
platform. For example, we use Terra data and only switch 
over to Aqua if the Terra data was not available (e.g., 
because of a satellite outage). However, if a particular 
instance actually used the Aqua data, it was not clear if this 
was because Terra was truly not available (which would be 
correct behavior) or our application for some reason failed 
to find the available Terra data (which would be incorrect 
behavior). It was a challenge to be able to deal with 
problems that can arise in the cloud because of scale and 
not mask our own incorrect behavior. Similarly, it was not 
clear from the first stages which Windows Azure transient 
faults would masked from us and which issues would 
rather be seen by our application. 

4. Economics: How do we perform the science as cheaply as 
possible, does our monthly bill match our expectations 
(e.g., at scale idle machines and unused/forgotten data 
stored in the cloud could become very expensive), and can 
we predict how much the next experiment will cost?   

5. Performance/scalability: Intuitively, parallelism in our 
MODIS processing would be achievable through both a 
space and time decomposition. That is, different regions of 
the Earth could be processed largely independently, and 
furthermore different days could be processed 
independently. However, it was not clear how this implied 
granularity matched the support for computational 
parallelism, which was at the virtual machine abstraction. 
In other words, our only real choice was to instantiate a 
number of virtual machines, and have them pull ‘tasks’ 
from a common queue. It was not clear if this coarse 
structure would limit our performance and/or scalability. 

Figure 1 shows our implementation of the MODISAzure 
application. The scientist uses a Web portal (not shown) to 
submit jobs to the system (“Service Request Queue”), where a 
job can be either to reproject some MODIS data or to perform a 
reduction. Our Web-facing Windows Azure VM parses the 
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user request into a large number of parallel data collection, 
reprojection, and reduction tasks (“Reprojection Task Queue” 
is shown; other queues are similar). During the processing of a 
user request in the pipeline, the task scheduler also keeps track 
of the task statuses and retries/requeues tasks as necessary. 
Each computational worker role instance fetches tasks from the 
task queue and performs the corresponding data processing 
work. The nature of a “task” is to: [1] retrieve all the necessary 
input HDF files from Blob storage; [2] spawn the Matlab 
process that [a] reads in all of the HDF files, [b] analyzes the 
data, and [c] writes out its results; and [3] copies the output 
data back into Blob storage. The particular Matlab job is not 
memory-intensive. Details can be found in [1][2]. 

Figure 1.  MODISAzure design 

Figure 2 shows the aggregate usage of our MODISAzure 
application. In Spring 2010 we were focusing on the 
continental US, Summer 2010 was on Global scale 
reprojection, the rest of 2010 was on Global scale reduction, 
and the rest of the time was archive download. We have used 
more than 250,000 CPU hours, amassed an over 5 TB dataset 
and gained as a factor of over 100x speedup over our reference 
high-end desktop.  

B. MODISHPC (only Windows HPC) 

We believe that MODISAzure was successful, both because 
we believe that we performed novel environmental science 
experiments and also because it gave us a concrete experience 
with designing, implementing, and debugging a large-scale 
science application in the cloud. However, there were a number 
of limiting aspects of the MODISAzure application: 

• Debugging was not easy for MODISAzure – we 
changed our development style because we could not 
interactively debug our cloud application. That is, we had to 
replace our typical rapid development cycle with a coarser-
grained methodology based essentially on logging statements. 
This greatly slowed the progress by which we could develop 
and assess the correctness of our application. 

• Scaling (dynamic) took too long for MODISAzure – if 
we had a relatively large queue and wanted to add capacity to 
service the requests more quickly, our only option was to add 
new VMs. The problem is that it took about 15 minutes for this 
new collection of VMs to become ready to start processing 
items in the queue. While this is sufficient for many large 
requests, it was not as quick as we would have liked. 

• Economics were not a clear win: while the pay-as-
you-go nature was very appealing, and the cost-per-experiment 
was arguably pretty low, at times we could not escape the 
feeling that we were wasting money. 

• Performance – microbenchmarks indicated that our 
observed behavior was consistent with that promised by the 
Windows Azure Service-Level Agreement (SLA), but we still 
did not know if we could do better without significant effort 
(via just running on a different platform) 

• “Auxiliary Routines” – We had to create a fairly large 
number of auxiliary routines that were arguably distracting 
from our scientific pursuits. The most obvious examples of this 
were that we essentially had to build our own (minimal) 
queuing system to manage tasks and our own utility for results 
downloading. The time to write and debug this took away from 
the direct science experiments.  

Because of these concerns, we decided to port the 
MODISAzure application to run on a Windows HPC cluster. 
We were already comfortable with the Windows HPC server 
system, so we were able to accomplish this fairly quickly. Our 
methodology was [a] change as little as possible in order to get 
the application to run (we preferred to not have two separate 
code bases, if possible), and [b] then investigate possible 
extensions to customize the application to exploit the unique 
characteristics of the HPC environment. As such, there were 
two primary modifications necessary. First, instead of our 
custom queue that we created for Windows Azure, we instead 
used the Windows HPC SDK to submit jobs to the Windows 
HPC queuing system. This was not difficult, as we were 
already familiar with programmatically submitting jobs. The 
second modification was to continue to use the “blob interface” 
but instead create an implementation of the interface that uses 
the local file system of the cluster head node and the internal 
nodes as warranted. This design is consistent with a “run-
anywhere” application that we believe is increasingly 
appropriate for applications and is a simplified version of our 
longer-term research project to construct a “Cloud Storage 
Adaptation Layer” (CSAL) [24] that provides an intelligent and 
adaptive layering between the application logic and the 
multiple local and non-local storage options.  

Recall that in MODISAzure we copied a potentially large 
number of input HDF files into the working directory of the 
Matlab executable before it executed. In MODISHPC, we 
retained this pattern, except that we cache content on each 
internal node (instead of retrieving from a single folder resident 
on the head node). This modification – and similarly the use of 
hard links with the file system – was not trivial, as this 
introduced issues related to multiple concurrent readers/writers 
attempting to access and/or update the cache.  This was the 
only “fault tolerance” logic that we found necessary to add 
(recall that we were starting with our MODISAzure code base, 
so we already had code for application-level fault tolerance).   

The biggest advantage of MODISHPC over MODISAzure 
was with code development and debugging. Because it was all 
local, we were able to debug interactively and quickly start/stop 
jobs. In particular, because we were using a small cluster, we 
found it very valuable: [a] to be the only user on the cluster (so 
we could leave and return where we left off, knowing that the 



5 
 

 

Figure 2.  MODISAzure runtime on Windows Azure 

state of the system was retained); [b] to have a “debugging 
folder” on each machine, where each computation on a 
machine would write error logs; and [c] to monitor the 
execution of a particular science experiment by real-time 
viewing of all of the debugging folders via a console on the 
head node – we watched both the queuing system and the 
output of the jobs in real-time. When error logs appeared, we 
“remote desktop” directly onto a node to investigate the error 
and/or re-run the problem computation by hand to catch the 
error in real-time and correct the code.  

We benefited by replacing our minimal custom queuing 
system in Windows Azure with the full-featured Windows 
HPC queuing system, even as we left it to future research to 
investigate scheduling policies other than essentially FIFO. At 
the very least, its GUI made it very easy to assess the status of 
the jobs. Additionally, one aspect of the Windows HPC 
scheduler that facilitated debugging was that the HPC cluster 
uses an underlying SQL Server database to keep track of jobs. 
This proved to be valuable to use because we could use SQL 
Server Management studio to directly access the “raw data” as 
necessary to determine what was going on in those situations 
where we believed that the HPC cluster management console 
was not providing us directly the information we need. For 
example, by using SQL Server Management studio to explore 
the job data, we realized that certain jobs were re-queued 
automatically when patches were applied to an internal node. 
Without this capability, we would have believed that the tasks 
failed for some unknown reason, leaving us to speculate that 
our code was causing the problematic behavior.  

C. MODISHybrid  

MODISAzure and MODISHPC were successful in general, 
but each had limitations. For MODISAzure, the development 
cycle was too long to really facilitate rapid progress. For 
MODISHPC, for our particular situation, our Windows HPC 
cluster was fairly small, so we could not easily scale up/down 
to meet the dynamic requirements of a particular computation. 
On Dec 1, 2010, Microsoft announced the general availability 
of Windows HPC Server 2008 R2 SP1, which included support 
for adding Windows Azure nodes to a local Windows HPC 
cluster. We saw this as a way to potentially achieve the best of 
MODISAzure and MODISHPC, namely the development 

environment of a local machine with the scalability of the 
cloud. 

After a few configuration steps (e.g., recording the security 
credentials and account information for Windows Azure), the 
HPC cluster administrator can start/stop a new Windows Azure 
node as easily as adding a local enterprise node via the HPC 
Cluster management console. We used a second mechanism 
called Windows Azure Connect to provide Virtual Private 
Network (VPN) capability so that the IP address of the 
Windows Azure nodes appeared to be within our enterprise IP 
space. This simplified our code, as computations within 
Windows Azure were able to securely read/write from our HPC 
cluster head node (e.g., to retrieve the Matlab reduction 
executable uploaded by the scientist to the head node). 

We utilized the new “hpcpack” command to upload our file 
packages into Windows Azure Blob storage, and we then 
subsequently issued a “hpcsync” command on each Windows 
Azure node install these packages from Blob storage to create a 
file system structure that matched our enterprise nodes in our 
Windows HPC cluster so that we could more easily code and 
debug. We had four packages: our MODIS application 
functionality, the HPC client package (to potentially submit 
subsequent jobs to our Windows HPC cluster from our 
Windows Azure nodes), the Matlab runtime environment, and 
a collection of default input files. Once a Windows Azure node 
comes on-line, we also had to run some additional commands 
from the management console to install/configure these 
package as necessary (e.g., when a Windows Azure node came 
on-line, the Matlab runtime package was in the file system of 
the VM but it still needed to have its installer executed). It 
should be noted that Windows Azure supports the ability to 
upload an application-customized VM (instead of taking the 
default VM and configuring it via the ‘hpcpack’ command), 
but we found that it was not necessary for our application. 

Recall that our original MODISAzure application retrieved 
content from Windows Azure Blob storage and placed it 
directly as files into the Windows Azure VM, and that we 
changed the “blob implementation layer” in MODISHPC to 
instead directly engage the local file system. In MODISHybrid, 
the application retrieves input files based on where it was 
executing – if in the cloud, then retrieve input files from Blob 
storage, and if in the enterprise retrieve input files from the file 
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system of the head node. (Inside our application, this was 
essentially the beginnings of an “#IFDEF CLOUD” 
programming pattern). To facilitate this, we “pre-staged” input 
files into Blob storage of Windows Azure, and established a 
“cache” on each VM of input files – a Windows Azure 
application would first check to see if another computation had 
already retrieved it from Blob storage. We found that this 
particular I/O enhancement most improved the speed of our 
Windows Azure-based computations. All day-of-year 
computations copy their output to Blob storage no matter 
where they execute. An optional 2nd stage reduction retrieves 
all of this output data to use as input. 

During our development, we found it most productive to 
typically have four windows open on our desktop. The first 
window was the web page for submitting a new job. The 
second window was the Windows Azure management portal – 
to monitor our VMs via a direct console to Windows Azure. 
The third window was the Windows HPC management console 
– to monitor jobs, to facilitate RDP to the Windows Azure 
nodes, and to directly run commands on selected Windows 
Azure nodes. Our final window was RDP to one or more 
Windows Azure nodes for debugging purposes.  

Overall, the development productivity was greatly 
enhanced as compared to the situation in which we could only 
use Windows Azure. Similarly, the cloudbursting capability 
was well-integrated with the Windows HPC management 
console, and we could add/remove nodes easily. The biggest 
open issue at this point is the degree to which the “#IFDEF 
CLOUD” pattern should be used. On one hand, it is certainly 
desirable to customize the behavior to its operating 
environment. On the other hand, this heterogeneity increases 
code complexity and complicates debugging.  

V. EVALUATION AND DISCUSSION 

Our goal is to assess the three systems based on experiment 
duration and cost – that is, “how long will the science take?” 
and “how much will it cost?” To focus the analysis, we attempt 
a representative moderate-scale computation: the analysis of 
the region of the earth’s surface h28v05 (South Korea and parts 
of Japan and China) for the entire-year 2003 at a resolution of 
1km. Furthermore, this analysis focuses on the reduction phase 
(after the entire 2003 h28v05 data has been reprojected). 
Overall, there are 365 independent computations, one for each 
day of the year. On average, each of these 365 computations 
requires 217 input files (76 matlab routines – 2.49GB, 141 
HDF files – 471 MB), produces 173 temp files (416 MB), and 
produces 32 output files (5.70 MB). As mentioned in the 
previous section, if the particular day’s computation occurs 
within the enterprise, the input files are taken from the head 
node, and if it occurs on Windows Azure then the input files 
are taken from Blob storage. The temp files and output files are 
written to local storage (within the VM for Windows Azure, 
and on a worker node for Windows HPC). After all 365 
computations complete, a second-stage reduction (Matlab-
based) is executed to determine numerous properties from the 
viewpoint of the entire year. For example, Figure 3 shows the 
resulting evapotranspiration calculation for h28v05 for 2003. 

 

Figure 3.  Evapotranspiration (ET) calculated for 2003 h28v05 

Part of our research motivation is: do we buy more 
hardware for our local cluster or do we rent resources from a 
cloud provider such as Windows Azure? Our cluster was circa-
2008, created via commodity hardware: the head node is a 
Shuttle SN78S dual-core AMD Athlon X2 2.8GHz, with 4GB 
RAM, with a single hard drive (7200 RPM, 640 GB). There are 
two internal nodes to the cluster. Each is dual-quad-core (AMD 
Opteron 2344 HE 1.7GHz), 16GB RAM, one hard drive (C:) 
150GB 10K RPM, and another hard drive (D:) 640 GB 7200 
RPM. A Netgear 10/100/1000 switch is used.  

Given that our cluster was at UVa, there were only two 
Windows Azure datacenters to realistically choose between: 
Chicago and San Antonio. We found to the edge of the 
Chicago datacenter, latency was 21 ms, download bandwidth 
was 91.1 Mbps, and upload bandwidth was 30.1 Mbps. To the 
edge of the San Antonio datacenter, latency was 43 ms, 
download bandwidth was 61.7 Mbps, and upload bandwidth 
was 15.9 Mbps. We chose to use the Chicago datacenter for our 
cloudbursting experiments. Typically, it required 
approximately 45 minutes to fully add new Windows Azure 
nodes to our enterprise cluster:  15-20 minutes to boot the 
Windows Azure nodes (in total, irrespective of the number of 
nodes being added, although a large number generally took a 
little longer), then install the VPN software and wait for the 
Windows Azure nodes to register with the VPN, then execute 
hpcsync, and finally install our software packages. 

TABLE I.  WINDOWS AZURE INSTANCES 

Compute 
Instance 

Size 
CPU Memory 

Instance 
Storage 

 
I/O Perf 

Cost 
per 

hour 
Extra 
Small 

1.0 
GHz 

768 MB 20 GB 
Low $0.05 

Small 1.6 
GHz 

1.75 GB 225 GB 
Moderate $0.12 

Medium 2 x 1.6 
GHz 

3.5 GB 490 GB 
High $0.24 

Large 4 x 1.6 
GHz 

7 GB 
1,000 
GB 

High $0.48 

Extra 
Large 

8 x 1.6 
GHz 

14 GB 
2,040 
GB 

High $0.96 

As is generally the case with other clouds, Windows Azure 
offers different virtual machines sizes (Table I). Our expected 
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workload for cloudbursting required non-trivial I/O, so we 
limited our experiments to Medium, Large, and Ex-Large.  

TABLE II.  2003, DOY=301, H28V05: EXECUTION TIME (MINUTES) 

 Stage-In Compute Total 

Local 0:44 5:46 6:32 

Medium (local) 1:24 1:43 3:17 

Medium (blob) 1:48 1:43 3:31 

Medium (UVa) 13:35 1:43 15:38 

Large (local) 0:59 1:46 2:47 

Large (blob) 1:44 1:46 3:30 

Large (UVa) 13:58 1:46 15:44 

Ex-Large (local) 1:24 1:50 3:14 

Ex-Large (blob) 1:53 1:50 3:43 

Ex-Large (UVa) 13:47 1:50 15:37 

Our first task was to assess the performance of the 
Windows Azure instance sizes (note that from Table I it can 
be seen that 1 Ex-Large was approximately equal to 2 Large 
instances or 4 Medium instances).  Table II shows the duration 
to analyze day-of-year (DOY) 301 on Windows Azure nodes 
of different size. For each size, we execute 3 configurations: 
“local” means that the input files are already on the virtual 
machine but not in the necessary folder; “blob” means that the 
input files are retrieved from Windows Azure Blob storage in 
the same datacenter; and “UVa” means that the input files are 
retrieved from the head node within UVa. The baseline is 
“local”, which is the duration for one of the enterprise cluster 
nodes. The first column is the duration to copy the necessary 
input files into the local folder of the machine for the Matlab 
code. The second column shows the duration to execute the 
Matlab code. All durations are in minutes. This data shows:  

1. Our science Matlab code executes at least 3 times faster 
than on our cluster nodes, even though the specifications 
are approximately equal. We believe that Windows Azure 
is under-promising its behavior, perhaps to ensure that it 
can meet its SLA under higher-duress situations. 

2. As expected, all three VM sizes tested performed roughly 
the same for this single-threaded execution. In particular, 
the application is dominated by I/O and does not greatly 
benefit from the additional RAM of larger VMs.  

3. Inside the cloud, input data should be retrieved from 
within the cloud. VPN functionality added convenience 
(to retrieve the input data from UVa), but wide-area 
latency/bandwidth makes any non-trivial I/O infeasible. 
Instead, pre-stage data as necessary to blob storage. 

We next ran a more holistic experiment consisting of 16 
DOY with a second stage reduction across different Windows 
Azure sizes (Table III). Our goal was to assess the duration of 
the escience experiment as well as its cost. Overall, the 16 
DOY required 216 files (859 MB) be retrieved from Blob 
storage, and 118 files (1.58 MB) output were produced. Table 
III shows the duration and cost in dollars for a local compute 
node and three 8-core Windows Azure configurations. The 
cost is essentially just the VM cost, as it is free to upload data 
into Windows Azure and, once uploaded, it cost 
approximately $0.45 per month to store. We ignore the cost of 

Windows Azure boot/prep and assume that we delete the 
Windows Azure instances immediately after completion (in 
reality, these costs would be amortized across multiple runs). 

 We were initially surprised that the Medium VMs 
perform the best. Further analysis showed that with a 16-day 
computation and 8 cores, there were two 8-day “phases” that 
happened nearly in lockstep, as each DOY calculation took the 
same duration. At the beginning of each phase, 8 Matlab 
computations were each reading approx. 3 GB. With a single 
Ex-Large, all 8 computations were on the same machine. With 
the “Medium” configuration, only 2 processes were reading in 
parallel. Simply, the Medium VM and the Ex-Large VM had 
approximately the same I/O specs, so each Matlab 
computation took about twice the time on the Ex-Large VM 
(approx. 4 minutes compared to 2 minutes)! We found later 
that in larger experiments, eventually the concurrent DOY 
operations are not lockstep, so this effect is not as significant. 

TABLE III.  2003, DOY=301-316, H28V05 (WITH STAGE 2 REDUCTION) 

 Execution Time (minutes) Cost ($) 

Local  (8 cores) 21:50 -- 

4 Medium  10:14 $ 0.16 

2 Large  12:07 $ 0.19 

1 Ex-Large  14:17 $ 0.23 

TABLE IV.  2003, FULL YEAR,H28V05 (WITH STAGE 2 REDUCTION) 

 Execution Time 
(1st Stage) 

Execution Time 
(2nd Stage) 

Compute 
($) 

Local 
 (16 cores) 

2:33:16 
4:24 

$ 0 

32 Medium 28:58 7:17 $ 3.70 

16 Large 31:52 7:39 $ 4.07 

8 Ex-Large 39:35 7:27 $ 5.06 

Hybrid: Local + 32 
Medium 

28:12 
7:20 

$ 3.60 

We now evaluate (Table IV) whether to perform the full-
year 2003 reduction using only our local enterprise cluster, 
cloudbursting using only Windows Azure nodes, or 
cloudbursting using both enterprise nodes and Windows Azure 
nodes. Rather than attempt to determine the cost per 
experiment today for our circa-2008 enterprise hardware, we 
approximate the marginal cost as $0.  In all 5 cases, the 
Windows HPC queuing system is used to schedule the tasks. 
We decided to use 64 cores in Windows Azure – enough to 
substantially improve capacity beyond our existing 
infrastructure but not too many such that the experiment was 
unrealistically dominated by setup time. The number of cores 
to use for any particular escience experiment is the subject of 
future research. In terms of duration and cost, we see that 32 
medium VMs alone is better than 16 large VMs alone or 8 ex-
large VMs alone – our computation that takes 2 ½ hours in-
house is completed in 35 minutes via cloudbursting with 32 
medium VMs.  It is not clear whether the hybrid case should 
be pursued, as the overall duration was greatly influenced by 
the relatively slow duration of the last DOY calculation on the 
local resources. In other words, the faster Windows Azure 
nodes were largely idle toward the end of the experiment as 
the last enterprise tasks were completing. Based on these 
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experiments, we are currently using enterprise nodes to 
develop and test modifications to our satellite image 
processing algorithms. The small scale facilitates interactive 
debugging. We are also using the enterprise nodes when we 
need small-scale production runs (e.g., a few day-of-year 
calculations). When we need to run larger experiments, we 
cloudburst and acquire and use only Windows Azure nodes.  

Based on our experiences, we recommend a number of 
steps when considering cloudbursting. First, benchmark the 
application in a broad number of situations on different cloud 
configurations. The cloud is largely a “black box”, so it is very 
important to observe actual behavior rather than speculate. 
Second, focus on the application itself by minimizing 
“auxiliary” code whenever possible. For example, we greatly 
benefited by using the existing Windows HPC queuing 
system.  Third, reduce (as much as possible) the heterogeneity 
between the local development environment and cloud 
platform. Finally, we believe that a stage-in, execute, stage-out 
pattern fits well with cloudbursting and that it is not as clear 
for other I/O patterns. We have found that in general that the 
determining factor is data – where it is and how much is 
moved. In many situations, the key to successful cloudbursting 
is to minimize data movement. 

VI. CONCLUSION  

For the near future, a significant challenge for enterprises is 
how best to explore the potential of cloud computing while 
continuing to leverage their existing computational 
infrastructure. In this paper, we have investigated a concrete 
example of cloudbursting as a means to produce new scientific 
results through satellite image processing. We found that the 
bag-of-tasks model of our escience application greatly 
benefited from cloudbursting, as we achieved good 
performance, software development productivity was 
enhanced, and a cloud-based execution was cost-effective. We 
believe that further specific studies like this one are needed, as 
inevitably different factors will most likely determine the 
appropriateness of cloudbursting for different applications.  
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